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Evalua,on	
  
1.  What	
  are	
  the	
  performance	
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2.  Are	
  we	
  better	
  than	
  previous	
  work?	
  
3.  Do	
  we	
  Yind	
  cool	
  things?	
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Performance	
  

In	
  our	
  experiments,	
  we	
  :	
  
–  let	
  k=100,000	
  (k-­‐IPTree	
  size)	
  
– processed	
  30-­‐35	
  million	
  IPs	
  (on	
  day’s	
  trafYic)	
  
– using	
  a	
  2.4	
  Ghz	
  Processor	
  

IdentiYied	
  Δ-­‐Good	
  and	
  Δ-­‐Bad	
  	
  
in	
  <22	
  min	
  using	
  <3MB	
  memory	
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changes. Our experiments were run on a on a 2.4GHz
Sparc64-VI core. Our current (unoptimized) implementa-
tion takes 20-22 minutes to process a day’s trace (around
30-35 million IP addresses) and requires less than 2-3 MB
of memory storage.
We note that the ground truth in our data provides labels

for the individual IP addresses, but does not tell us the pre-
fixes that have changed. Thus, our ground truth allows us to
confirm that the learned IPTree has high accuracy, but we
cannot directly measure false positive rate and false nega-
tive rate of the change-detection algorithms. Thus, our ex-
perimental results instead demonstrate that our algorithm
can find small changes in prefix behaviour very early on real
data, and can do so substantially better than competing ap-
proaches. Our operators were previously unaware of most
of these∆-change prefixes, and as a consequence, our sum-
marization makes it easy for operators to both note changes
in behaviour of specific entities, as well as observe trends in
malicious activity. 7

4.1 Comparisons with Alternate Approaches
We first compare ∆-Change with previous approaches

and direct extensions to previous work. We compare two
different possible alternate approaches with ∆-Change: (1)
using a fixed set of network-based prefixes (i.e., network-
aware clusters, see Sec. 2.2) instead of a customized IP-
Tree, (2) directly differencing the IPTrees instead of using
∆-Change. We focus here on only spam data for space rea-
sons.
Network-aware Clusters. As we described in Sec-
tion 3.2, our change-detection approach has no false pos-
itives – every change we find will indeed be a change in
the input data stream. Thus, we only need to demonstrate
that ∆-Change finds substantially more ∆-changes than
network-aware clusters (i.e., has a lower false negative rate),
and therefore, is superior at summarizing changes in mali-
cious activity to the appropriate prefixes for operator atten-
tion.
We follow the methodology of [29] for labeling the

prefixes of the network-aware clusters optimally (i.e., we
choose the labeling that minimizes errors), so that we can
test the best possible performance of network-aware clus-
ters against ∆-Change. We do this allowing the network-
aware clusters multiple passes over the IP addresses (even
though∆-Change is allowed only a single pass), as detailed
in [29]. We then use these clusters in place of the learned
IPTree in our change-detection algorithms.
We first compare ∆-change prefixes identified by the

network-aware clustering and ∆-Change. This compari-
son cannot be directly on the prefixes output by the two ap-

7As discussed in Section 1, our evaluation focuses exclusively on
changes in prefix behaviour, since prior work [28, 29] already finds per-
sistent malicious behaviour.
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Figure 11. Comparing ∆-Change algorithm with
network-aware clusters on the spam data: ∆-Change
always finds more prefixes and covers more IPs

proaches, as slightly different prefixes may reflect the same
underlying change in the data stream, e.g., network-aware
clusters might identify a /24 while ∆-Change identifies a
/25. In order to account for such differences, we group
together prefixes into distinct subtrees, and match a group
from the network-aware clustering to the appropriate group
from ∆-Change if at least 50% of the volume of changed
IPs in network-aware clustering was accounted for in ∆-
Change. In our results, network-aware clustering identified
no∆-change prefixes that were not identified by∆-Change;
otherwise, we would have do the reverse matching as well.
Furthermore, this is what allows us to compare the num-
ber of ∆-changes that were identified by both algorithms,
otherwise we would not be able to make this comparison.
Fig. 11(a) shows the results of our comparison for 37

days. Network-aware clustering typically finds only a small
fraction of the∆-change prefixes discovered by∆-Change,
ranging from 10% − 50%. On average, ∆-Change finds
over 2.5 times as many∆-change prefixes as network-aware
clusters. We compare also the number of IPs in ∆-change
prefixes identified by the network-aware clustering and ∆-
Change in Fig. 11(b). The ∆-change prefixes discovered
by ∆-Change typically account for a factor of 3-5× IP ad-
dresses as those discovered by the network-aware cluster-
ing. It indicates that network-aware clustering does not dis-
cover many changes that involve a substantial volume of the
input data. On many days, especially on days with changes,
the fraction of IP addresses not identified by network-aware
clusters, however, is still smaller than the fraction of pre-
fixes that it does not identify. This indicates that network-
aware clustering identifies the larger, coarser changes, but
misses the fine-grained changes.
Network-aware clusters perform so poorly because the

prefix granularity required to identify ∆-changes typically
does not appear at all in routing tables. Indeed, as our anal-
ysis in Section 4.2 shows, a large number of∆-change pre-
fixes come from hosting providers, many of which do not
even appear in BGP prefix tables.

Possible Differencing of IPTrees. We now show that
the possible differencing approach described in Section 2.2

2.5x	
  as	
  many	
  changes	
  
on	
  average!	
  

How	
  do	
  we	
  compare	
  to	
  network-­‐aware	
  clusters?	
  
(By	
  PreYix)	
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ming Activity

20 30 40 50 60 700

50

100

!
!c

ha
ng

e 
pr

ef
ix

es

Day

A

B

(c) Case Study 3: New Botnet Activity

Figure 15. (a) shows sizes of ∆-change prefixes. (b) shows Case Study 2: ∆-good prefixes with drop in spamming activity
during the Grum takedown (arrow indicates when the takedown started). There is a sharp increase in ∆-good prefixes
after the takedown. (c) shows Case Study 3: ∆-change Prefixes in New Botnet Activity. A and B mark the ∆-bad prefixes
discovered when over 22,000-36,000 new bot IPs appeared in the feed.

of the changing malicious activity, since there is likely to be
a diversity of malicious activity when new threats emerge.

Summary. Table 1(b) (Fig. 12) summarizes the differ-
ent prefixes for θ = 0.05%, 0.01%, categorized by the type
of change they have undergone. As in Section 4.2, the
prefixes discovered increases sharply when θ is increased.
However, note that in this experiment, there are very signif-
icant numbers of∆-good prefixes discovered as well – over
56% of all the prefixes discovered are ∆-good, unlike the
spam data. This is primarily because the active IP address
space changes very little, while bot IP addresses appear in
the feed for much shorter durations (e.g., this may be as bots
get cleaned, or bot signatures get outdated). A former bot
IP would then generate mostly legitimate traffic (its mali-
cious traffic would drop, but its legitimate activity remains
the same, and so it would get labelled as legitimate), and the
corresponding IP regions thus become∆-good.

Case Study 3: New Botnet Activity. Our case study
illustrates the value of discovering ∆-bad prefixes internal
to a large ISP’s prefix blocks. Figure 15(c) shows the time-
series of the∆-change prefixes discovered over two months
of our data set. The highlighted days (A and B) mark two
sharp increases in the number of∆-change prefixes discov-
ered. These correspond to days with dramatic increases in
the number of new bot IPs seen in the data feed – 22.1 &
28.6 thousand at the two days marked as A and 36.8 thou-
sand at B Further analysis showed that on days marked A,
nearly all of of these new bot IPs are from the DNSChanger
botnet [8], and are responsible for 19 & 31 ∆-bad pre-
fixes. On day B, these new bot IPs are from Sality [25]
and Conficker [6], and 66∆-bad prefixes correspond to the
new IPs from Sality and Conficker. By contrast, network-
aware clusters were only able to discover 5-12 prefix blocks
as ∆-bad during these events. These ∆-bad prefixes come
from smaller regional ISPs, the tier-1 ISP’s dial-up and DSL
blocks; most of these prefixes had little to botnet activity
(as identified by the vendor) earlier. Thus, in these two in-
stances,∆-Change effectively reduces the workload for op-
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erator from manually investigating over 22,000-36,000 new
bot IPs to investigating 19-66 new IP prefixes, a drop of two
orders of magnitude.

4.4 Structural Analysis of IP Dynamics
Our earlier results demonstrate that there is constant

change in the Internet’s malicious activity. We now explore
the structure underlying these changes with the ∆-Motion
algorithm, focusing our analysis on spam dataset due to
space. We use a snapshot of the change-IPtreeW generated
by∆-Motion, 60 days into the dataset;W ’s high predictive
accuracy indicates it can distinguish frequently-changing
regions well, as shown by the ROC curve in Fig. 16. We
use W to classify every IP in our data set as ”change” or
”non-change”, and then aggregate the IPs by country and
owning company. We define freq-ratio to be the fraction of
the total IPs of that entity that are marked as change IPs,
and analyze the freq-ratio of different aggregations.
Table 3 (Fig. 17) shows a breakdown for the origin of the

frequently changing IPs. Together, these countries account
for 90% of the data seen at our mail servers. We note that
countries like China, Korea, Russia [23], which are known
to harbor lot of spammers actually change very infrequently,
while countries like US and Canada change 3-4 times more
frequently. This makes sense, as countries where ISPs ag-
gressively fight spammer infestations are likely to experi-
ence a more frequent change in malicious activity. Table
4 shows a breakdown by ISP type. Once again, hosting
providers have a substantially higher ratio than the other cat-
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Figure 15. (a) shows sizes of ∆-change prefixes. (b) shows Case Study 2: ∆-good prefixes with drop in spamming activity
during the Grum takedown (arrow indicates when the takedown started). There is a sharp increase in ∆-good prefixes
after the takedown. (c) shows Case Study 3: ∆-change Prefixes in New Botnet Activity. A and B mark the ∆-bad prefixes
discovered when over 22,000-36,000 new bot IPs appeared in the feed.

of the changing malicious activity, since there is likely to be
a diversity of malicious activity when new threats emerge.
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sharp increases in the number of∆-change prefixes discov-
ered. These correspond to days with dramatic increases in
the number of new bot IPs seen in the data feed – 22.1 &
28.6 thousand at the two days marked as A and 36.8 thou-
sand at B Further analysis showed that on days marked A,
nearly all of of these new bot IPs are from the DNSChanger
botnet [8], and are responsible for 19 & 31 ∆-bad pre-
fixes. On day B, these new bot IPs are from Sality [25]
and Conficker [6], and 66∆-bad prefixes correspond to the
new IPs from Sality and Conficker. By contrast, network-
aware clusters were only able to discover 5-12 prefix blocks
as ∆-bad during these events. These ∆-bad prefixes come
from smaller regional ISPs, the tier-1 ISP’s dial-up and DSL
blocks; most of these prefixes had little to botnet activity
(as identified by the vendor) earlier. Thus, in these two in-
stances,∆-Change effectively reduces the workload for op-
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erator from manually investigating over 22,000-36,000 new
bot IPs to investigating 19-66 new IP prefixes, a drop of two
orders of magnitude.

4.4 Structural Analysis of IP Dynamics
Our earlier results demonstrate that there is constant

change in the Internet’s malicious activity. We now explore
the structure underlying these changes with the ∆-Motion
algorithm, focusing our analysis on spam dataset due to
space. We use a snapshot of the change-IPtreeW generated
by∆-Motion, 60 days into the dataset;W ’s high predictive
accuracy indicates it can distinguish frequently-changing
regions well, as shown by the ROC curve in Fig. 16. We
use W to classify every IP in our data set as ”change” or
”non-change”, and then aggregate the IPs by country and
owning company. We define freq-ratio to be the fraction of
the total IPs of that entity that are marked as change IPs,
and analyze the freq-ratio of different aggregations.
Table 3 (Fig. 17) shows a breakdown for the origin of the

frequently changing IPs. Together, these countries account
for 90% of the data seen at our mail servers. We note that
countries like China, Korea, Russia [23], which are known
to harbor lot of spammers actually change very infrequently,
while countries like US and Canada change 3-4 times more
frequently. This makes sense, as countries where ISPs ag-
gressively fight spammer infestations are likely to experi-
ence a more frequent change in malicious activity. Table
4 shows a breakdown by ISP type. Once again, hosting
providers have a substantially higher ratio than the other cat-
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