

Laying a Secure Foundation for Mobile Devices

Stephen Smalley Trusted Systems Research National Security Agency

Trusted Systems Research

- Conduct and sponsor research to provide information assurance for national security systems.
- Enabling safe operation in risky or compromised environments.
- Research into cryptographic algorithms and protocols, system analysis and design methods, trust mechanisms, and systems behavior.
- Creators of SE Linux, Xen Security Modules, Linux Kernel Integrity Monitor, and SE Android.

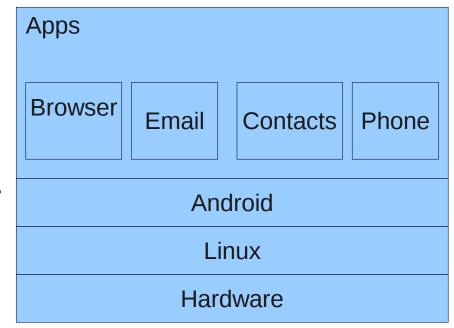
Our Motivation

- Increasing demand to use mobile devices.
 - NSA Mobility Program
- Desire to use commodity solutions.
 - NSA Commercial Solutions for Classified (CSfC)
- Risks posed by currently available solutions.
 - Exploitation over wireless, radio, NFC, ...
 - Data Leakage
 - Application privilege escalation

Why It Matters for Everyone

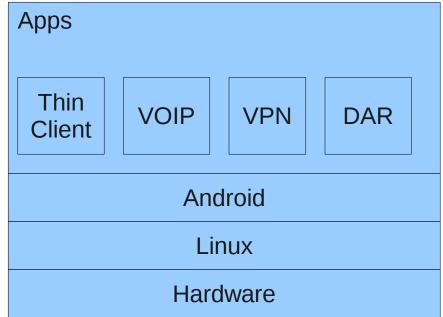
- Explosion in mobile malware.
 - Rapid growth, increasing sophistication.
- Increasing market drivers for mobile device attacks.
 - Payment, banking, remote control.
 - BYOD trend for corporate/enterprise use.
 - Increasing use of mobile platforms in non-traditional venues, including safety-critical.
- It isn't just a problem for government use.

A Step in the Right Direction


- NSA Security Enhanced (SE) Android project.
- Identify and address critical gaps in the security of Android.
- Why Android?
 - Open source platform: suitable for a reference implementation accessible to anyone.
 - Broad market adoption: opportunity to improve the security of a widely used mobile platform.

Android Security Concerns

- Weak separation.
- Prone to privilege escalation.
- Lack of support for enforcing organizational security goals.



Secure Solutions on Android

Security Concerns

- Exposure of secrets.
- Protection of app mechanisms and configurations.
- No guaranteed invocation.

Building on a Solid Foundation

- Critical role of operating system protection mechanisms in supporting higher level security goals.
 - The Inevitability of Failure: The Flawed Assumption of Security in Modern Computing Environments, 21st NISSC, Oct 1998.
 - Flexible Mandatory Access Control (MAC) as a key mechanism
- SE Linux as a well-established foundation for mitigating threats posed by flawed and malicious applications.

SE Android Enhancements

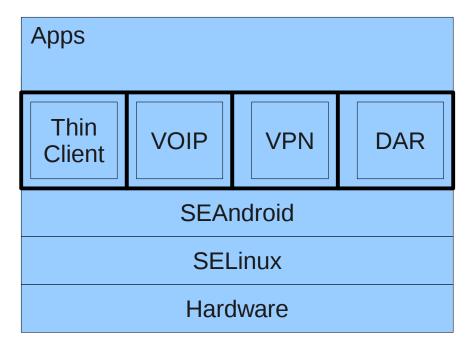
- Kernel Mandatory Access Control (MAC).
 - SELinux-based.
 - Root exploits are no longer fatal.
 - Apps can be strongly separated.
- Middleware Mandatory Access Control (MMAC).
 - Taking Android permissions out of the hands of users and apps.

Effective Against

Root Exploits

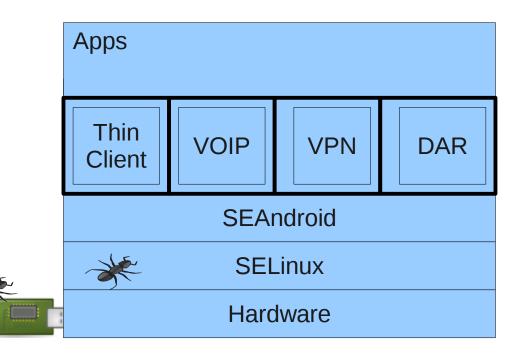
- GingerBreak
- Exploid
- Zimperlich
- RageAgainstTheCage
- Mempodroid
- KillingInTheNameOf

Vulnerable Apps


- Skype
- Lookout Mobile Security
- Opera Mobile

SE Android: Security Benefits

- Strong separation of apps.
- Prevents privilege
 escalation by apps.
- Enforces organizational security goals.
- Protects app mechanisms
 & configurations.



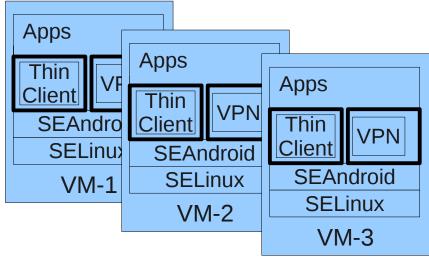
SE Android: Residual Risks

- Kernel vulnerability.
- Platform component vulnerability.
- Loading an unauthorized OS / configuration.

Addressing the Risks

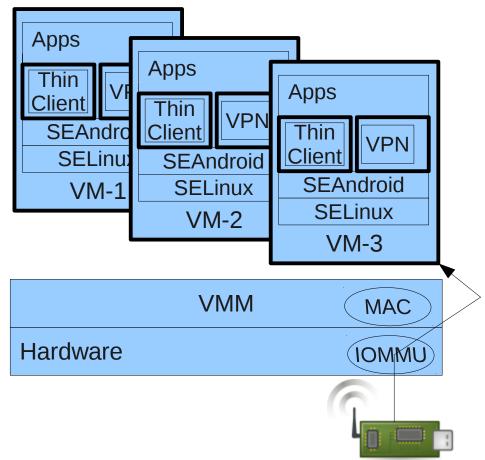
- Requires mechanisms outside the scope of what any operating system mechanism can provide.
 - Cannot be addressed via SE Android.
 - Also true for SE Linux (or any other secure OS).
- Two key enablers emerged in commodity PC hardware:
 - Virtualization
 - Trusted Computing

Secure Virtual Platform (SVP)


- NSA research program dating back to circa 2002.
- Explored the use of emerging hardware support for virtualization and trusted computing to address these same kinds of concerns for SE Linux.
- Investigated application of virtualization and trusted computing to construct an overall secure system architecture.

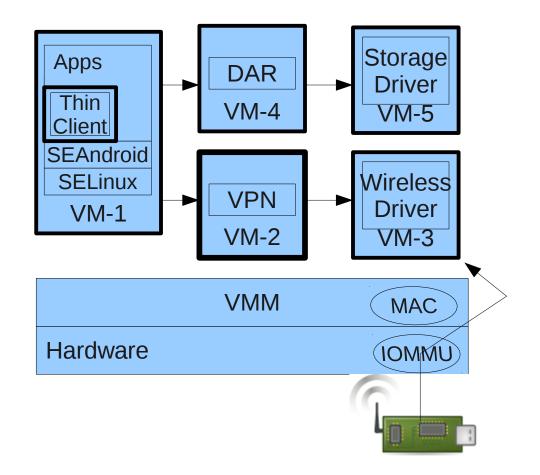
Basic Virtualization

- Guest kernel vulnerability contained to single VM.
- Isolated environments via separate VMs.


	VMM
Hardware	

Secure Virtualization

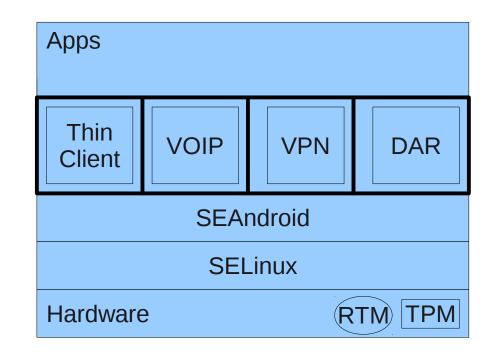
- Platform component vulnerability contained to single VM.
- VM interactions and privileges controlled by MAC policy.



Virtualization for Security

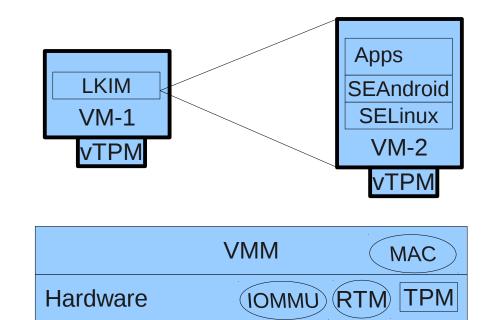
- Driver isolation.
- Protection of security services.
- Assured invocation of security services.

Virtualization instead of SE Android?


- Virtualization does not eliminate the need for a secure OS.
 - Unable to enforce security goals within guest OS.
 - Does not address need for controlled sharing.
 - Does not protect the data as it is being processed.
 - Still need to protect shared services & control plane.
 - Limited scalability and flexibility.

Trusted Computing

- Verifiable, trustworthy report of loaded software & configuration.
- Protection of long term secrets from leakage or misuse by unauthorized software.
- Hardware roots of trust.

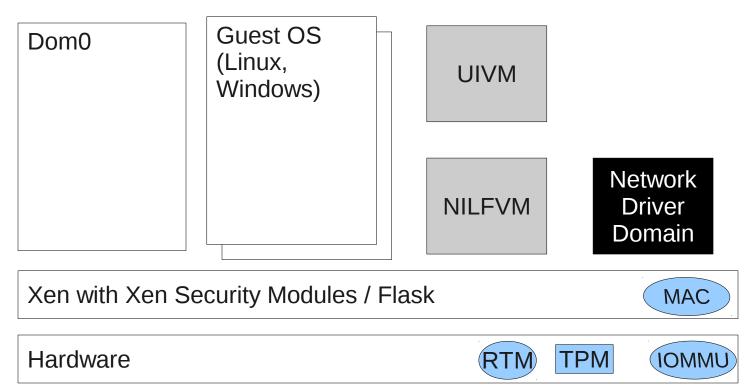


Trusted Computing & Virtualization

- Security Benefits
 - Extend same benefits to each VM.
 - Scalable measurement & attestation.
 - Runtime integrity measurement of VMs.

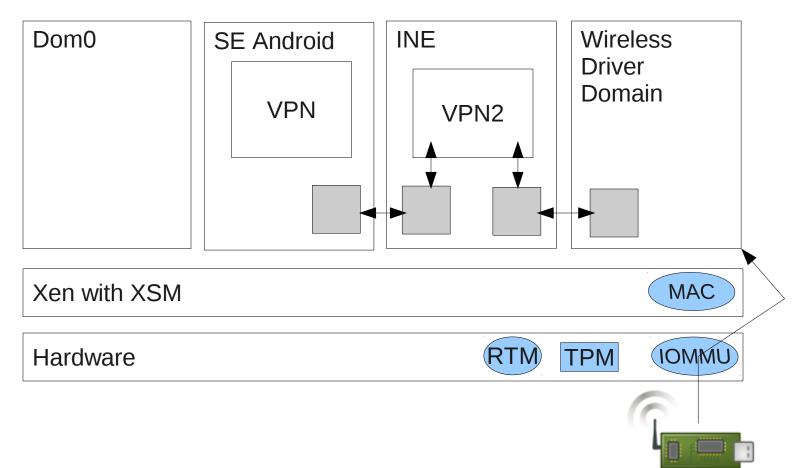
Trusted Computing instead of SE Android?

- Trusted Computing ≠ Secure Computing.
 - Does not remove vulnerabilities in design or implementation.
- Provides a way to validate system assumptions for secure computing.
 - Did the device boot the expected secure OS?
 - Is the secure OS running in the expected state?
- Not a substitute for a secure OS.


SVP Technology Transfer

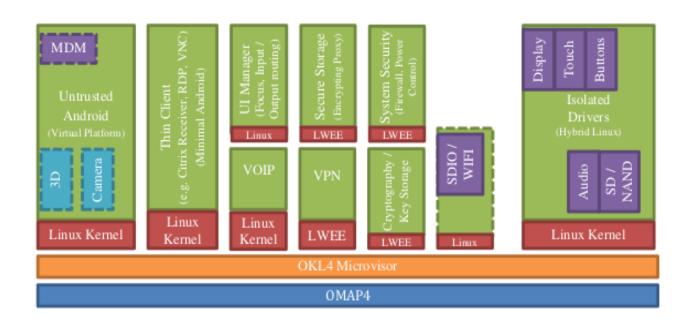
- Some SVP concepts and code contributed to open source.
 - Xen Security Modules / Flask, vTPM, Linpicker
 - openAttestation
- Partial realization in commercial products and solutions.
 - XenClient XT product
 - AFRL SecureView solution

XenClient XT/SecureView


SVP: Going Mobile

- Originally implemented on PC hardware.
 - Able to leverage PC hardware primitives for virtualization and trusted computing.
 - Including TPM, RTM, IOMMU capabilities.
- Directly transferred to laptops.
 - Being leveraged in real solutions.
- Successfully ported to x86-based tablets.

Tablet (x86) Architecture

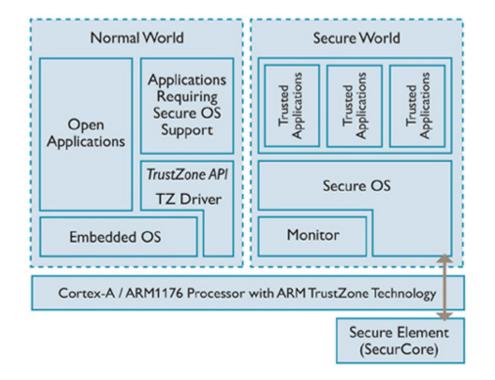

SVP for ARM: Virtualization

- Leveraging OKL4 microvisor for paravirtualization.
- Looking ahead to ARM virtualization extensions.

OKL4-based Architecture

Concerns with ARM virtualization

- Lack of mature, deployed virtualization solutions for ARM.
- Need for OEM cooperation.
- Frequent lack of IOMMU support.
- Static configuration of VMs.


SVP for ARM: Trusted Computing

- TrustZone as the likely foundation.
 - Becoming more commonly available.
 - Provides support for isolated execution and protected storage.
 - Possible to tie to hardware root of trust.
 - Possible place to host a MTM.

TrustZone

Source: www.arm.com/products/processors/technologies/trustzone.php

Concerns with TrustZone

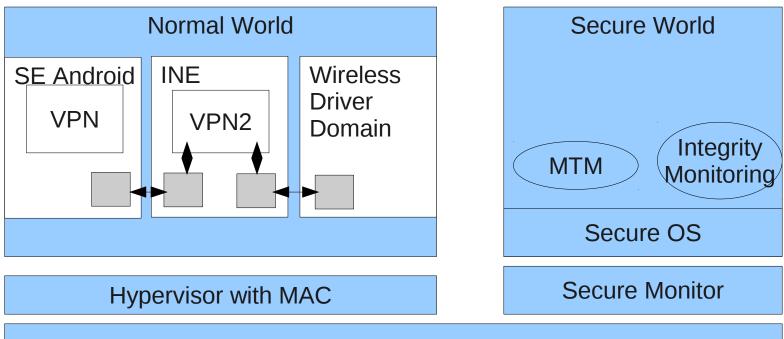
- No measured launch or attestation for secure monitor and secure world OS.
- Lack of widely available MTM implementations with standard APIs.
- Lack of / unclear state of separation of trusted applications.
- Lack of public details on many aspects of implementation important to security.
- Variability across hardware.

TrustZone instead of SE Android?

- Cannot address all security concerns of interest.
 - Cannot protect data as it is being processed within the normal world.
 - Similar to discussion of virtualization.
 - Trying to address all security concerns via TrustZone will only lead to functional and API bloat, making it less secure.
- Also requires secure OS functionality for the secure world.

TrustZone instead of Virtualization?

- Only supports secure world vs non-secure world partitioning.
- Cannot support multiple VM architecture for security.
- Would likewise end up pushing too much functionality into TrustZone secure world.


TrustZone Correctly Applied

- Measured launch for normal world hypervisor and control plane.
- Provide MTM functionality.
- Safe place for runtime integrity monitoring of hypervisor.
- Protect the underpinnings of a system with virtualization and secure OS functionality.

Putting it all together

Hardware with TrustZone + Virtualization Extensions support

Reaching the Goal

- Processor, SOC and device makers:
 - Make virtualization and trusted computing primitives ubiquitously available.
 - Enable use of virtualization and trusted computing by third party developers.
- Mobile platform developers:
 - Include secure OS functionality.
 - Leverage virtualization and trusted computing for security.
 - Enable third party developers to leverage this functionality / extend to applications.

Avoiding the PC malware plague

- PC industry did not address these threats early.
 - Plagued with malware as a result.
 - Trapped in a quagmire of legacy / compatibility requirements.
- Don't make the same mistake for mobile devices.
 - Device OEMs and mobile OS developers have an opportunity to do it right.
 - Mobile device ecosystem makes it possible to still change.

Questions?

- My email: sds@tycho.nsa.gov
- SE Android project: http://selinuxproject.org/page/SEAndroid
- Public SE Android list: Send "subscribe seandroid-list" to majordomo@tycho.nsa.gov.
- NSA SE Android team: seandroid@tycho.nsa.gov