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Authen*ca*on	
  Background	
  

  What	
  you	
  know	
  –	
  text	
  passwords	
  
  What	
  is	
  secure	
  is	
  hard	
  to	
  remember	
  

  What	
  you	
  own	
  –	
  token	
  
  Lost	
  or	
  stolen	
  token	
  

  Who	
  you	
  are	
  –	
  Physical	
  biometrics	
  
  Limited	
  number	
  

Goal:	
  address	
  all	
  the	
  limita*on.	
  	
  



Our	
  Solu*on:	
  3D-­‐Signature	
   �
  3D	
  signature:	
  	
  handwri1ng	
  in	
  3D	
  

space	
  
  Write	
  short,	
  easy	
  to	
  remember	
  

passwords	
  in	
  the	
  space,	
  	
  
  2	
  or	
  3	
  characters	
  

  Challenges:	
  

  Change	
  over	
  *me?	
  

  Reject	
  malicious	
  users?	
  

  Accept	
  genuine	
  users?	
  

  Behavioral	
  biometrics:	
  	
  

  Can	
  be	
  updated	
  

  Difficult	
  to	
  duplicate	
  

  A	
  weak	
  typed	
  password	
  can	
  
s*ll	
  be	
  strong	
  if	
  it	
  is	
  wriOen	
  in	
  
3D	
  space	
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Our	
  Solu*on:	
  KinWrite	
  
-­‐-­‐	
  Kinect	
  	
  +	
  3D-­‐Signature	
  �

  MicrosoY	
  Kinect	
  	
  
  A	
  mo*on	
  input	
  RGB-­‐D	
  sensor	
  

  Launched	
  by	
  MicrosoY	
  for	
  Xbox	
  360	
  
and	
  Windows	
  PCs	
  	
  

  Advantages	
  
  Low	
  cost	
  
  Captures	
  3D	
  informa*on	
  
▻  Depth	
  sensor	
  

  Works	
  in	
  the	
  dark	
  

  Disadvantages	
  
  Low	
  resolu*on	
  
  Measurement	
  errors� 5�



KinWrite:	
  Overview	
  

  Usability	
  requirements�

  Rapid	
  enrollment	
  

  Rapid	
  verifica*on	
  	
  

  Security	
  requirement	
  

  Unforgeability	
  	
  

Register	
  a	
  username �

Draw	
  a	
  signature	
  
K	
  Bmes �

Template	
  	
  
GeneraBon	
   �

Log	
  in�

Draw	
  	
  
a	
  signature	
  

VerificaBon:	
  
Pass	
  /	
  Fail	
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Phase	
  I:	
  
Enrollment	
  

Phase	
  II:	
  	
  
VerificaBon�

3D	
  Signatures	
  should	
  
be	
  processed	
  



Data	
  Processing	
  	
  

KinWrite:	
  Data	
  Processing�

Preprocessing � Feature	
  ExtracBng�Table 1. The summary of six types
(14−dimension) of 3D features extracted from
smoothed 3D-Signatures.

Type Features
Positions & Distance p(t), d(t)
Velocity ṗ(t)
Acceleration �p̈(t)�
Slope angle θxy(t), θzx(t),
Path angle α(t)
Log radius of curvature log 1

κ(t)

4.2.2 Feature Processing

In practice, the values of different features may have dif-
ferent ranges, but their relevancy towards the correct verifi-
cation are not necessarily determined by their ranges. For
example, a path angle has a range of [−π,π] while the po-
sition px(t) has been scaled to the range of [0, 1]. This does
not mean that a path angle is 3 times more relevant than
a position. Thus, we perform two-step feature processing:
normalization and weight selection.

First, we normalize each feature such that it conforms to
a normal Gaussian distribution N (0, 1) over all the frames.
Second, we weigh each feature differently to achieve a bet-
ter performance. To obtain the weight for each feature (di-
mension), we selected a small set of training samples for
each signature (e.g., n = 4 samples for each signature), and
verified these training samples using the DTW classifier (to
be discussed in Section 5) based on one feature (dimension).
For each feature (dimension), we obtain a verification rate
for each signature, i.e., the percentage of genuine samples
in the top n = 4 ranked samples, and we simply consider
the average verification rate over all signatures as the weight
for this feature (dimension). The intuition is that a feature
that leads to a higher verification rate should be assigned a
larger weight. Our experimental results show that the pro-
posed feature normalization and weighting can substantially
improve the verification results.

5 Template Selection and Verification

In this section, we elaborate on algorithms to verify users,
based on their 3D-signatures.

5.1 Why Dynamic Time Warping

A good verification algorithm should perform accurately
without requiring a large number of training samples, be-
cause from the usability perspective, it is unpleasant to col-
lect a large number of training samples when a user enrolls
herself.

Figure 8. An illustration of DTW.

Hidden Markov Models (HMM) are well-known statis-
tical learning algorithms used in classical signature-based
verification systems and have shown good verification ac-
curacy. However, HMM usually requires a large training set
(i.e., representative signature samples) to construct an accu-
rate model. With the usability constraints, it is difficult to
perform well, as has been validated with our experiments.
Thus, we use Dynamic Time Warping (DTW), where one
good template is sufficient for verification.

We use DTW to quantify the difference between two 3D-
signature samples. Instead of directly calculating the fea-
ture difference in the corresponding frames, DTW allows
nonrigid warping along the temporal axis. To some degree,
time warping can compensate the feature difference caused
by the signing speed. For instance, a user may sign her 3D-
signature slowly one day and quickly another day. Given
two 3D-signature samples, we denote their feature vectors
as f1(t), t = 1, 2, · · · , N1 and f2(s), s = 1, 2, · · · , N2,
and construct a N1×N2 distance matrix D with an element
dts = �f1(t)− f2(s)�, t = 1, 2, · · · , N1, s = 1, 2, · · · , N2.
DTW finds a non-decreasing path in D, starting from d11
and ending at dN1N2 , such that the total value of the el-
ements along this path is minimum. This minimum total
value is defined as the DTW distance between the two 3D-
signature samples; we denote it as d(f1, f2). Figure 8 illus-
trates such an example.

5.2 Template Selection

Utilizing DTW as the verification algorithm, during the en-
rollment phase for a user u, we simply choose the most
representative 3D-signature sample fu from the training set,
which we call the template (3D-signature) of the user u.
With this template, we can verify a test 3D-signature sam-
ple f of the user u by evaluating their DTW distance d(fu, f):
If the DTW distance is larger than a threshold dT , the veri-
fication fails. Otherwise, the verification succeeds.

How well KinWrite performs is determined by the
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  Subject:	
  raise	
  a	
  hand	
  and	
  use	
  a	
  finger*p	
  

  Kinect:	
  record	
  the	
  wri*ng	
  mo*on	
  in	
  the	
  space	
  

	
  Depth	
  frames	
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  points	
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  Raw	
  signatures	
  	
  
  Noisy	
  

  Smooth	
  
  Kalman	
  filter	
  	
  

FingerBp	
  posiBon	
  1	
  
FingerBp	
  posiBon	
  2	
  

…	
  

FingerBp	
  posiBon	
  n	
  

Feature	
  	
  
ExtracBng�

Data	
  
AcquisiBon�

Data	
  
Preprocessing � 

Data	
  Processing:	
  Preprocessing	
  

x-­‐y	
  plane	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  y-­‐z	
  plane	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  z-­‐x	
  plane	
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Data	
  Processing:	
  Feature	
  Extrac*ng	
  �

Table 1. The summary of six types
(14−dimension) of 3D features extracted from
smoothed 3D-Signatures.

Type Features
Positions & Distance p(t), d(t)
Velocity ṗ(t)
Acceleration �p̈(t)�
Slope angle θxy(t), θzx(t),
Path angle α(t)
Log radius of curvature log 1

κ(t)

4.2.2 Feature Processing

In practice, the values of different features may have dif-
ferent ranges, but their relevancy towards the correct verifi-
cation are not necessarily determined by their ranges. For
example, a path angle has a range of [−π,π] while the po-
sition px(t) has been scaled to the range of [0, 1]. This does
not mean that a path angle is 3 times more relevant than
a position. Thus, we perform two-step feature processing:
normalization and weight selection.

First, we normalize each feature such that it conforms to
a normal Gaussian distribution N (0, 1) over all the frames.
Second, we weigh each feature differently to achieve a bet-
ter performance. To obtain the weight for each feature (di-
mension), we selected a small set of training samples for
each signature (e.g., n = 4 samples for each signature), and
verified these training samples using the DTW classifier (to
be discussed in Section 5) based on one feature (dimension).
For each feature (dimension), we obtain a verification rate
for each signature, i.e., the percentage of genuine samples
in the top n = 4 ranked samples, and we simply consider
the average verification rate over all signatures as the weight
for this feature (dimension). The intuition is that a feature
that leads to a higher verification rate should be assigned a
larger weight. Our experimental results show that the pro-
posed feature normalization and weighting can substantially
improve the verification results.

5 Template Selection and Verification

In this section, we elaborate on algorithms to verify users,
based on their 3D-signatures.

5.1 Why Dynamic Time Warping

A good verification algorithm should perform accurately
without requiring a large number of training samples, be-
cause from the usability perspective, it is unpleasant to col-
lect a large number of training samples when a user enrolls
herself.

Figure 8. An illustration of DTW.

Hidden Markov Models (HMM) are well-known statis-
tical learning algorithms used in classical signature-based
verification systems and have shown good verification ac-
curacy. However, HMM usually requires a large training set
(i.e., representative signature samples) to construct an accu-
rate model. With the usability constraints, it is difficult to
perform well, as has been validated with our experiments.
Thus, we use Dynamic Time Warping (DTW), where one
good template is sufficient for verification.

We use DTW to quantify the difference between two 3D-
signature samples. Instead of directly calculating the fea-
ture difference in the corresponding frames, DTW allows
nonrigid warping along the temporal axis. To some degree,
time warping can compensate the feature difference caused
by the signing speed. For instance, a user may sign her 3D-
signature slowly one day and quickly another day. Given
two 3D-signature samples, we denote their feature vectors
as f1(t), t = 1, 2, · · · , N1 and f2(s), s = 1, 2, · · · , N2,
and construct a N1×N2 distance matrix D with an element
dts = �f1(t)− f2(s)�, t = 1, 2, · · · , N1, s = 1, 2, · · · , N2.
DTW finds a non-decreasing path in D, starting from d11
and ending at dN1N2 , such that the total value of the el-
ements along this path is minimum. This minimum total
value is defined as the DTW distance between the two 3D-
signature samples; we denote it as d(f1, f2). Figure 8 illus-
trates such an example.

5.2 Template Selection

Utilizing DTW as the verification algorithm, during the en-
rollment phase for a user u, we simply choose the most
representative 3D-signature sample fu from the training set,
which we call the template (3D-signature) of the user u.
With this template, we can verify a test 3D-signature sam-
ple f of the user u by evaluating their DTW distance d(fu, f):
If the DTW distance is larger than a threshold dT , the veri-
fication fails. Otherwise, the verification succeeds.

How well KinWrite performs is determined by the
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Quan*fy	
  the	
  similarity	
  of	
  3D-­‐signatures�

Approach-­‐-­‐Dynamic	
  Time	
  Warping	
  (DTW)	
  

  DTW	
  distance	
  represents	
  the	
  similari*es	
  between	
  two	
  3D-­‐	
  
signature	
  samples	
  -­‐-­‐Warping	
  along	
  the	
  temporal	
  axis	
  

  Requires	
  a	
  small	
  number	
  of	
  training	
  samples	
  

Dynamic	
  Time	
  Warping�Euclidean	
  Distance	
  �
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KinWrite:	
  Enrollment	
  &	
  Verifica*on�

  Template:	
  best	
  represent	
  the	
  signature	
  

  Threshold:	
  determine	
  whether	
  two	
  signatures	
  are	
  from	
  the	
  same	
  user	
  

  DTW	
  distance	
  <	
  threshold	
  	
  	
  pass	
  

  DTW	
  distance	
  >	
  threshold	
  	
  fail	
  to	
  pass	
   12�
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  Experiment	
  setup	
  
  3	
  Kinect	
  sensors	
  	
  

  Distance	
  	
  	
  1.5	
  -­‐	
  2.5	
  meters	
  

  A	
  sample	
  	
  	
  a	
  video	
  clip	
  (2-­‐12s),	
  	
  

	
   	
  	
  	
  	
  	
  	
  	
  ~30	
  frames/second,	
  depth	
  frames	
  

  Evalua*on	
  metrics:	
  
  Precision	
  =	
  verified	
  genuine	
  users	
  /	
  all	
  verified	
  users	
  

  Security	
  	
  

  Recall	
  =	
  verified	
  genuine	
  users	
  /	
  all	
  genuine	
  users	
  
  Usability	
  	
  
  Average	
  a@empts	
  =	
  1	
  /	
  Recall	
  

Kinect	
  
sensor�

Experiments:	
  Setup �

13�



  Scenario	
  1	
  –	
  Legi*mate	
  users	
  

  Let	
  the	
  subjects	
  write	
  their	
  genuine	
  signatures:	
  

  18	
  users,	
  35	
  signatures	
  
  18	
  -­‐	
  47	
  3D-­‐signature	
  samples	
  for	
  each	
  signature	
  over	
  a	
  period	
  of	
  5	
  

months	
  	
  

  1180	
  samples	
  in	
  total	
  

Experiments:	
  Scenarios�
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Most	
  cases:	
  >95%	
  recall	
  

The	
  worst	
  case:	
  70%	
  recall�

Results:	
  Legi*mate	
  Users �

15�

Ideal	
  point	
  �

Signature	
  1	
  -­‐-­‐	
  ’ARE’	
  
Signature	
  2	
  –	
  ‘Bry’	
  
Signature	
  3	
  –	
  ‘Cao’	
  
Signature	
  4	
  -­‐-­‐	
  ’DELl’	
  
Signature	
  5	
  –	
  ‘HP’	
  
Signature	
  6	
  –	
  ‘JAS’	
  
Signature	
  7	
  -­‐-­‐	
  ’LIU’	
  
Signature	
  8	
  –	
  ‘PIN	
  ’	
  
Signature	
  9	
  –	
  ‘Sa’	
  

	
  	
  	
  	
  …	
  

Signature	
  34	
  -­‐-­‐	
  ‘ee’	
  
Signature	
  35	
  –’LLL’�

Recall	
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�



Results:	
  Legi*mate	
  Users �

Euclidean	
  distance � DTW	
  �
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  Scenario	
  2	
  –	
  AOackers	
  
  AOack	
  model	
  

  Random	
  aXacker	
  

  Content-­‐aware	
  aXacker	
  

  Observer	
  aXacker	
  

  Educated	
  aXacker	
  

  Insider	
  aXacker	
  

Unknown:	
  spelling	
  ,	
  
	
   	
   	
   	
   	
  

	
  how	
  to	
  sign�

Known:	
  	
  spelling	
  ,	
  
Unknown:	
  how	
  to	
  sign�

Unknown:	
  	
  spelling	
  ,	
  
Known:	
  	
  how	
  to	
  sign�

Known:	
  what	
  is	
  in	
  
the	
  system…�

Experiments:	
  Scenarios �

17�

AXack	
  Type	
   #	
  'aXacker’	
   #	
  samples	
  from	
  each	
   #	
  'vicBm'	
   #	
  samples	
  
Random	
  AOack	
   34	
   14~42	
   4	
   1040	
  
Content-­‐Aware	
  AOack	
  	
   6	
   10	
   4	
   240	
  
1-­‐Observer	
  AOack	
  	
   12	
   5	
   4	
   240	
  
4-­‐Observer	
  AOack	
  	
   12	
   5	
   4	
   240	
  
Educated	
  AOack	
  	
   12	
   5	
   4	
   240	
  
Insider	
  AOack	
  	
   12	
   5	
   4	
   240	
  



Results:	
  AOack	
  Scenarios�
Threshold	
  2:	
  
1.9	
  AXempts�

Threshold	
  3:	
  
3	
  AXempts�

Threshold	
  1:	
  
1.2	
  AXempts�
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Conclusions	
  and	
  On-­‐going	
  Work �
  Conclusions	
  

  Designed	
  a	
  behavior-­‐based	
  authen*ca*on	
  system	
  
(KinWrite)	
  

  Our	
  experiment	
  results	
  based	
  on	
  over	
  2000	
  samples	
  

showed	
  that	
  3D-­‐signatures	
  can	
  be	
  used	
  to	
  verify	
  users	
  

  On-­‐going	
  Work	
  

  Compare	
  usability	
  among	
  3D	
  signatures	
  and	
  exis*ng	
  

authen*ca*on	
  methods	
  

  Study	
  other	
  types	
  of	
  3D	
  signatures	
  

19�
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ROC	
  Curves �
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Results:	
  Legi*mate	
  User �
13	
  signatures	
  can	
  

achieve	
  a	
  95%	
  recall� 17	
  signatures	
  can	
  
achieve	
  a	
  100%	
  recall�

5	
  signatures	
  can	
  achieve	
  
at	
  least	
  85%	
  recall� 22�



Results:	
  All	
  AOack�

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

 

 

CA
Ob−1
Ob−4
CA&OB−4
Insider
Random

(a) Precision-Recall curves

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e 

Ra
te

 

 

CA
Ob−1
Ob−4
CA&OB−4
Insider
Random

(b) ROC Curves

Figure 15. The average performance (by signatures) in various attack scenarios.
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(b) Achievable precision at a 75% recall

Figure 16. The performance (by signature) in various attack scenarios.

are similar to the ones derived based on training sets, sug-

gesting that weight selection over a small training set suf-

fices.

To evaluate the impact of weighted features on verifica-

tion performance, we modified KinWrite so that all 14 di-

mensions of the features were equally weighted. Figure 14

(a,e) show the verification performance on all 35 signatures

of this modified KinWrite. The results demonstrate that

weighting features using the verification rates can improve

the verification performance.

The Role of Dynamic Time Warping. The proposed

DTW allows nonrigid warping along the temporal axis

when measuring the difference between two signatures. To

understand the impact of nonrigid warping on the verifica-

tion performance, we defined the difference between two

signatures (in the form of features) f1(t), t = 1, 2, · · · , N1

and f2(t), t = 1, 2, · · · , N2 as follows. We re-sampled the

signature features so that they had the same length, e.g.,

N = 50 points, and then calculated the Euclidean distance

between the two signature feature vectors. Figure 14 (b)

and (f) shows the testing performance (on all 35 signatures)

when using this difference metric without warping along the

temporal axis. The results show that the use of nonrigid

warping in DTW can substantially improve the verification

performance.

Impact of Kalman Filter and Feature Normalization.
We conducted experiments to justify the choice of Kalman

filter and feature normalization. First, we modified our Kin-

Write so that the Kalman filter was not included, or a differ-

ent feature normalization method was used by the data pre-

processor, and then we conducted the experiment as before.

Figure 14 (c,g) show the verification performance on all 35
signatures when features were normalized linearly to the

range of [0, 1]. The results show that the proposed feature

normalization method based on N (0, 1) distribution leads

to a better performance. Figure 14 (d,h) show the verifica-

tion performance on all 35 signatures when the signatures

were not smoothed by the proposed Kalman filter. From the

results, we can conclude that the use of a Kalman filter can

improve the verification performance.

14

~97% � ~75% �
1.3	
  

aXempts	
   �
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How	
  to	
  Select	
  a	
  Feature �

  We	
  choose	
  features	
  based	
  on	
  the	
  movements	
  and	
  geometries	
  
on	
  the	
  signature	
  trajectories.	
  

  	
  Also	
  we	
  also	
  learnt	
  from	
  the	
  results	
  on	
  2D	
  online	
  signature	
  
verifica*on.	
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Figure 5. A comparison between a raw 3D-signature (a Chinese character) and the one smoothed by
a Kalman filter.

by using the propagation technique described above. Other-

wise, we remove the first frame of these K frames and add

the next frame to repeat the initialization process until their

minimum-depth pixels show the required temporal continu-

ity, which reflects the reliability of the fingertip localization

in the initial frames.

4.1.2 Scaling and Translation

By connecting the fingertip points sequentially, we get a raw

signature, which is a 3D curve in the x− y − z space. One

global feature of a signature is its size, which can be de-

fined by the size of the bounding box around the signature.

The size of a signature in the x − y image plane may vary

when the distance between the user and the Kinect sensor

changes. In addition, users may intentionally sign in a larger

or smaller range during different trials, resulting in different

sizes of signatures. To achieve a reliable verification, we

scale the raw 3D-signatures into a 1× 1× 1 bounding box.

To make the different 3D-signatures spatially compara-

ble, we perform a global translation on each signature so

that the rear-right corner of its 3D bounding box becomes

its origin. Finally, we normalize each position such that

it follows a normal Gaussian distribution N (0, 1) over all

the frames. We denote the position of the fingertips after

the scaling, translation, and normalization to be ps(t) =
(psx(t), p

s
y(t), p

s
z(t))

T
.

4.1.3 Signature Smoothing

As shown in Figure 5, the raw 3D-signature obtained by a

Kinect is usually highly jagged and noisy. Such jagged sig-

natures are caused by the limited resolution of the Kinect

depth sensor. For example, a small area around the finger-

tip may have similar depths. By selecting the minimum-

depth pixel, the above fingertip localization algorithm may

not capture the correct fingertip position.

To address this issue, we apply a Kalman filter to smooth

the raw 3D-signatures that have been normalized. For sim-

p(t-1)

p(t) p(t+1)
p(t+2)

p(t+3)
p(t+4)

α(t)

y-axis

x-axis

z-axis

1/κ

Figure 6. An illustration of path angle and cur-
vature.

plicity, we smooth the three coordinates of the raw 3D-

signature separately. Take the x-coordinate as an example.

We denote the prediction of the underlying fingertip posi-

tion to be p(t) = (px(t), py(t), pz(t))T at the t-th frame

and define the state x(t) = (px(t), ṗx(t), p̈x(t))T at the t-th
frame as a vector of the predicted fingertip position, velocity

and acceleration. The state transition of the Kalman filter is

then x(t) = Ax(t − 1) + wx(t). Based on the theory of

motion under a constant acceleration, we can define

A =




1 �t �t2

2
0 1 �t
0 0 1



 (1)

where �t is the time interval between two consecutive

frames. Given the typical rate of 30 frames per second for a

Kinect sensor, we have �t = 1
30 seconds.

For the observation in the x coordinate, we only have the

raw fingertip position psx(t) but no velocity or acceleration.

Thus, we can write an observation equation for the Kalman

filter as psx(t) = cx(t) + vx(t), where c = (1 0 0). We

model the process noise wx(t) and the measurement noise

vx(t) to be zero-mean Gaussian distributions. For the pro-

cess noise, we choose the same covariance matrix Qx for

all the frames. More specifically, Qx is a 3 × 3 diagonal

matrix with three identical diagonal elements, which equals

the variance of acceleration (along x coordinate) estimated

7
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Related	
  Work �

  This	
  is	
  basically	
  a	
  signature	
  verifica*on	
  problem,	
  which	
  is	
  
based	
  on	
  research	
  on	
  2D	
  online	
  signature.	
  	
  

  And	
  also	
  it	
  is	
  a	
  behavior	
  biometrics	
  method,	
  which	
  is	
  also	
  
related	
  to	
  gesture	
  recogni*on	
  and	
  classifica*on;	
  	
  

  while	
  it	
  is	
  also	
  a	
  new	
  way	
  of	
  Kinect	
  applica*on.	
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How	
  to	
  Select	
  Template	
  &Threshold�
  Template	
  Selec*on	
  

  The	
  template	
  has	
  the	
  minimum	
  DTW	
  distance	
  to	
  others	
  

  Threshold	
  Selec*on	
  

  Select	
  a	
  threshold	
  that	
  leads	
  to	
  a	
  zero	
  false	
  posi*ve	
  rate	
  among	
  training	
  
samples.	
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