

Analyzing Unique-Bid Auctions for Fun and Profit

Ory Samorodnitzky

Eran Tromer

Avishai Wool

School of Computer Science, Tel-Aviv University, Israel

Unique Bid Auctions

- Each bidder can make as many bids as he wants
- Each bid costs a fix amount
- Bids are expressed in cents granularity
- Bids remain private
- The winning bid is the highest bid made by a *single*(unique) participant
- If some bid is bid more than once, then all of its instances are disqualified and the next highest unique bid is the winning candidate
- The winner pays the winning bid and the fix amount for each bid he made
- The losers also pay for their bids and suffer negative gain

Unique-Bid Auctions

- Auction signals
 - Private:
 - Notifying the bidder after each bid whether his bid is unique together with the position
 - If not unique, the bidder is notified of the unique bid position closest to his disqualified one
 - Public:
 - Sorted positional tables of the current qualified bids (Q) and disqualified bids (DQ) without the actual values.
- Profitability (auctioneer)
- Legality
 - Randomness/Chance vs. Strategy/Skill
 - No external randomizing device

Related Work

- Equilibrium analysis (single-bid case)
 - No symmetric pure-strategy equilibria in HUBA
 - In any asymmetric pure-strategy equilibria:
 - A single bidder choosing the maximum bid
 - The remaining bidders stay out
 - Nash(1950): There is a symmetric equilibrium for every finite game.
 - → Symmetric mixed-strategies equilibria exists
 - Involves a randomization over a consecutive set of bids, containing the highest possible one

Data Extraction

- Current available data for research
 - Only the final snapshot of qualified bids (Q) and disqualified bids (DQ) after the last transaction are published
- Dynamic temporal data
 - Individual level bids and timings information can offer many insights into bidding behavior
 - Allows for building a tractable models
- Back-propagation algorithm
 - Sample the partial information of Q, DQ rapidly and saving their instances during the entire auction
 - Starting from the fully exposed information of the last transaction going back through the saved instances, recover the bids of Q and DQ at each transaction
 - Utilize Levenshtein(Edit)-Distances for the propagation

City10 1-Unique 18.96 v.v. City10 2-Unique 18.95 v.v. City7 3-Unique t.t. 18.91 City5 4-Unique B.T. 18.88 B.M. City1 18.82 5-Unique City5 6-Unique B.T. 18.76 City2 7-Unique T.K. 18.73 City8 8-Unique v.v. 18.68 9-Unique City6 18.67 S.o. City2 10-Unique T.K. 18.65 City2 T.K. 11-Unique 18.63 City2 12-Unique T.K. 18.61 City5 13-Unique B.T. 18.58 City7 t.t. 14-Unique 18.54

Non-Unique	8	W.T.	Eli City4	19
Non-Unique	*	S.o.	∰ City6	19
Non-Unique	8	W.T.	∰ City4	18.99
Non-Unique		v.v.	City10	18.99
Non-Unique	1	в.т.	City5	18.98
Non-Unique		v. v.	City8	18.98
Non-Unique		в.м.	City1	18.98
Non-Unique	3	v. v.	City10	18.98
Non-Unique	8	T.K.	City2	18.97
Non-Unique		t.t.	City7	18.97
Non-Unique	3	0.0.	City10	18.97
Non-Unique		v. v.	City8	18.97
Non-Unique		в.м.	City1	18.97
Non-Unique		L.P.	₩ City3	18.94
Non-Unique	4	t.t.	□□ City7	18.94
Non-Unique		L.P.	₫₫ City3	18.93
Non-Unique	8	W.T.	City4	18.93
Non-Unique	8	T.K.	City2	18.93
Non-Unique		L.P.	City3	18.92
Non-Unique		v.v.	City8	18.92
Non-Unique	&	M.G.	Colmenari	18.92
Non-Unique		W.T.	City4	18.22
Non-Unique	8	W.T.	⊞ City4	18.9
Non-Unique		в.м.	City1	18.9
Non-Unique	8	T.K.	City2	18.9

Macro Behavior

Average bid price drops linearly with number of bids

Macro Behavior

Last minute bidding ("Sniping")

Individual Bidders Behaviors

- 7% of the bidders generated 43% of the bids (heavy bidders)
- 93% of the bidders place only 2 bids (2-offers bidders)
 - The auctions we sampled provided each bidder with 2 free bids

	2-offers	Heavy
Bids count	57%	43%
Bidders count	93%	7%
Auctions won	16%	84%

2-offers bidders

 Empirical distribution of bids made by 2-offers bidders superimposed with a bimodal truncated normal curve

 Number of bids placed by 2offers population over time

Heavy Bidders

- Extracted behaviors graphs
 - Down-point triangles are bids lower than the leading bid.
 - Up-pointing triangles are disqualified bid above the leading bid.
 - Filled circles are qualified bids. Empty circles are qualified leading bids.
 - X marks indicate disqualifications

Bid Burstiness

- Bid burst A series of bids made in rapid succession
- Heavy bidders bid in bursts
- The number of bursts varies:

Bid Burstiness

- We observed that bursts aim towards a target position
- Median positions in 2-bursts bidders and 4-bursts bidders:

Simulation

- The simulation model was constructed based on observation we made from 90 real auctions
- We included the 2-offers bidders and heavy bidders population (2-bursts and 4-bursts)
- Simulation parameters were calibrated with the sampled auctions, e.g.:
 - Auction duration: 18000 sec
 - Numbers of bidders: $\mu = 132.41 \sigma = 29.216$
 - Max bid price: 10.00
 - Cost per bid: 6
 - Free bids: 2
 - Bidders ratio: $\mu = 13.5 \sigma = 5.8$

Model Validation

Replicative validity

Automated Strategies

- "Catch all non disqualified bids":
 - Track Q and DQ through all auction transactions to obtain a complete view of the ordering of all the bids, without the actual values
 - Introduce actual bids by bidding at intervals
 - Find gaps of non-disqualified bids at DQ by counting the disqualified groups in the interval
 - Gaps are either qualified bids or unique unbid values
 - Using binary searches, bid until hitting the gap
 - Repeat until having as many leading qualified bids as wanted

Catch all non-disqualified bids

ID	bid
5	
8	
2	

ID	bid
3	
4	
8	
1	
4	

ID	bid
8	
2	

ID	bid
3	
4	
8	
1	
4	
5	
2	

ID	bid
8	
2	

ID	bi	d
3		
4		
8		
7		
1		
4		
5		
2		

Catch all non-disqualified bids

ID	bid
8	
2	

ID	bid
3	
4	
8	
7	
1	
4	
5	
2	

ID	bid
8	
2	

ID	bid	
3		
4		
8		
7		
10	10.0	
10	10.0	
	10.0	
1	10.0	
1	10.0	

8	
2	

ID	bid
3	
4	
8	
7	
10	10.0
1	
4	
5	
2	
10	9.97

Automated Strategies

Bid Block:

- Binary search for the leading position very close to the auction's end, and disqualify it
- Make a series of decrementing bids until getting some qualified ones
- Real auction results showed that the average distance between the winning bid an the next unbid bid is

$$\mu$$
 = 29.76 σ = 27.4

allowing a positive gain

Simulation with Automated Strategies

- "Catch all non-disqualified bids"
 - 100% win rate
 - Mean expense 170.45
 - Mean profit 129.55
- "Bid Block"
 - 93% win rate
 - Mean expense 163.51
 - Mean profit 118.12
- (Cost per bid 6; Prize value 300)

Live Experiments

- Automating the strategies on actual site:
 - Reverse-engineering the site protocol
 - Automating the bidding process in a program
- Results
 - We played the simple Bid Block strategy
 - Won 13/14 bid-credits auctions (50€ each)
 - Resembling the auctions of the simulation
 - 3/3 SanDisk Clip (32€ each)
 - 4/5 Kindle devices (80£ each)
 - (We did not claim the prizes)

Conclusion

- We extracted partial data from 90 real auctions, and using a back-propagation algorithm we successfully recovered the missing bid values
- With our detailed auctions dynamic temporal data we built a simulation model, and validated it
- We devised several automated strategies that performed well on our simulated environment
- Reversing and actual UK unique-bid auction site communication protocol allowed us to implement a program to deploy the automated strategies
- We let our program participate in several real auctions, to achieve 91% win rate and over 1000€