Automatically Inferring the Evolution of Malicious Activity on the Internet

Shobha Venkataraman AT&T Research

Subhabrata Sen AT&T Research **David Brumley** Carnegie Mellon University

Oliver Spatscheck AT&T Research

Research Questions

Given a sequence of labeled IP's1. Can we identify the specific regions on the Internet that have <u>changed</u> in malice?

2. Are there regions on the Internet that change their malicious activity <u>more</u> <u>frequently</u> than others?

Research Questions

Given a sequence of labeled IP's \underline{V}

We Present

1. Can we identify the specific regions on the Internet that have *changed* in malice?

2. Are there regions on the Internet that change their malicious activity <u>more</u> <u>frequently</u> than others?

Background

- 1. IP Prefix trees
- 2. TrackIPTree Algorithm

0.0.0/32

0.0.0.1/32

A <u>k-IPTree Classifier</u> [VBSSS'09] is an IP tree with at most k-leaves, each leaf labeled with good ("+) or bad ("-").

/ \

TrackIPTree Algorithm [VBSSS'09]

In: stream of labeled IPs

 $\dots < ip_4, +> < ip_3, +> < ip_2, +> < ip_1, ->$

TrackIPTree

Out: k-IPTree

Δ-Change Algorithm

- 1. Approach
- 2. What doesn't work
- 3. Intuition
- 4. Our algorithm

<u>Goal</u>: identify online the specific regions on the Internet that have changed in malice.

Goal: identify online the specific regions on the Internet that have changed in malice.

ve: that a Mis

False positive: Misreporting that a change occurred

False Negative: Missing a real change <u>Goal:</u> identify online the specific regions on the Internet that have changed in malice.

Idea: divide time into epochs and diff

- Use TrackIPTree on labeled IP stream s₁ to learn T₁
- Use TrackIPTree on labeled IP stream s₂ to learn T₂
- Diff T_1 and T_2 to find Δ -Good and Δ -Bad

Goal: identify online the specific regions on the Internet that have changed in malice.

 $\begin{array}{l} \Delta \mbox{-Change Algorithm Main Idea:} \\ Use \ \underline{\textit{classification errors}} \ between \ T_{i^{-1}} \ and \ T_i \\ \ to \ infer \ \Delta \mbox{-Good and } \Delta \mbox{-Bad} \end{array}$

Δ-Change Somewhere

Insufficient *Change*

Evaluation

- 1. What are the performance characteristics?
- 2. Are we better than previous work?
- 3. Do we find cool things?

Performance

In our experiments, we :

- let k=100,000 (k-IPTree size)
- processed 30-35 million IPs (on day's traffic)
- using a 2.4 Ghz Processor

Identified Δ -Good and Δ -Bad in <22 min using <3MB memory

How do we compare to network-aware clusters? (By Prefix)

Spam

Caveats and Future Work

"For any distribution on which an ML algorithm works well, there is another on which is works poorly."

– The "No Free Lunch" Theorem

Our algorithm is efficient and works well in practice.

....but a very powerful adversary could fool it into having many false negatives. A formal characterization is future work.

Conclusion

 Δ -Change and Δ -Motion: two new *online* algorithms for capturing how malice evolves on the internet

- Scalable
- Discovers right IP granularity
- Finds cool changes

Questions?

