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Virtual economies
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All credits are not worth the same

* Value of credits Earn City Cash

Earn City Cash for free

— IIFacebOOk has in the past Complete an offer below. It's easy and secure. - Terms Apply
issued a Small amount Of Local Deals 1" Surveys Categories v Help
Credits at no cost to certain T Mlowers W Clfts - s1999 152 Clty Cash
users (for example, a new user
of Credits, or someone whose PCIEEEED  proFiowers & Gifts - $19.99 144 City Cash
usage has /apsed). If you msoé ,)_‘ Only 5 days until Valentine's Day!
receive those Credits in . . ,
. . Special Facebook Credits Offer 32 City Cash
transactions, we will not Spend 51 to get 54 Free
V24
redeem them. _ _
& Discover More Carq 760 City Cash
— Promotlons by FaCEbOOk and ) Cet approved for a credit card

Advertisers (cost borne by FB _
. . Netflix 176 City Cash
a nd adve rtl Se rs; See Image) N E T F l | x Instantly watch movies from Netflix

GameFly 200 City Cash

* Credits in different currencies
— Arbitrage | Dore




Lack of Transparency

* Platform pays out different amounts of cash for same #
of credits

— Developers cannot do fine-grained accounting
— Rely on trust, regulation

* Not very popular

— FB does not do free credits any more
* Cost of differentiation passed on to developers

— Linden $ and Bitcoin have private exchanges
* You get what somebody else thinks you are worth

— MS points were withdrawn as they were priced differently
in different currencies

* Arbitrage



Requirements wishlist

Developers

Security

Performance

Prevent double
spending




Solution: first cut

* Credits are just value-signature pairs
— Transparency /
— Security

— Fairness y '

— Performance <
* Double spending



@ Verito construction

e A practical, efficient, secure credits system for
transparency and fairness in virtual economies

e Design: Credit(q,k)
— Credit is a commitment on a nominal value
— ¢: security parameter, k: buckets (aggregation level)

g bits

0000000000 | 0000000000 | 0000001000

k buckets Only one bucket

has non-zero value
in a valid credit




@ Solution Overview

Platforms

Platform “commits”
value of credit

“accumulates” &
checks spent/

Platform

encashed credits | = @ 2\ I5;%¢

Developers
EQ
Developers see User can see
commitments only in committed value
aggregate




@ Key ingredients

Homomorphic commitments
Dynamic Accumulators

Compare/contrast with ecash
— Anonymity, unlinkability
Anonymous credentials



Commitment schemes

Setup (k): k is
security parameter

Open (c,r,m):=1

if commit (m,r)=c Use commitments
for transparency
and fairness

Hiding: Party B does not learn anything about m after receiving
Binding: Party A cannot claim different m for committed c /

Homomorphic: Commit (m1)*Commit(m2)=Commit(ml1+m?2)



Homomorphic Commitment Scheme

[Pedersens]
Commitment on misc = g"h™; Note ¢; * ¢, = g"*h™! x
grZRm2 = gritrzpmi+mz

User gets to see ¢, m and r and thus can check correctness of all its
credits

Developer gets only ¢ and cannot infer anything about m

During Encash, Platform reveals ) r; and ) m; to the Developer who
can check it against the product of credits ( []c;) that it submitted



Dynamic Accumulators

AccGen(1¥): Generate accumulator
Inputs: cl1, c2, c3, ....

m1 Outputs: a, wl, w2, w3

m2

m3 : 5 AccAdd (c_k, a)
Output: o/, wit_k

mn

AccWitUpdate(wit_k’)

. . No secrets needed
"Hash" a large set of input values to a single short value

Check for value is (not) in accumulator using a "witness” | AccVerify(value, witness)
Infeasible to find witness for a value not in accumulator | =1ifvalueina, using witness
. . . . . = 0 otherwise
» Typically used for efficient (credential) revocation

« WE DON’T USE ZERO KNOWLEDGE

Dynamic Accumulators
* Addition, deletion efficient, independent of accumulator values
* Used to check double spending, double encashment



Dynamic Accumulators
[ATSMOS9, ...]

Note § is secret per accumulator, known only to the Platform

m .
For aset {cq,...,c;n}, the accumulating value V = P1“i=1(5+cl)

For a credit c in the set, (W = P1H7i7=11(5+ci)/(5+c), 0 = VW‘C) is
the witness that ¢ is accumulated in VV

When a new ¢’ is accumulated, the new witness of ¢ can be

4 —_
computed as (W' —ywle _C), Q' =VvV'w’' C), where V' is the new
accumulating value



Putting it all together
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Properties: Transparency

* User Transparency

— Modeled as a security game b/\

Challenger:

U Pu

rchase (1 credit)

Checkcredit(c1)

Proof: Prob of Adversary winning is non-
negligible in security parameter

DL Assumption: Given h in G compute r st h = g’r
Pr[Adv wins] = Pr[CheckCredit(c1, m1) =1 and
CheckCredit (c1, m1’ =1) and m1 <> m1’]

= Pr[cl =g”*rl h"m1andcl =g/rl’
hAm1’ and m1 <> mi’]

= Pr[g"rl hAm1 =g”*r1l’ h"m1’ and
m1 <> m1’]
Coming up with an r1’ that satisfies this is
equivalent to finding the DLOG of g*r1 h"m1-
m1’, which is non-negligible

e Adversary wins attack game if Platform can produce
m1’ <> m1l and CheckCredit(c1l, m1’) is true.

* Similarly merchant transparency




Properties: User priva

\/

* Credits are opaque, P has no motivation to

Challenger:
U

Previously purchase cO

Pickrin {0, 1}, send c_r

L&

* Adversary wins if D can correctly returnr’ =

>1/2

and c1 from P worth 0 and 1 resp

—>
 C—

Prob[Adv wins] = Prob[r’ =r]
ris picked uniformly at
random

c0 =g”r h"m0 mod p
cl=g*rh"ml modp

c1 and c2 are information
theoretically
indistinguishable from
random

Hiding property of Pedersen’s

I

r

with prob

e Other properties: double spending and encashment
follow similarly



Fairness: Issues

e Merchant can attribute credit characteristics
to users after encash

— Policy: Enforce minimum number of tokens for
each encash

— Cannot resend credits across multiple encash
transactions, as they are “used” up



Properties: Summary

Accountability: User Binding property of Pedersen’s DLOG assumption
transparency commitments
Accountability: Merchant Binding + homomorphic DLOG assumption
transparency property of Pedersen’s
commitments
Security: Double spending Dynamic accumulator scheme | DDH and g-strong DH
(both spending and assumption
encashment)
Security: Non repudiation Signatures Signature assumptions
Fairness Hiding property of Pedersen’s  Information-theoretic

commitments

Flexibility (multiple currencies) and arbitrage prevention by
design



Implementation and Deployment

* Performance
— Efficient
* Purchase (around 830 credits/sec, crypto dominates)

» Spend /Encash (2X faster than purchase) for batches of 100

— Verify most expensive
— Witness updates can be batched

— Feasible

e Can generate around 71 million credits a day (26 B a year,
around 100 B required)

* Can be incrementally deployed on FB
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Conclusions

N T e
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Transparency Fixed ‘ Fluctuates Fluctuates

Security

Flexibility Tied to USD Tied to USD Tied to exchange Tied to exchange

Performance Expensive

R B B

* Transparency and Fairness are vital requirementsin a
virtual economy
* Collusions?
* Simpler? More efficient?



