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Labeled IP’s from
spam assassin, IDS logs,

Spam Haven etc.

Evil is constantly on

the move m

Our Goal:
Characterize regions
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Research Questions

Given a sequence of labeled IP’s

1. Can we identify the specific
regions on the Internet that
have changed in malice?

2. Are there regions on the
Internet that change their
malicious activity more
frequently than others?




Previous work:
Fixed granularity

Per-1P
Granularity

(e.g., Spamcop) Spam Haven

Challenges

1. Infer the right
granularity




Previous work:
Fixed granularity
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Our work:

Infer granularity
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granularity
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Well-managed
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fixed-memory device
high-speed link

Spam Haven

Challenges

. Infer the right
granularity

. We need online
algorithms




Research Questions

Given a sequence of labeled IP’s We Present

= = o o o
1

——

1. Can we identify the specific
§ regions on the Internet that A-Change |
’ have changed in malice? ’

—

—

2. Are there regions on the
Internet that change their M
malicious activity more

frequently than others?




Background

1. [P Prefix trees
2. TrackIPTree Algorithm
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Ex:
1 host (all bits)

{Tier 1]

[ Tier 1 ] EX:
T~ 810.0/24 8.1.0.0-8.1.255.255

IP Prefixes:

i/d denotes all IP addresses
I covered by first d bits
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Whole
Net
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An [P prefix tree is formed by masking
each bit of an IP address.
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TrackIPTree Algorithm

[VBSSS'09]
In: stream of

labeled IPs
. . . . TrackIPTree
<1p4_,+> <1p3,+> <1p2,+> <1p1,->

Out: k-IPTree
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A-Change Algorithm

1. Approach

2. What doesn’t work
3. Intuition

4. Our algorithm

14



Goal: identify online the specific regions on the
Internet that have changed in malice.

/16 /16

/17 /17

A-Good: A-Bad:

A change from bad to good A change from good to bad
| |
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IEpoch 1 IP stream s, IEpoch 2 IP stream s,
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Goal: identify online the specific regions on the
Internet that have changed in malice.
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False positive: False Negative:

Missing a real change

Misreporting that a
change occurred
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Goal: identify online the specific regions on the

Internet that have changed in malice.

/16 /160
/17
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/18 Granularities!
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Idea: divide time into epochs and diff

Use TrackIPTree on labeled IP stream s, to learn T,

Use TrackIPTree on labeled IP stream s, to learn T,
Diff T, and T, to find A-Good and A-Bad
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Goal: identify online the specific regions on the
Internet that have changed in malice.

A-Change Algorithm Main Idea:

Use classification errors between T, ; and T,
to infer A-Good and A-Bad
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A-Change Algorith
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TrackIPTree
Fixed S
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Ann. with T
class. error old,i-1 A-Good and A-Bad
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Comparing (Weighted) Classification
Error

- ———— - ——— -

Acc: 90% Acc: 10%

[Ps: 50
Acc: 30%

[Ps: 70
Acc: 20%

[Ps: 40 [Ps: 110 [Ps: 20 [Ps: 80
Acc: 80% Acc: 95% Acc: 20% Acc: 5%

A-Change Somewhere
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Comparing (Weighted) Classification

Error
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Insufficient Change
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Comparing (Weighted) Classification

Error
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Comparing (Weighted) Classification

Error
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Evaluation

1. What are the performance characteristics?
2. Are we better than previous work?
3. Do we find cool things?
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Performance

In our experiments, we :
— let k=100,000 (k-IPTree size)

— processed 30-35 million IPs (on day's traffic)
— using a 2.4 Ghz Processor

Identified A-Good and A-Bad

in <22 min using <3MB memory
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How do we compare to network-aware clusters?

(By Prefix)

2.5x as many changes
on average!
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22.1 and 28.6
thousand new 38.6 thousand

DNSChanger bots new Conficker
and Sality bots

appeared

A—change prefixes

0 60—70
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Caveats and Future Work

“For any distribution on which an ML
algorithm works well, there is another on

which is works poorly.”
— The “No Free Lunch” Theorem

Our algorithm is efficient and works well
in practice.

...but a very powerful adversary
could fool it into having many false
negatives. A formal characterization
is future work.
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Conclusion

A-Change and A-Motion: two new online
algorithms for capturing how malice evolves
on the internet

— Scalable

— Discovers right IP granularity

— Finds cool changes
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Questions?







