Verito: A Practical System for Transparency

and Accountability in Virtual Economies
(Don’t count your credits before they are cashed)

Raghav Bhaskar, Saikat Guha,
Srivatsan Laxman, Prasad Naldurg

Microsoft Research India

Y,

Virtual economies

Encash (d, credits)

Platform
facebook
s
\lly

= money
Developers

w LiFE

=)

Purchase (u,
money) = credits

Spend (u,d,credits)

"

Q e LD @

All credits are not worth the same

* Value of credits Earn City Cash

Earn City Cash for free

— IIFacebOOk has in the past Complete an offer below. It's easy and secure. - Terms Apply
issued a Small amount Of Local Deals 1" Surveys Categories v Help
Credits at no cost to certain T Mlowers W Clfts - s1999 152 Clty Cash
users (for example, a new user
of Credits, or someone whose PCIEEEED proFiowers & Gifts - $19.99 144 City Cash
usage has /apsed). If you msoé ,)_‘ Only 5 days until Valentine's Day!
receive those Credits in . . ,
. . Special Facebook Credits Offer 32 City Cash
transactions, we will not Spend 51 to get 54 Free
V24
redeem them. _ _
& Discover More Carq 760 City Cash
— Promotlons by FaCEbOOk and) Cet approved for a credit card

Advertisers (cost borne by FB _
. . Netflix 176 City Cash
a nd adve rtl Se rs; See Image) N E T F l | x Instantly watch movies from Netflix

GameFly 200 City Cash

* Credits in different currencies
— Arbitrage | Dore

Lack of Transparency

* Platform pays out different amounts of cash for same #
of credits

— Developers cannot do fine-grained accounting
— Rely on trust, regulation

* Not very popular

— FB does not do free credits any more
* Cost of differentiation passed on to developers

— Linden $ and Bitcoin have private exchanges
* You get what somebody else thinks you are worth

— MS points were withdrawn as they were priced differently
in different currencies

* Arbitrage

Requirements wishlist

Developers

Security

Performance

Prevent double
spending

Solution: first cut

* Credits are just value-signature pairs
— Transparency /
— Security

— Fairness y '

— Performance <
* Double spending

@ Verito construction

e A practical, efficient, secure credits system for
transparency and fairness in virtual economies

e Design: Credit(q,k)
— Credit is a commitment on a nominal value
— ¢: security parameter, k: buckets (aggregation level)

g bits

0000000000 | 0000000000 | 0000001000

k buckets Only one bucket

has non-zero value
in a valid credit

@ Solution Overview

Platforms

Platform “commits”
value of credit

“accumulates” &
checks spent/

Platform

encashed credits | = @ 2\ I5;%¢

Developers
EQ
Developers see User can see
commitments only in committed value
aggregate

@ Key ingredients

Homomorphic commitments
Dynamic Accumulators

Compare/contrast with ecash
— Anonymity, unlinkability
Anonymous credentials

Commitment schemes

Setup (k): k is
security parameter

Open (c,r,m):=1

if commit (m,r)=c Use commitments
for transparency
and fairness

Hiding: Party B does not learn anything about m after receiving
Binding: Party A cannot claim different m for committed c /

Homomorphic: Commit (m1)*Commit(m2)=Commit(ml1+m?2)

Homomorphic Commitment Scheme

[Pedersens]
Commitment on misc = g"h™; Note ¢; * ¢, = g"*h™! x
grZRm2 = gritrzpmi+mz

User gets to see ¢, m and r and thus can check correctness of all its
credits

Developer gets only ¢ and cannot infer anything about m

During Encash, Platform reveals) r; and) m; to the Developer who
can check it against the product of credits ([]c;) that it submitted

Dynamic Accumulators

AccGen(1¥): Generate accumulator
Inputs: cl1, c2, c3,

m1 Outputs: a, wl, w2, w3

m2

m3 : 5 AccAdd (c_k, a)
Output: o/, wit_k

mn

AccWitUpdate(wit_k’)

. . No secrets needed
"Hash" a large set of input values to a single short value

Check for value is (not) in accumulator using a "witness” | AccVerify(value, witness)
Infeasible to find witness for a value not in accumulator | =1ifvalueina, using witness
. = 0 otherwise
» Typically used for efficient (credential) revocation

« WE DON’T USE ZERO KNOWLEDGE

Dynamic Accumulators
* Addition, deletion efficient, independent of accumulator values
* Used to check double spending, double encashment

Dynamic Accumulators
[ATSMOS9, ...]

Note § is secret per accumulator, known only to the Platform

m .
For aset {cq,...,c;n}, the accumulating value V = P1“i=1(5+cl)

For a credit c in the set, (W = P1H7i7=11(5+ci)/(5+c), 0 = VW‘C) is
the witness that ¢ is accumulated in VV

When a new ¢’ is accumulated, the new witness of ¢ can be

4 —_
computed as (W' —ywle _C), Q' =VvV'w’' C), where V' is the new
accumulating value

Putting it all together
(0" h™, Exe(r,m)},7,m, (w,)}
f

acc, = 1 acadCi nggrhm
fa CEbOOk acc, - p@G+g™h™)

Wy, Wq, auth

Purchase
Encash

FarmWiLLe
5 -5 1ga’ .
L wg, auth
Vo

#
f
M\ {grhm' EK (T'm)}

Spend

Properties: Transparency

* User Transparency

— Modeled as a security game b/\

Challenger:

U Pu

rchase (1 credit)

Checkcredit(c1)

Proof: Prob of Adversary winning is non-
negligible in security parameter

DL Assumption: Given h in G compute r st h = g’r
Pr[Adv wins] = Pr[CheckCredit(c1, m1) =1 and
CheckCredit (c1, m1’ =1) and m1 <> m1’]

= Pr[cl =g”*rl h"m1andcl =g/rl’
hAm1’ and m1 <> mi’]

= Pr[g"rl hAm1 =g”*r1l’ h"m1’ and
m1 <> m1’]
Coming up with an r1’ that satisfies this is
equivalent to finding the DLOG of g*r1 h"m1-
m1’, which is non-negligible

e Adversary wins attack game if Platform can produce
m1’ <> m1l and CheckCredit(c1l, m1’) is true.

* Similarly merchant transparency

Properties: User priva

\/

* Credits are opaque, P has no motivation to

Challenger:
U

Previously purchase cO

Pickrin {0, 1}, send c_r

L&

* Adversary wins if D can correctly returnr’ =

>1/2

and c1 from P worth 0 and 1 resp

—>
 C—

Prob[Adv wins] = Prob[r’ =r]
ris picked uniformly at
random

c0 =g”r h"m0 mod p
cl=g*rh"ml modp

c1 and c2 are information
theoretically
indistinguishable from
random

Hiding property of Pedersen’s

I

r

with prob

e Other properties: double spending and encashment
follow similarly

Fairness: Issues

e Merchant can attribute credit characteristics
to users after encash

— Policy: Enforce minimum number of tokens for
each encash

— Cannot resend credits across multiple encash
transactions, as they are “used” up

Properties: Summary

Accountability: User Binding property of Pedersen’s DLOG assumption
transparency commitments
Accountability: Merchant Binding + homomorphic DLOG assumption
transparency property of Pedersen’s
commitments
Security: Double spending Dynamic accumulator scheme | DDH and g-strong DH
(both spending and assumption
encashment)
Security: Non repudiation Signatures Signature assumptions
Fairness Hiding property of Pedersen’s Information-theoretic

commitments

Flexibility (multiple currencies) and arbitrage prevention by
design

Implementation and Deployment

* Performance
— Efficient
* Purchase (around 830 credits/sec, crypto dominates)

» Spend /Encash (2X faster than purchase) for batches of 100

— Verify most expensive
— Witness updates can be batched

— Feasible

e Can generate around 71 million credits a day (26 B a year,
around 100 B required)

* Can be incrementally deployed on FB

Ve”to Search 15 v i -

A Home W C

Success! 100 Credits generated !

+ Generate Credits J Credit Stats

Full Value 0 100

Hr
Promo 0 75 Promo
B Free
L © 50
25

o

1 User Traffic

100

75

50

Unique Users per Second

2 Geographic distribution

Y

y Y

& T
J&fﬂ:‘-

VerltO Search Qet T

Hi,Chetan A Home

+ Buy Credits «l Credit History
A 100

100 Available

Success! Game purchased !

1 Games

Conclusions

N T e
v v v ‘

Transparency Fixed ‘ Fluctuates Fluctuates

Security

Flexibility Tied to USD Tied to USD Tied to exchange Tied to exchange

Performance Expensive

R B B

* Transparency and Fairness are vital requirementsin a
virtual economy
* Collusions?
* Simpler? More efficient?

