Fix Me Up.
Repairing Access-Control Bugs
in Web Applications

Sooel Son

Kathryn S. McKinley Vitaly Shmatikov
UT Austin and Microsoft Research

Access-control bugs

OWASP Top 10 Application Security Risks - 2010

T10 OA§P qp 10 Application

A1-Injection

sted data is sent to an
@ can trick the interpreter

ent are often not
, keys, session tokens, or

Direct Object
References

Management

A3 — Cross-Site * XSS flaws occur whenever an application takes untrusted data and sends it to a web browser
without proper validation or escaping. XSS allows attackers to execute scripts in the victim’s

A5-Cross Site

Request Sa lptmg (XSS) browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.
Forgery (CSRF)
AB-Securi A4 —Insecure *A direct object reference occurs when a developer exposes a reference to an intemal
o u 'tY Direct ObjeCt implementation object, such as a file, directory, or database key. Without an access control check
Misconfiguration L References or other protection, attackers can manipulate these references to access unauthorized data.
J.‘
A7-Insecure (' . . . = S—
i . *Good security requires having a secure configuration defined and deployed for the application,
Cryptographic AS —Security frameworks, application server, web server, database server, and platform. All these settings
Storage Misconﬁguraﬁon should be defined, implemented, and maintained as many are not shipped with secure defaults.
A8-Failure to L This includes keeping all software up to date.

)
Restrict URL ~\

Access-control bugs (2)

o570 il 539,
0 (From WhiteHat Website Security Report 2012)
36%
21%
‘l ‘S 9!
97 16%

Cross-Site Information Content Insufficient Cross-Site Brute Force Predictable SQL Injection Session Insufficient
Scripting Leakage Spoofing Authorization Request Resource Fixation Session
Forgery Location Expiration

Figure 3. Top Ten Vulnerability Classes (2011)
Percentage likelihood that at least one serious™ vulnerability will appear in a website

Forced-browsing attack

CVE-2004-2144,CVE-2004-2257, ement
CVE-2005-1688,CVE-2005-1697,
CVE-2005-1698,CVE-2005-1827, E
CVE-2005-1654,CVE-2005-1668, =
CVE-2005-1892,CVE-2009-2960,

CVE-2009-3168,CVE-2009-3597, “erh
CVE-2011-0316,CVE-2012-3030,.

.C..rm*’i.y .

A

o BHIN ._;:...,

__.,~ R

About FixMeUp

Static program transformation tool for finding and
fixing access-control bugs in PHP applications

Given an example of correct access control ...

» 1. Finds calling contexts that do not implement
the correct access-control logic

» 2. Produces candidate repaired code that
prevents forced-browsing attacks

FixMeUp workflow

Access- :
Example of etz Apply Validate

accelsls— _ template ACT to fix the_
control logic (ACT) the bugs repairs

1.Example of access—control logic

lockSession();

if(lempty($_SESSION['name']) && lempty($_SESSION['pass'])) {
$.I.<.)-§.ined = @mysql_affected_rows();

}
if($logined '== 1 && 'empty($_COOKIE[COOKIE_USER]) && 'empty
($_COOKIE[COOKIE_PASS))) {

$logined = @mysql_affected_rows();

}
if($logined '== 1) {
unlockSessionAndDestroyAllCokies();
sleep(5);
header('Location: '.QUERY_STRING_BLANK.'login’);
die();

2. Access-control template

» Compute an ACT
Stat 1

Stat 2 <<:l ACT

Stat 3

! Stat 2

B _
R)

3. Apply ACT to fix the bugs

C2

Statement 5

MATCH? ACT
Stat 1

Stat 2

Access-control check

exit

Cl MATCH?

Statement 6

Check 7

Statement 8

Sensitive-operation

» Finds vulnerable contexts that do not implement
the same logic as the ACT

P

3. Apply ACT to fix the bugs (2)

ACT MATCH! VRidpai addec aotebetx t
Stat 1 /L% Stat 1’
< - :
mmsaz N o S
Access-control check’ Stat 3’

 sestveopeion

» Replicates ACT into
the vulnerable context
while reusing already

I existing statements

4. Validate repairs
ACT
Stat |1

Stat 2

Access-control check Stat 3
exit Access-control check’

No match? exit’

Issue a warning | [EERNEOREG

» Recompute ACT - should be the same as before!

P

Fvaluation

» 10 open-source interactive PHP server apps

» Generated 38 repairs

- 31 correct
-/ in addition to already existing access-control logic

» 28 partial repairs
> Reusing existing statements is important!

» 1 warning
» 1 unwanted side effect

Evaluation (2)

include(‘class/common.php’) ; // [FixMeUp repair]

$GR_newone = new COMMON() ; / / [FixMeUp repair]

if ($ SESSION [’ no’]!=1)){//[FixMeUp repair]

$GR_newone ->error(' Require admin priviledge’, 1, ‘CLOSE’) ;//
[FixMeUp repair]

}

include(‘class/common.php’) ; // existing statement

$GR = new COMMON() ; // existing statement

if ($ SESSION[’'no’])){//[FixMeUp repair]

$GR->error(’ Require login procedure’) ; / / [FixMeUp repair]

I@SSO(‘member’)
@fwrite($tmpfs, $saveResult);

Evaluation (3)

» Warning: after applying the ACT, repaired code
does not implement the same logic as the ACT

Program Entry
- include ‘conf.php’ ;

session_start(); //existing statement

if ($confirm==""){

dbConnect () ; // exiting staterg
if (lverifyuser ()) // [FixMeUp
{

header('Location: ./login.php');//[FixMeUp repair]

exit; // [FixMeUp repair]

}

$sqgl = "DELETE FROM blogdata WHERE postid = $postid”;

$query = mysql_query($sql) or die("Cannot query the database .
" .
mysql_error());

Limitations

» Environmental data dependencies, eval

» Unwanted side effects
Stat 1

Stat 2
? Access-control check
- exit

| |]

Avoiding unwanted side effects

» Use fresh variable names
$local_var_1 = session_id()

$local_var_1_new = session_id()

» Do not replicate already existing statements

session_start()
include “a.php”;
Access-control check
exit

Related work

» Static detection of access-control bugs
» Dynamic detection of access-control bugs
» Dynamic repair of software bugs

Conclusion

» FixMeUp computes code templates for access-
control logic from examples

» Finds and repairs access-control bugs in PHP
applications

- Reuses existing statements
> Avoids introducing unwanted dependences

» Successfully repaired 30 access-control bugs in
10 real-world PHP applications

Q&A

| Nl

K YOU

