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Unique Bid Auctions

*  Each bidder can make as many
bids as he wants

. Each bid costs a fix amount

*  Bids are expressed in cents
granularity

*  Bids remain private

*  The winning bid is the highest bid
made by a single(unique)
participant

*  If some bid is bid more than once,
then all of its instances are
disqualified and the next highest
unique bid is the winning
candidate

*  The winner pays the winning bid
and the fix amount for each bid he
made

*  The losers also pay for their bids
and suffer negative gain
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Unique-Bid Auctions
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Related Work

« Equilibrium analysis (single-bid case)
No symmetric pure-strategy equilibria in HUBA
In any asymmetric pure-strategy equilibria:
A single bidder choosing the maximum bid
The remaining bidders stay out
Nash(1950): There is a symmetric equilibrium for every finite game.
- Symmetric mixed-strategies equilibria exists

Involves a randomization over a consecutive set of bids, containing the
highest possible one




Data Extraction

« Current available data for research

Only the final snapshot of qualified bids (Q) and disqualified bids (DQ)
after the last transaction are published

- Dynamic temporal data

Individual level bids and timings information can offer many insights into
bidding behavior

Allows for building a tractable models
- Back-propagation algorithm

Sample the partial information of Q, DQ rapidly and saving their instances
during the entire auction

Starting from the fully exposed information of the last transaction going
back through the saved instances, recover the bids of Q and DQ at each
transaction

Utilize Levenshtein(Edit)-Distances for the propagation
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Macro Behavior

* Average bid price drops linearly with number of bids
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Macro Behavior

* Last minute bidding (“Sniping”)
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Individual Bidders Behaviors

* 7% of the bidders generated 43% of the bids (heavy bidders)

*  93% of the bidders place only 2 bids (2-offers bidders)
The auctions we sampled provided each bidder with 2 free bids

2-offers Heavy
Bids count  57% 43%
Bidders 93% 7%
count
Auctions 16% 84%

won
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2-offers bidders

* Empirical distribution of bids * Number of bids placed by 2-
made by 2-offers bidders offers population over time

superimposed with a bimodal
truncated normal curve
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Offer

Heavy Bidders

*  Extracted behaviors graphs
Down-point triangles are bids lower than the leading bid.
Up-pointing triangles are disqualified bid above the leading bid.
Filled circles are qualified bids. Empty circles are qualified leading bids.
X marks indicate disqualifications

10.0 T T T T T 9.6

918800 17000 17200 17400 17600 17800 18000 90 20600 20800 21000 21200 21400 21600

Time(s) Time(s)




Bid Burstiness

* Bid burst — A series of bids made in rapid succession

* Heavy bidders bid in bursts
*  The number of bursts varies:




Bid Burstiness
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Simulation

*  The simulation model was constructed based on observation
we made from 90 real auctions

*  We included the 2-offers bidders and heavy bidders
population (2-bursts and 4-bursts)

* Simulation parameters were calibrated with the sampled
auctions, e.g.:
Auction duration: 18000 sec
Numbers of bidders: u=132.41 0 =29.216
Max bid price: 10.00
Cost per bid: 6
Free bids: 2
Bidders ratio: u=13.50=5.8




Model Validation
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Automated Strategies

» “Catch all non disqualified bids”:

Track Q and DQ through all auction transactions to obtain a
complete view of the ordering of all the bids, without the
actual values

Introduce actual bids by bidding at intervals

Find gaps of non-disqualified bids at DQ by counting the
disqualified groups in the interval

Gaps are either qualified bids or unique unbid values
Using binary searches, bid until hitting the gap

Repeat until having as many leading qualified bids as
wanted
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Automated Strategies

. Bid Block:

Binary search for the leading position very close to the
auction’s end, and disqualify it

Make a series of decrementing bids until getting some
qualified ones

- Real auction results showed that the average distance
between the winning bid an the next unbid bid is

u=29.76 6 = 27.4

allowing a positive gain




Simulation with Automated
Strategies

» “Catch all non-disqualified bids”
- 100% win rate
- Mean expense —170.45
- Mean profit —129.55
- “Bid Block”
« 93% win rate
- Mean expense —163.51
- Mean profit—118.12
» (Cost per bid — 6 ; Prize value — 300)




Live Experiments

- Automating the strategies on actual site:
Reverse-engineering the site protocol
Automating the bidding process in a program

« Results

We played the simple Bid Block strategy
Won 13/14 bid-credits auctions (50& each)

Resembling the auctions of the simulation

3/3 SanDisk Clip (32& each)
4/5 Kindle devices (80& each)
(We did not claim the prizes)




Conclusion

* We extracted partial data from 90 real auctions, and using a
back-propagation algorithm we successfully recovered the
missing bid values

* With our detailed auctions dynamic temporal data we built a
simulation model, and validated it

* We devised several automated strategies that performed well
on our simulated environment

* Reversing and actual UK unique-bid auction site
communication protocol allowed us to implement a program
to deploy the automated strategies

* We let our program participate in several real auctions, to
achieve 91% win rate and over 1000&




