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Access-control bugs

OWASP Top 10 Application Security Risks - 2010
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A3 — Cross-Site * XSS flaws occur whenever an application takes untrusted data and sends it to a web browser
without proper validation or escaping. XSS allows attackers to execute scripts in the victim’s
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Access-control bugs (2)
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Figure 3. Top Ten Vulnerability Classes (2011)
Percentage likelihood that at least one serious™ vulnerability will appear in a website




Forced-browsing attack

CVE-2004-2144,CVE-2004-2257, ement
CVE-2005-1688,CVE-2005-1697,
CVE-2005-1698,CVE-2005-1827, E
CVE-2005-1654,CVE-2005-1668, =
CVE-2005-1892,CVE-2009-2960,

CVE-2009-3168,CVE-2009-3597, “erh
CVE-2011-0316,CVE-2012-3030,.
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About FixMeUp

Static program transformation tool for finding and
fixing access-control bugs in PHP applications

Given an example of correct access control ...

» 1. Finds calling contexts that do not implement
the correct access-control logic

» 2. Produces candidate repaired code that
prevents forced-browsing attacks




FixMeUp workflow

Access- :
Example of etz Apply Validate

accelsls— _ template ACT to fix the_
control logic (ACT) the bugs repairs




1.Example of access—control logic

lockSession();

if(lempty($_SESSION['name']) && lempty($_SESSION['pass'])) {
$.I.<.)-§.ined = @mysql_affected_rows();

}
if($logined '== 1 && 'empty($_COOKIE[COOKIE_USER]) && 'empty
($_COOKIE[COOKIE_PASS))) {

$logined = @mysql_affected_rows();

}
if($logined '== 1) {
unlockSessionAndDestroyAllCokies();
sleep(5);
header('Location: '.QUERY_STRING_BLANK.'login’);
die();




2. Access-control template

» Compute an ACT
Stat 1

Stat 2 <<:l ACT

Stat 3

! Stat 2
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3. Apply ACT to fix the bugs

C2

Statement 5

MATCH? ACT
Stat 1

Stat 2

Access-control check

exit

Cl MATCH?

Statement 6

Check 7

Statement 8

Sensitive-operation

» Finds vulnerable contexts that do not implement
the same logic as the ACT
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3. Apply ACT to fix the bugs (2)

ACT MATCH! VRidpai addec aotebetx t
Stat 1 /L% Stat 1’
< - :
mmsaz N o S
Access-control check’ Stat 3’

 sestveopeion

» Replicates ACT into
the vulnerable context
while reusing already

I existing statements




4. Validate repairs
ACT
Stat |1

Stat 2

Access-control check Stat 3
exit Access-control check’

No match? exit’

Issue a warning | [EERNEOREG

» Recompute ACT - should be the same as before!
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Fvaluation

» 10 open-source interactive PHP server apps

» Generated 38 repairs

- 31 correct
-/ in addition to already existing access-control logic

» 28 partial repairs
> Reusing existing statements is important!

» 1 warning
» 1 unwanted side effect




Evaluation (2)

include(‘class/common.php’) ; // [FixMeUp repair]

$GR_newone = new COMMON( ) ; / / [FixMeUp repair]

if ($ SESSION [’ no’]!=1)){//[FixMeUp repair]

$GR_newone ->error( ' Require admin priviledge’, 1, ‘CLOSE’ ) ;//
[FixMeUp repair]

}

include(‘class/common.php’) ; // existing statement

$GR = new COMMON( ) ; // existing statement

if ($ SESSION[’'no’])){//[FixMeUp repair]

$GR->error(’ Require login procedure’) ; / / [FixMeUp repair]

I@SSO( ‘member’)
@fwrite($tmpfs, $saveResult);




Evaluation (3)

» Warning: after applying the ACT, repaired code
does not implement the same logic as the ACT

Program Entry
- include ‘conf.php’ ;

session_start(); //existing statement

if ($confirm==""){

dbConnect () ; // exiting staterg
if (lverifyuser () ) // [FixMeUp
{

header('Location: ./login.php');//[FixMeUp repair]

exit; // [FixMeUp repair]

}

$sqgl = "DELETE FROM blogdata WHERE postid = $postid”;

$query = mysql_query( $sql ) or die( "Cannot query the database .<br>" .
mysql_error() );




Limitations

» Environmental data dependencies, eval

» Unwanted side effects
Stat 1

Stat 2
? Access-control check
- exit
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Avoiding unwanted side effects

» Use fresh variable names
$local_var_1 = session_id()

$local_var_1_new = session_id()

» Do not replicate already existing statements

session_start()
include “a.php”;
Access-control check
exit




Related work

» Static detection of access-control bugs
» Dynamic detection of access-control bugs
» Dynamic repair of software bugs




Conclusion

» FixMeUp computes code templates for access-
control logic from examples

» Finds and repairs access-control bugs in PHP
applications

- Reuses existing statements
> Avoids introducing unwanted dependences

» Successfully repaired 30 access-control bugs in
10 real-world PHP applications
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