I Want My Voice to Be Heard:

IP over Voice-over-IP for Unobservable Censorship Circumvention

Amir Houmansadr (The University of Texas at Austin)
Thomas Riedl (University of Illinois at Urbana-Champaign)
Nikita Borisov (University of Illinois at Urbana-Champaign)
Andrew Singer (University of Illinois at Urbana-Champaign)

NDSS 2013

Internet Censorship

- The Internet is a big **threat** to repressive regimes!
- Repressive regimes **censor** the Internet:
 - IP filtering, DNS hijacking, Deep packet-inspection, etc.
- Circumvention systems

New stage in the arms race

The threat model has changed

Past: detect circumvention end-points
 Now: detect circumvention traffic also

We need traffic unobservability

against passive, active, or proactive analysis

A recent approach

- A promising approach: hide circumvention traffic within popular Internet protocols
 - Censors are unlikely to completely block that protocol
- A new trend: **mimic** the target protocol
 - SkypeMorph, Stegotorus, and CensorSpoofer (CCS'12)
- It's hard to imitate network protocols

The Parrot is Dead: Observing Unobservable Network Communications [Oakland'13]

Our approach

- We seek the same objective, but take a different approach: *Run the target protocol*
- By running the target protocol no need to worry about implementation quirks, bugs, protocol details
- Challenge: how to *efficiently* encapsulate traffic into the target protocol

FreeWave: IP over Voice-over-IP

• Target protocol: Voice-over IP (VoIP)

- Why VoIP
 - Widely used protocol (only 663 Million Skype users)
 - Collateral damage to block
 - Encrypted
- How to hide?
 - The dial-up modems are back!

System components

NDSS 2013

MoDem component

- A typical acoustic modem
 - QAM modulation
- Reliable transmission
 - Turbo codes
 - Use Preambles

Evaluations

Client location	MoDem parameters			Data rate	Packet
	Q	1/T	R_C		drop rate
Berlin, Germany	4	8 kHz	0.5	16000 bps	0
Frankfurt, Germany	4	8 kHz	0.5	16000 bps	0
Paris, France	4	8 kHz	0.5	16000 bps	0
Maidenhead, UK	4	8 kHz	0.5	16000 bps	0
Manchester, UK	4	8 kHz	0.5	16000 bps	0
Lodz, Poland	4	8 kHz	0.5	16000 bps	0.06
Chicago, IL	4	9.6 kHz	0.5	19200 bps	0.01
San Diego, CA	4	9.6 kHz	0.469	18000 bps	0

FreeWave's unobservability

Comprehensive unobservability at the protocol level

Traffic analysis (packet rates and sizes)

Fixed rate codecs (e.g., G.7 series)

Not an issue 🙂

Variable bit-rates (e.g., Skype's SILK)

• Simple analysis

Pattern	FreeWave over Skype	Skype-Speak	Skype-Silent
Average packet rate (pps)	49.91	50.31	49.57
Average packet size	148.64	146.50	103.97
Minimum packet size	64	64	64
Maximum packet size	175	171	133

Superimpose with recoded conversation

NDSS 2013

12

Future directions

... IP over Voice over IP over Voice-over-IP

• Embed into Video of VoIP

- Find other protocol to tunnel
 - Look for better **efficiency**

Questions!

NDSS 2013

14

Deployment scenarios

- Personal deployment
- Central VoIP-center
- Central Phone-center
- Distributed service