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Abstract— Content sharing is a popular use of peer-to-peer
systems because of their inherent scalability and low cost of
maintenance. In this paper, we leverage this nature of peer-to-
peer systems to tackle a new problem: automatic misconfigu-
ration troubleshooting. In this setting, machine configurations
from peers are shared to diagnose misconfigurations on a sick
machine. The key challenges are preserving privacy of individual
configuration data and ensuring the integrity of peer contri-
butions. To this end, we construct theFriends Troubleshooting
Network (FTN), a peer-to-peer overlay network, where the links
between peer machines reflect the friendship of their owners.
Our FTN manifests recursive trustrather than transitive trust.
To achieve privacy, we use the general scheme of ahistoryless
and futureless random-walkfor routing, during which search is
carried out simultaneously with secure parameter aggregation
for the purpose of troubleshooting. Our design has been guided
by the characteristics of a real-world friends network, the MSN
Instant Messenger (IM) network. We have prototyped our FTN
system and analyzed the tradeoff between privacy and protocol
efficiency.

I. I NTRODUCTION

Today’s desktop PCs have not only brought to their users
an enormous and ever-increasing number of features and
services, but also an increasing amount of troubleshooting
cost and productivity losses. Studies [15], [16] have shown
that technical support contributes 17% to the total cost of
ownership of today’s desktop PCs. A large amount of technical
support time is spent on troubleshooting failures, many of
which are caused by misconfigurations.

In this paper, we address the problem of privacy-preserving,
peer-to-peer misconfiguration diagnosis. We build on our pre-
viously developed algorithm for automatic misconfiguration
troubleshooting, calledPeerPressure[17]. PeerPressure uses
the commonconfigurations from a set of helper machines
to identify the anomalous misconfigurations on the sick one.
With real-world troubleshooting cases as evaluations, we have
shown the effectiveness of the approach. To carry out PeerPres-
sure diagnosis, we need to gather statistics from a sample set
of helper machines. In our position paper [18], we advocated
taking the peer-to-peer approach in searching for helpers and
gathering statistics. As compared to a centralized database, the
peer-to-peer approach provides low cost maintenance of up-to-
date helper configuration samples and distributed trust. How-
ever, PeerPressure-based peer-to-peer troubleshooting poses
interesting challenges in preserving the privacy of both the
troubleshooting users and peer helpers, as well as the integrity
of the troubleshooting results.

Ensuring integrity is challenging because malicious peers
may lie about the applications they own and the configuration
state they have, which can lead to incorrect troubleshooting
results. A machine can be malicious either because its owner
has ill intentions or because it is compromised by an attacker.
We cope with the ill-intentioned-user problem by designing
well-established social trust into the troubleshooting frame-
work. Today, when encountering computer problems, most
people first seek help from their friends and neighbors. Based
on this observation, we construct aFriends Troubleshooting
Network (FTN), which is a peer-to-peer overlay network,
where a link between two machines is due to the friendship
of their owners. We assume that friends will either provide
authentic configuration information to each other, or, in cases
where configurations are privacy sensitive, refuse to supply
information, rather than giving false content.

In the real world, if Alice asks her friend Bob a question to
which Bob does not know the complete answer, Bob may ask
his friend Carolon Alice’s behalf. Troubleshooting requests
in the FTN are recursively forwarded to friends of friends
in the same way. One may quickly conclude that our system
manifeststransitive trust. However, if Alice and Carol aren’t
friends, Carol may provide untruthful answers if Alice were to
ask herdirectly, but truthful ones when asked by Bob. Because
of this, we say that FTN manifestsrecursive trustinstead.

Despite the friendship-based trust in the FTN,privacy
remains a crucial goal: while friends can be trusted not to
provide false information, they may be curious about the con-
figuration of their peers, and such configurations may contain
privacy-sensitive information. In our position paper [18], we
sketched an FTN design which tries to achieve privacy through
a historyless and futureless random-walkof anownerlesstrou-
bleshooting request, during which search as well as parameter
aggregation are carried out for the purpose of PeerPressure
troubleshooting. The design was not robust against a number
of privacy-compromising attacks. In this paper, we develop
our original idea into a full-fledged design and system. Be-
cause of the unique privacy and integrity requirements of our
problem, previous techniques for anonymity and private data
aggregation cannot be readily applied.

Our design is guided by the operational MSN Instant
Messenger (IM) friends network data. With the IM data, we
analyze the tradeoffs between privacy and efficiency. We have
prototyped the FTN system with which a user can diagnose
misconfigurations in about a minute while achieving a high



privacy level for all participants.
Coping with compromised FTN nodes remains an open

challenge. We provide no mitigation mechanisms other than
those already presented in [18].

For the rest of the paper, we first provide background
on PeerPressure in Section II. Then, we state our privacy
objectives in Section III. In Section IV, we explain our
protocol by reviewing the previous design (Subsection IV-A),
describing attacks against it (Subsection IV-B), and introduc-
ing a cluster-based secure multiparty parameter aggregation
scheme and various other enhancements and optimizations
(Subsections IV-C, IV-D, IV-E). Using the MSN IM data,
we present an evaluation of our design, including analysis
and simulation of the trade-off between privacy and protocol
efficiency in Section V. We describe our prototype FTN system
and its performance in Section VI. We compare and contrast
our work with the related work in Section VII and finally
conclude in Section VIII.

II. BACKGROUND: PEERPRESSURE

PeerPressure [17] assumes that an application operates
correctly on most machines and hence that most machines
have healthy configurations. It uses the statistics from a set
of samplehelper machines that run the same application to
identify anomalous misconfigurations. The distinct feature of
PeerPressure in contrast with other work in this area [19]
is that it eliminates the need to manually identify a healthy
machine as a reference point for comparison. We have exper-
imented with a PeerPressure-based troubleshooting toolkit on
Windows systems where most of configuration data is stored
in a centralized registry. Figure 1 illustrates the operation of
our PeerPressure troubleshooter.
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Fig. 1. PeerPressure Troubleshooter

PeerPressure first uses application tracing (with the “App-
Tracer”) to capture the configuration entries and values that
are touched by the abnormal execution of the application
under troubleshooting. These entries are misconfigurationsus-
pects. Then, the canonicalizer turns any user- or machine-
specific entries into acanonicalizedform. For example, user
names and machine names are all replaced with constant
strings “USERNAME” and “MACHINE NAME”, respec-
tively. Next, from a sample set of helper machines, for each
suspect entrye, PeerPressure obtains the number of samples

that match the value of the suspect entryMe, the cardinalityCe

(the number of distinct values for this entry among the sample
set), and the most popular value for the entry. PeerPressure
uses these parameters along with the sample set size and
the number of suspect entries to calculate the probability
of a suspect entry being the cause of the symptom:Pe =

N+Ce

N+Cet+CeMe(t−1) whereN is the number of samples andt
is the number of suspects. The intuition behind this probability
calculation is that the more conformant a suspect entry is
with the samples, the more likely it is to be healthy. The top
ranking entries with regard to this probability are diagnosed
as theroot-cause candidates. Then, the troubleshooting user
can use the collected, most popular values for corrections.1

The sample set can be obtained either from a database of
registry snapshots collected from a large number of user
machines or from a peer-to-peer troubleshooting community
such as the one described in this paper. We have demonstrated
PeerPressure [17] as an effective troubleshooting method: our
PeerPressure troubleshooter was able to pinpoint the root-
cause misconfiguration accurately for 12 out of 20 real-world
troubleshooting cases and for the remaining ones, it narrowed
down the number of root-cause candidates by three orders of
magnitude.

III. PRIVACY MODEL AND OBJECTIVES

Before we dive into our protocol design, we first state our
privacy model and objectives.

A. Private Information

The information being communicated in FTN is PC con-
figuration data. We denote the complete set of configuration
data on a machine asD. A subset ofD is identity-revealing,
such as usernames and cookies, which we denote asDi.2 The
canonicalizer filtering turns any user-specific entries into a
canonicalizedform (Section II). The remaining setDr = D−
Di may contain information that compromises privacy when
linked with user identity. Some examples of such information
are URLs visited and applications installed. Our privacy ob-
jective is to protectall peers’ privacy byanonymizingsuch
privacy-sensitive information inDr; of course,Di must never
be revealed.

In addition to the configuration data, we aim to protect
the identities of the sick machine and the helpers. In some
cases, the mere fact that one is running a particular application
may be privacy-sensitive; in our protocol, we hide whether
each participant is the sick machine, a helper, or simply a
forwarding node that does not run the application.

B. Attacks

We assume an operational environment where participants
are honest-but-curious and never lie about their configuration
information. We also assume that attackers do not know the

1Of course, proper roll-back mechanisms are needed if a root-cause
candidate is not actually the root cause (when the correction does not remove
the sick symptom).

2Finding all identity-revealing entries is an open research question.



FTN topology information. While it is possible to obtain
friendship topology from side channels, there is much uncer-
tainty on which friends one trusts to troubleshoot with and
which ones of them are online. The ways attackers attempt to
obtain private information include the following:

1) Eavesdrop on machines on the same LAN
2) Message inspection attack: Infer privacy-sensitive infor-

mation by passively inspecting the messages that are
passing by.

3) Polling attack: Repeatedly send fake troubleshooting
requests to a friend to infer his private information.

4) Gossip attack: Friends may gossip (i.e., collude) and
correlate pieces of information.

C. Existing Tools

There are many existing tools for achieving anonymity or
for private data aggregation. We briefly explain why such tools
are not readily applicable to our problem; a more detailed
review of the related work is in Section VII.

Anonymity systems, such as mix networks [4], allow to send
messages while hiding their origin. Forwarding configuration
over a mix network would preserve privacy of the participants,
as it would dissociate the contents from the users identities.
However, it would violate our integrity model, as recursive
trust is achieved only when friends communicate directly with
each other. A mix network would leave no way to verify where
the data came from and thus leave open the possibility of
malicious configuration data.

Another way to preserve the anonymity of the contributors
is to use a private aggregation or voting protocol based on
a secure multi-party sum or homomorphic encryption [2].
However, these protocols work only when there is a known
space of choices for the data. In our case, the space of possible
values for a configuration entry is unknown, and we must
determine the number of distinct values (cardinality) as well
as the most popular value, while not revealing which value
belongs to which participant. To solve this problem, we define
a new aggregation scheme, described in Section IV-E, which
uses a secure multi-party sum as a building block.

IV. PRIVACY-PRESERVINGSEARCH AND PARAMETER

AGGREGATIONPROTOCOL IN FTN

The FTN is an overlay network similar to Gnutella [9] or
Kazaa [11]; however, overlay links are made only to trusted
friends’ machines. We assume that friends are able to exchange
public keys out of band and use them to establish secure
communication channels.

We take the following basic approaches to achieve our
privacy objectives in the FTN:

• Integration of search and parameter aggregation in one
transaction: If search is a separate step, returning the
IP addresses of helpers, then the querier can determine
the applications running on the helpers’ machines. Since
application ownership could be private information, we
integrate search and parameter gathering for PeerPressure

into one step in such a way (next bullet) that the parame-
ter values at any point represent the collective state for a
set of friends, and therefore do not reveal any individual
state.

• Historyless and futureless random-walk routing: To pre-
serve the privacy of the troubleshooting user as well
as node owners on the search path, we design the
troubleshooting messages to beownerlessand not to
contain any routing history or future routing state, such
as the source or the nodes traversed or to be traversed.
In addition, we make sure that the troubleshooting state
gathered from the past isaggregate in nature so that
individual state is disguised. Each node on the forwarding
path of the random-walk is either aforwarder that simply
proxies the request, or ahelper that contributes its own
relevant configurations to the request and then proxies the
request.

For the rest of the section, we first review our previous
design from our position paper [18] and the possible attacks
against it in Subsections IV-A and III-B. We then present our
protocol enhancements in Subsections IV-C, IV-D, and IV-E.

A. Previous Design

1) Creating a Request on the Sick Machine:A sick machine
first filters out the identity-revealing entries from the suspects.
Then it creates a troubleshooting request which contains
1) The name of the application executable that is under
troubleshooting; 2) a random nonceReqID identifying the
request; 3) the value distribution (or histogram) of each suspect
entry e — a list of values and the vectorCounte(i) counting
the occurrences of each valuei; the vector size increases
over time as new values are encountered along the way; 4)
Remaining number of samples neededR. The goal of the FTN
protocol is for a sick machine to obtain the aggregate value
distributions for all suspect entries. With the value distribution
of each entrye, the sick node can extract the cardinality (Ce),
the number of matches (Me), and the most popular value to
carry out the PeerPressure diagnosis.

To preserve source anonymity, the requester randomly
initializes the value distribution and remaining number of
samples needed. However, careful readers may realize that
it is not possible to do the random initialization for value
distributions since space of plausible values for each entry is
most likely unknown. This was one of the unresolved issues
in our previous paper. In this paper, one of our enhancements
(Section IV-E) makes random initialization possible.

2) Parameter Aggregation:The sick machine establishes a
secure channel with an available friend chosen at random and
sends it the troubleshooting request. The friend sends anACK
if it can become either a forwarder or a helper for the request.
If no ACK is received upon timeout, then the requester tries
another friend chosen at random. To avoid routing loops or
double-counting, if a friend has already seen theReqID of an
arriving request in the past, the friend replies with aNACK.

A friend that receives a troubleshooting request and runs
the application under troubleshooting only becomes a helper



some of the time, with probabilityPh. If it always chose
to participate, the second-to-last-hop node could infer infor-
mation about the last-hop node. When the application under
troubleshooting is very popular, with high probability, the last-
hop node is capable to help. Therefore, the previous node can
compare the request and reply and isolate the last-hop helper’s
configuration state.

A helper needs to update the troubleshooting request; for
each suspect entrye, it incrementsCounte(i) where i is its
own value fore (extending the value distribution vector as
necessary ifi is not already represented). Then, the helper
decrementsR. If R is positive, the helper proxies the request
to one of its friends.

If R becomes 0, the node is the last hop. The last-hop node
waits for a random amount of time, then sends the reply back
to the previous hop. Without the random wait, the second-to-
last hop node could know that the reply came from the last hop
and compare theCounte(i)’s in request and reply to obtain
the last-hop node’s values. The reply follows the request path
back to the sick machine. The sick machine first subtracts
the random initialization from the value distributions; then it
performs PeerPressure diagnosis.

Each node on the forwarding path must record theReqID,
the request arrival time, along with the previous and next hop
friend. There is a timeout associated with each request. If a
node does not receive a valid reply when the timeout expires,
or if it must go offline, it sends backwards the reply including
the aggregate of past samples up to itself and also notifies its
next hop to terminate its waiting status. We analyze the proper
timeout values in Section VI.

B. Attacks Against Previous Protocol

We now present the possible privacy-compromising attacks
against our previous design, as follows:

• Gossip attacks: A helper directly contributes its relevant
configuration to the request. If the helper’s previous
and next hop friends collude, they can determine its
configuration information.

• Polling attacks: Even with probabilistic helping, a curious
friend may repeatedly send fake troubleshooting requests
to its next hop withR = 1 and determine the last-hop
contribution by comparing the request and reply. Even
with a random wait at the last hop, the attacker can still
conduct a statistical analysis to guess when the next hop
contributes to the request.

C. Enhancement 1: Countering Polling Attacks by Eliminating
R

To mitigate the polling attack, we avoid specifying the
remaining number of hopsR explicitly. Instead, eachhelper
node only proxies the request further with a probability,Pf =
1 − 1/N , whereN is the total number of samples needed;
otherwise it becomes the last hop. This results inN helpers
being involved on average. This probablistic proxying makes
routing entirely historyless. Nodes that do not help always
forward the request.

D. Enhancement 2: Countering Gossip Attacks with Cluster-
ing

We mitigate the gossip attacks through a cluster-based se-
cure multi-party sum scheme as illustrated in Figure 2. When a
node receives a troubleshooting request, instead of contributing
to the request individually, it forms atroubleshooting cluster
from its immediate friends and initiates a secure multi-party
sum procedure that blends individual contributions into an
aggregate that encapsulates the contributions from both the
cluster and the past hops. The initiating node serves as the
cluster entrance. A separate cluster member must be selected
as thecluster exitfor receiving the aggregate; in this way, no
single node knows the aggregate contribution of a cluster.

In this section, we assume that each entrye is known to
have only a few possible values (e.g. true or false); the next
section explains how to change our algorithm when this is not
the case. This assumption allows us to represent the value
distribution of e as a fixed vector ofCounte(i) for each
entry e and each valuei of e. The contribution of the cluster
entrance includes the aggregate value distribution from the
previous hops. Members who do not run the application or
who choose not to help according toPh will contribute the all
zeroes vector. Members who help will set the vector element
corresponding to their value to 1, and 0’s for the rest.

The detailed steps of our cluster-based secure multi-party
sum procedure are as follows (see also Figure 2):

1) Random share generation and distribution:Each cluster
participant generatesG random shares for its contri-
bution vector, where,G is the cluster size. It then
distributes each share to a distinct cluster member. The
contribution vector also includes a valueVh, which is 0
or 1 depending on whether the member decided to help
or not.

2) Cluster exit election:The cluster head assigns all clus-
ter members (excluding itself) sequential numeric IDs,
starting at 0. Each cluster memberi selects a random
nonceni and broadcasts a commitment [12] to it. After
receiving all commitments, the members broadcast their
nonces. Each member verifies all the commitments and
computes the sumn =

∑G−1
i=0 ni, and then picks the

member withID = n mod G − 1 to be the cluster
exit. This results in a fairly chosen random number in the
range0 . . . G− 1. As an optimization, cluster members
who have no friends outside the cluster can indicate this
upon accepting the invitation; those members will be
excluded from the choice of potential cluster exits to
avoid dead ends.

3) Unicast subtotal to the cluster exit:Each cluster member
sums up all the shares it has received from others and
unicasts its subtotal to the cluster exit.

4) Exiting the cluster:The cluster exit sums up the received
subtotals of contribution vectors from all participants.
This aggregate is the value distribution from the past up
to the cluster exit. The exit also sums up the received
shares ofVh to obtain

∑
G Vh, which is the number of



cluster members that were able to help. With probability
P

∑
G Vh

f , the cluster exit further proxies the request to
one of its friends, which becomes a cluster entrance of
the next cluster hop. While it is possible to turn the
cluster exit into a cluster entrance for the next cluster, we
observe from our MSN IM data (Section V-B) that such
adjacent clusters contain 14.15% overlapping members,
reducing the value of the next clusters contribution.

During cluster formation, a friend can decline the cluster
invitation if its friendship with the cluster entrance is consid-
ered private or if it has already seen the request. The decision
about whose invitation to accept must be pre-configured by the
FTN node owners. Also during cluster formation, the cluster
entrance distributes the public keys of all cluster participants
(that have accepted the invitation) to each of them for their
future secure communications; this is necessary because the
cluster participants may not be friends with one another and
thus may not know each other’s public keys.

The cluster exit needs to record the cluster entrance as the
previous hop for the return trip of the troubleshooting request.
The new cluster entrance records the previous cluster exit as its
previous hop. The other cluster members only need to record
theReqID to avoid loops in case they receive the same request
in the future.

One may wonder whether it would be possible to just use
a single, large cluster. First of all, a large cluster incurs a
heavy cost because the communication cost of the multi-party
secure sum procedure is ofO(G2) whereG is the cluster size.
Also, a single cluster would not sufficiently hide the identity
of the sick machine, who would be the cluster head. Finally,
we must adhere to our recursive trust model by inviting only
immediate friends to join the cluster. According to the MSN
IM user data (Section V-B), the median number of friends a
user has is 9 (some of which may not run the application under
troubleshooting or may not be willing to help); since we need
at least 10 helper samples for PeerPressure diagnosis [17], a
single cluster is simply not sufficient.

1) AdaptivePh for Better Privacy in case of Cluster En-
trance and Exit Collusions:

Our scheme achieves very good privacy when there is no
collusions between the cluster entrance and the exit. However,
when they do collude, they will obtain the aggregate contribu-
tion of the cluster. The smaller the cluster is, the less privacy
can we achieve with our cluster-based secure multi-party sum
algorithm. In particular, if all (or most) of the cluster members
decide to help, then an attacker can guess with high certainty
that a given cluster member runs the application. To this end,
we allow cluster participants to adaptively choose theirPh

according to the cluster size and the privacy level they desire.
In general, for smaller clusters or for better privacy guarantees,
we must use a lower value ofPh. Of course, smallerPh

will increase the number of nodes that must be queries for
each request. We give an an analysis of the trade-off between
desired privacy levels and efficiency using the MSN IM user
data in Section V.

2) Iterative Helper Selection:The adaptive method of
choosingPh will achieve probable innocence (i.e. when fewer
than half of the members become helpers; see Section V-C)
with high probability. However, to achieve this, small cluster
sizes need to have aPh near zero, thereby increasing the length
of the number of clusters that need to be traversed to collect
enough data, especially when the average cluster sizes are
small. As an alternative, we present an iterative scheme that
achieves the same privacy guarantees while collecting more
contributions from neighbors.

In this scheme, before any data aggregation is performed,
every cluster member, regardless of whether it runs the appli-
cation or not, randomly decides whether to participate or not
and setsVp to 0 or 1. It decides to participate probabilityPp,
which is close to1

2 . Then the cluster performs a multi-party
sum to add all theVp values count the number of participating
members. If this sum includes more than half the cluster
members, the cluster members discard their original decisions
and randomly pick a newVp, repeating this entire step. This
process is repeated until fewer than half the members have
decided to participate.

After this, the aggregation proceeds as before, except instead
of using Vh to decide whether to participate, only those
members who decided to participateand are running the
application will contribute to the aggregate. All other members
will contribute zero to the overall aggregate.

In the first step, all the members pick aVp, regardless
of whether they are running the application or not. This
way, the count of participating members does not reveal
any information. In the second step, fewer than half the
members participate, hence even if the cluster-wide aggregate
is intercepted, it is not known whether each member runs the
application with a probability greater than one-half.

The probabilityPp will depend on the size of the cluster,
just as withPh. However, in generalPp can be larger than
Ph, since too many members participating results in an extra
round of communication rather than a privacy compromise.
The choice ofPp involves a trade-off: with aPp too high,
the first step will involve a high number of retries, increasing
the communication cost. IfPp is too low, few members will
participate in each cluster, which means that more clusters will
be needed to collect enough samples. We explain our choice
of Pp in Section V.

3) Countering Sybil Attack with Threshold-Driven Helping:
A curious cluster entrance may launch a Sybil attack [6]
against its friends by including in the cluster a large number of
“ghost” friends who are just the cluster entrance itself. Then,
with high probability, the cluster exit will be elected to be
one of the ghost friends, resulting in successful collusion.
One countermeasure is that a cluster member only helps
when there are a threshold numberT common friends of
the cluster member and the cluster entrance in the cluster.
With this threshold, it takes at leastT colluders to expose
the cluster member’s contribution. However, this strategy also
increases the required hop count for troubleshooting, since
fewer friends will choose to be helpers. We will evaluate the
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tradeoff between the hop count overhead and the threshold
scheme in Section V-C.4, using the MSN IM topology.

Members who fall below the threshold still participate in the
secure sum but do not help, contributing to the privacy of other
cluster members. If the complete friendship topology were
known, such members could be identified and discarded from
consideration by the attackers; however, one of our security
assumptions is that individual friendship relationships are kept
private (Section III-B).

E. Aggregate Cardinality Information

In this section, we address the case when the set of possible
values for suspect entries is unknown. In this case, we cannot
randomly initialize the value distribution (Section IV-A). We
are also unable to perform the multi-party sum to aggregate
the value distribution within a cluster, as that requires a fixed-
length vector with one entry for each possible value. Instead,
our scheme is to have the sick machine choose a hash function
h to map values of each suspect entry into a small range
0 . . . C − 1. The FTN nodes will then maintain the number
of entry values that hash to each of theC values in the
troubleshooting request. This then requires us to have a second
round query to find out the most popular values of the top
ranking root cause candidates yielded from the first round
PeerPressure diagnosis, for the purpose of misconfiguration
corrections.

The aggregate vector will contain valuesCounte(i) for each
entrye and each valuei in the range0 . . . C−1. When a helper
machine is updating the aggregate, it will compute the hash of
its own value for entrye, Ve, and incrementCounte(h(Ve)).
Once the aggregate is collected, the sick machine can estimate
the cardinality of each entrye of the values by counting the
number of non-zeroCounte(i)’s.

1) Choose An Appropriate Hash Range:The range of the
hash function directly affects the size of the troubleshooting
request, so we want to use a small hash function to reduce
communication overhead. However, smaller hash functions
increase the chance of hash collisions and cause the cardinality

to be undercounted. For example, if the hash function has
a range ofC values, the estimated cardinality will never be
higher thanC.

Fortunately, most entries have a small cardinality and hence
a lower chance of collision. Entries with large cardinalities are
not likely to be identified root cause candidates by PeerPres-
sure [17]: As the cardinality increases, the sick probability will
decrease.

According to our study [17], 97% of Windows registry
entries have no more than 3 values, and in 18 out of 20
real-world troubleshooting cases, the root cause entry has a
cardinality of no more than 3. Therefore, we chooseC = 16,
because under-counting the cardinalities larger than 16 does
not have much impact on the PeerPressure ranking of the root
cause candidates.

However, even for entries with small cardinalities, there
is still a chance of hash collisions. Any two values have a
probability of collision of 1

16 for C = 16, and hence many
entries with cardinalities of 2 and 3 will be undercounted.
We address this problem by using several hash functions,
h1, . . . , hk, and compute the histogram for each one. To
estimate the cardinality, the sick machine can count the number
of non-zero entries in the histogram for each hash function and
take the largest count. In this case, the cardinality will only
be undercounted if there is a collision in allk functions. For
an entry with 2 values, the chances of this are1

16k , so by
increasingk we can make this probability arbitrarily small.

Our approach works well to measure small cardinalities
accurately, while undercounting large ones. Note that using
several smaller histograms is more efficient than a single
histogram: a histogram withkC values will have the same
communication complexity ask histograms withC values,
but the odds of a collision for a hash function with rangekC
is 1

kC rather than 1
Ck .

Based on our previous PeerPressure evaluation [17], we
choosek = 6: Our data showed that the median number of
suspect entries is 1171, with 87% of them having a single
value, with 7% of them having 2 values, 3% having 3 values,



and 3% more than 3. For a 2-valued entry, the odds of a
collision are 1

166 . For a 3-valued entry, the odds of at least one

collision are
(
1− 15·14

162

)6
. For a 4-valued entry, the odds are

(1− 15·14·13
163 )6. Collisions in entries with more values are even

more likely; however, we are only interested in the case where
there are enough collisions to produce only 3 or fewer values
in each hash function; otherwise, the collision is irrelevant as
the undercounted cardinality is unlikely to cause PeerPressure
to identify the entry as a root cause. The probability of such a
collision is lower than the probability of a collision among 4
values, so in the following computation we consider all entries
to have no more than 4 values.

The chances of a collision occuring inany of the 1171
entries can be calculated as:

1− (
1− 1

166

)0.07·1171 ·
(
1− (

1− 15·14
162

)6
)0.03·1171

·
(
1− (

1− 15·14·13
163

)6
)0.03·1171

≈ 5%.

Therefore, in about 5% of all troubleshooting requests,
there will be some entry with an undercounted cardinality of
3 or less, which may be identified as a root cause. As we
will show next, such collisions can be discovered during the
second round query for the most popular values. If collisions
are found, then the sick machine can retry with a different
set of hash functions or largerk. The new request should
include only the entries where collisions occurred and thus
the communication overhead will be much smaller.

For any suspect entrye, hash collisions in this entry may
cause its ranking to improve, while hash collisions in lower-
ranked entries may cause them to overtakee and lower its
ranking. Nevertheless, it is hard for entries with significantly
larger cardinality to catch up on ranking. Therefore, in the
second round, we query the most popular values of a few more
top-ranking entries in order to account for possible collisions.

2) Diagnosis on the Sick Machine and Second Round
Query: Using the aggregated histogram, the sick machine
estimates cardinalities for all suspect entries, and then ranks
suspected entries according to the PeerPressure algorithm.
However, the histogram does not reveal what the correct value
for the entry should be; in order to discover it, the sick machine
needs to perform another round of the protocol.

The sick machine can identify the hash of the most popular
valuehj(v) = i, wherehj is the hash function from which we
obtained the cardinality. It can then ask its friends to identify
which value has that hash. However, only someone who runs
the same application will be able to answer this query, and
we do not want to reveal who that might be. Therefore, we
once again make use of secure multiparty sum to find the most
popular value without compromising privacy.

In the second round of the protocol, the sick machine makes
another request, this time containing a list of the top-ranking,
root-cause candidate entries, as well as the hash values of the
most popular value; i.e. triples (e, i, j). The second round
proceeds similarly to the first one to compute an aggregate
over all the participants, except that it uses the same clusters

and exit nodes as the first round, rather than picking new ones.
The aggregate value computed issume =

∑
Ve|hj(Ve)=i Ve.

To do this, each participant who helped in the first round, and
whose value fore matches the hash value in the second request
(hj(Ve) = i) will contributeVe to the sum. All other members
will contribute 0.

SinceVe may be a string, we have to convert it to an integer
value. We do this by considering the bit representation of the
string as an integer and adding it to the sum. Since all the
shares in the multiparty sum must be of the same size, we
take the sum over 8192-bit integers. This allows us to support
strings that are up to 1024 bytes in length. The shares in this
round are larger than in the first one; however, the number of
entries involved is much smaller and so the communication
complexity is similar to the first round.

Once the sick machine receives the aggregate from all the
nodes, it can compute the most popular valueVe by dividing
sume by the histogram valuei (i.e., the number of samples
with valueVe) for hash functionj from the first round.3 The
result, interpreted as a string, will be the most popular value,
which can then be used to repair the sick machine.

If the division results in a non-integral value, or the resulting
string is not intelligible (e.g., contains non-ASCII characters),
this signals that a collision occurred and there are multiple
values such thathj(Ve) = i. In this case, the sick machine
will know that the cardinality ofe was undercounted. The
sick machine will need to repeat the first-round query with
a different set of hash functions to obtain a more accurate
cardinality estimate, and then use the second round to obtain
the most popular values.

V. PROTOCOLEVALUATION

A. Security Analysis

To evaluate the security of our design, we consider the
kind of information that is revealed to each participant in the
protocol. Note that secure communication channels at each
link render eavesdropping attacks ineffective, and hence we do
not need to consider attacks from nodes who do not participate.

A cluster member that is neither an entrance nor an exit
will only learn the troubleshooting query, which does not
identify the sick machine and thus does not contain privacy-
compromising information.

A cluster entrance will see the query and the aggregate of
the contributions so far. However, since this aggregate includes
a random initialization, it will not be able to find out the
contributions of past clusters or find out whether the previous
hop was the sick machine or simply a forwarder. It will also
receive the aggregate data from the cluster exit. This data will
include the contribution from the cluster as well as from any
further hops. Because of the random wait, the cluster entrance
will not be able to tell whether further hops were involved and
isolate the contributions from the cluster members.

3A more robust scheme would recompute the count of contributors toVe

in order to be more tolerant of cluster members that may have left between
the first and second round.



The cluster exit will receive the shares of the cluster
members’ contributions and will be able to compute their sum.
However, this sum will include the aggregate from the past
hops contributed by the cluster entrance, hence the cluster exit
will not be able to isolate the contributions from the cluster. It
will also receive the aggregate from the next cluster entrance.
However, this aggregate will include contributions from mem-
bers of the next cluster as well as potential subsequent clusters,
all of which are not known to the cluster exit.

We can see that message inspection attacks at any single
node do not reveal any privacy-sensitive information. Next,
we will consider gossip attacks when two members collude.
If a cluster entrance colludes with the cluster exit, together
they will be able to determine the contributions of the other
cluster members. They will still be unable to determine what
each individual member contributed: the secure multi-party
sum ensures thatall other cluster members must collude to
reveal the contributions of an individual member. However,
they will learn some facts, such as the number of cluster
members that decided to help. By reducing the probability to
help, this number will be a small fraction of the cluster size
and therefore not compromise the privacy of the participants.
Section V-C examines the corresponding trade-off between
privacy and protocol efficiency.

The fair random selection of the cluster exit mitigates the
chances of a collusion between the cluster entrance and exit.
If a cluster entrance hasC colluders in the cluster, the chance
of one of them being picked as the exit isC/G, whereG is
the cluster size. A Sybil attack can be used to increase these
chances; on the other hand, threshold participation (Section IV-
D.3) mitigates the consequences of a collusion. It is also
possible for a cluster entrance to cooperate with the entrance
of the next cluster and isolate the contributions of the cluster.
However, this type of collusion is less likely, since the next
entrance is picked by the cluster exit and never revealed to the
previous entrance.

The use of a historyless random walk makes polling attacks
less productive, as an attacker cannot reduce the likelihood of
a friend forwarding a troubleshooting request to other clusters.
Any response to a request is likely to include the aggregate
information from several clusters and not reveal privacy-
compromising details. As another defense against polling
attacks, we limit the rate at which a node becomes a helper
in queries (see Section VI).

B. Friends Network Characteristics

We obtained a snapshot of MSN IM operational data from
2003. It had 150,682,876 users. The number of friends of a
IM user represents the upper limit of our cluster size. Figure 3
depicts the distribution on the number of friends, showing a
median of 9, and an average of 19. We excluded those users
with just one friend since these nodes will not be included on
the FTN forwarding path.

The number of common friends impacts the FTN routing
because FTN needs to avoid loops or double-counting (Sec-
tion IV). we found that two neighboring nodes have 14.15%
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Fig. 3. Distribution of the Number of Friends

of common friends in average; two nodes that are two hops
away from each other have 2%; three hops, 0.3%; and 4 hops,
less than 0.1%. Further, we randomly picked 100 IM users
with more than 4 friends (since an FTN node will not form
a cluster unless it has more than 4 friends (Section IV-D.1).
We find that on average, 28.92% of a node’s friends do not
share any common friends with the node; 21.52% have one
common friend with the node; 10.61% have 2; 9.85% have 3;
the remaining 29.1% have 4 or more.

Another friends network characteristics that is of interest
to the FTN is how likely is a troubleshooting request to be
routed to a “dead end”, a node on the forwarding path with no
other friends to proxy the request on. In such cases, parameter
propagation terminates without gathering enough samples. The
probability of routing to such dead ends isPToDeadEnd =∑

i P (G = i) · PDeadEnd(i), whereP (G = i) denotes the
percentage of clusters of sizei, and PDeadEnd(i) represents
the average percentage of dead end participants in a cluster
of size i. According to our computation from our MSN IM
data,PToDeadEnd = 0.0013. So, the average number of nodes
that need to be traversed before reaching such a dead end is
1/0.0013 = 770, which far exceeds the number of nodes that
need to be traversed with the FTN protocol (Section V-C).

C. Tradeoff Analysis

1) Metric: We use the metric ofprobable innocencethat
was introduced by Reiter and Rubin [14] for measuring the
uncertainty of a cluster member being a helper: A cluster
member is considered to be probably innocent if, from the
colluders’ point of view, the member appears no more likely to
be a helper than not to be one. This requires that no more than
half of the cluster participants should help with troubleshoot-
ing, or Ph < 0.5. Therefore, we define theinnocence level,
I = −log10PI , wherePI is the probability that over half of
the cluster participants help with troubleshooting. We exclude
the cluster entrance and exit from the participants since we are
assuming that they are colluding in order to find out the cluster
aggregate.PI =

∑G−2
i=[(G−2)/2]+1

(
G−2

i

)
P i

h(1 − Ph)G−2−i

whereG is the cluster size. Here, we assume the worst case
scenario that every cluster member owns the application under
troubleshooting — if not,PI will be smaller. We also assume
that every cluster member chooses the samePh. Therefore,
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Innocence Levels.

the higher the innocence levelI is, the better the privacy is,
and the smaller thePI is. Figure 4 showsPh’s that a member
should take with various cluster sizes for achieving different
innocence levels. In general,Ph takes a smaller value for a
higher innocence level or a smaller cluster size.

We use the average number of clusters involved in trou-
bleshooting,E(Nc), as the metric for evaluating protocol
efficiency, since the troubleshooting response timeE(Nc)
is dictated by the number of clusters a troubleshooting re-
quest traverses. (The expected number of nodes involved is
approximately19 · E(Nc) since a node has 19 friends on
average.) We have:E(Nc) = N

Pown·
∑

i P (G=i)·i·Ph,i
where

Pown is the percent of users that own the application under
troubleshooting,i denotes the cluster size,P (G = i) is the
percent of clusters with sizei, andPh,i is the probability to
help according to cluster sizei for a given innocence level.
With the common friends’ statistics from our MSN IM friends
network topology (Section V-B), we estimateP (G = i) · i
as P (F = i) · i · (1 − Poverlap), whereP (F = i) denotes
the percentage of users withi friends, andPoverlap is the
percentage of the cluster entrance’s friends that have already
seen the request (and hence will not join its cluster). According
to overlapping friends distribution, neighboring nodes have
14.15% of common friends in average, and since neighboring
cluster entrances are two hops away, one can estimate the
upper bound ofPoverlap as

∑∞
l=2(0.1415)l = 2.33%, where

(0.1415)l approximates the percentage of common friends
between the current cluster entrance and a previous cluster
entrance that isl hops away.

2) Innocence Level Vs. Number of Clusters:Now, we use
the MSN IM friendship topology to evaluate the trade-off
between privacy (I) and average number of clusters (E(Nc))
involved in a troubleshooting event. We assume thatPown = 1
(e.g., the application under troubleshooting is very popular).
We impose an upper bound on the cluster size to 36 for limit-
ing the intra-cluster communication overhead. This reduces the
average number of nodes in a cluster to 14 based on our MSN
IM data. Table I shows the expected number of clusters and
nodes needed to obtain 10 samples (with which PeerPressure is
already effective [17]) using the static IM friendship topology
(Figure 3) for achieving nine different innocence levels. We

also simulated our FTN routing protocol on the static MSN IM
topology, configured with various innocence levels. For each
innocence level, we randomly picked 100 starting nodes as the
requestor, and setPf = 1− 1/N = 0.9 for N = 10 samples.
We list in Table I the number of clusters and nodes involved
based on our simulation. One can see that in general, the num-
ber of clusters involved in our simulation is slightly smaller
than our calculations. This is because we used an upper-bound
estimate ofPoverlap = 2.33% for our calculations, while in
our simulation,Poverlap is different for each cluster, and is
in general less than 2.33%. In reality, the number of clusters
required to collect 10 samples might be larger, since not all
friends are available or own the corresponding application. It
is clear from the table that the higher the privacy requirement
is, the longer the routing path it takes.

3) Iterative helper selection.:Using the iterative helper
selection method described in Section IV-D.2, we can guar-
antee probable innocence for all the cluster participants in the
face of cluster entrance and exit collusion, while achieving
a higher participation rate. For example, we can set the
probability to participatePp based on the cluster size to the
value corresponding toI = 1 in Figure 4. The average number
of helpers in a cluster will match the one whenPh is chosen
similarly, and hence we expect the search to terminate after
only 2.02 clusters. However, we can compare the privacy level
to that with innocence level 9, as in both cases the probability
that more than half of the cluster members will become helpers
is negligible. (Of course, at innocence level 9, the expected
number of helpers will be significantly less than half.)

The helper selection causes involves at least one extra
round communication in each cluster, more if retries are
necessary, which will happen with probability 10% in our
example choice ofPp. Therefore, the latency of a request
using the iterative method going throughn clusters will be
higher than if the adaptivePh method is used by a factor
of about 3.1/2 (as there are two rounds of communication
in the adaptivePh method). However, this is still lower than
the latency of a request when innocence level 3 or higher
is desired. Furthermore, since fewer machines are involved
in the aggregate computation, there’s less of a chance of
encountering a malicious or compromised node. Therefore,
the iterative helper selection method is useful when a high
level of privacy is desired, and when the median cluster sizes
are small.

4) Threshold-Driven Helping Vs. Number of Clusters:
Now, we evaluate the path length overhead due to the use
of threshold-driven helping strategy (Section IV-D.3). Based
on our common friends data from the MSN IM network
(Section V-B), a threshold ofT = 1 reduces the number of
helpers from the cluster by 28.92%,T = 2 by 50.44%, and
T = 3 by 61.05%. Figure 5 shows the trend of average number
of clusters needed with these threshold values to obtain 10
samples for nine different innocence levels.



Innocence Level 1 2 3 4 5 6 7 8 9
Expected # Clusters 2.02 2.82 3.67 4.62 5.68 6.91 8.3 9.84 11.65

Expected # Nodes Involved 28 39.4 51.4 64.69 79.55 96.8 116.2 137.82 163.11
Avg # Clusters in Simulation 2 3.1 3.59 4.55 5.78 6.75 8.18 9.49 11.27

Avg # Nodes Involved in Simulation 27.6 44.5 47.47 69.2 85.9 92.5 120.35 140.4 162.3

TABLE I

AVERAGE NUMBER OF CLUSTERS ANDNODES INVOLVED TO OBTAIN 10 SAMPLES
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Fig. 5. The average number of clusters required to obtain 10 samples for
different threshold helping strategies.
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VI. PROTOTYPEIMPLEMENTATION AND PERFORMANCE

We have prototyped an FTN system in C#. In our im-
plementation, aside fromPh, we also set ahelp budget, in
the unit of “requests per friend per day”, for FTN nodes to
control the rate of configuration state exposure. In addition, a
disk budget is configured by an FTN user to set aside for
maintaining FTN protocol state such as previous and next
hops for respectiveReqID’s that have been traversing the
node. The disk budget is fair-shared among the node’s active
troubleshooting friends. Figure 6 shows the local processing
times for the 20 troubleshooting cases under study [17]. The
processing time grows with the number of suspect entries.

In terms of bandwidth overhead, for the troubleshooting
cases [17] we evaluated with, there is a median of 1171 suspect
entries. When cardinality is unknown, the size of the value
distribution field depends on the range of the small-valued
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Fig. 7. The estimated average response time for enterprise users (5 Mbps
available bandwidth) and home users (100 Kbps available bandwidth)

hash function. If we use six 16-valued hash function, and
we reserve 1 byte for the count, the troubleshooting request
message is about 100 KB. If we choose the 20 top-ranking
entries as the root-cause candidates, and reserve 1024 bytes
to aggregate the sum of the most popular value, the second
round query message is approximately 20 KB. (Of course, the
requests can be compressed to save network bandwidth.)

During the process of cluster aggregation, each participant
has to transmitM ∗ G KB information, whereM KB is the
troubleshooting message size. Each node on the return path
only needs to transmitM KB information. The number of
clusters involved on the forwarding path isE(Nc) on average.
The return path has2E(Nc) nodes, since the entrance and exit
nodes of each cluster on the forwarding path are both involved
to propagate the reply back along the return path. Figure 7
depicts the estimated average response time for an enterprise
user with 5 Mbps available bandwidth for troubleshooting, and
a broadband home user with bandwidth of 100 Kbps, when
cardinality is unknown, to achieve nine different innocence
levels.

Also, we can estimate the timeout that a node on the
forwarding path should set. The average hop length to obtain
10 samples under innocence level 6 isAvgHopLen = 1/(1−
P̄f ) = 6.9, where P̄f = 0.855 is the average probability
of forwarding the request from one cluster to another. The
variance of the hop length isvar = (P̄f )/((1− P̄f )2). Hence,
we haveAvgHopLen + 3 · √var = 26. The cumulative
probability of all hop lengths≥ 26 is

∑∞
L=45 P̄f

(L−1)(1 −
P̄f ) = P̄f

44(1− P̄f )
∑∞

L=0 P̄f
L = P̄f

44 = 0.001. Therefore,
we choose 26 to estimate the upper limit of the hop length,
and set the timeout to be 1.6 minutes for an enterprise user
with 5 Mbps bandwidth, and 67 minutes for a home user with
100 Kbps bandwidth.



VII. R ELATED WORK

There is much related work in the area of anonymization.
The random walk approach is also those used in FreeNet [5]
and Crowds [14]. FreeNet is a distributed anonymous infor-
mation storage and retrieval system. Crowds provides anony-
mous web transactions. Other anonymization system are based
on Chaum’smixes [4], which serve as proxies to provide
sender-receiver unlinkability through traffic mixing. Onion
routing [10] extends the mixes with layers of onion-style pre-
encryptions. Tarzan [7] implements the mix idea using a peer-
to-peer overlay and provides sender anonymity and robustness
to the mix entry point.

All of the above anonymization techniques address point-to-
point communications. However, our protocol in FTN involves
one-to-many communication, in the form of broadcasting a
troubleshooting request to peers. This broadcast should be
limited according to the friend relationships, which is more
naturally implemented using a peer-to-peer overlay. Further, as
discussed in Section III, our recursive trust model requires that
the configuration data be transmitted between friends. Fully
anonymous configuration data arriving over a mix network
could not be trusted to be authentic, as only friends can
be trusted not to contribue false and potentially harmful
information about their configurations.

Canny [3] proposed a collaborative filtering algorithm to
allow a community of users to compute a public aggregate
of their data without exposing individual users’ data. In his
scheme, homomorphic encryption[2] is used to anonymously
aggregate encrypted user data and the decryption key is not
held by any single person but instead secret-shared among
all the clients. The FTN targets a highly dynamic friends
community where users join and leave all the time. The key
share generation process would incur a high cost since new
shares would have to be generated every time a user joins.
Furthermore, the collaborative filtering algorithm is designed
for a known, fixed set of items, while the set of values for
configuration entries relevant to troubleshooting requests is not
known ahead of time.

Similarly, the well known secure multiparty sum protocol
enables aggregation without revealing individual private con-
tributions; however, this protocol only supports aggregations
of fixed-length vectors. We use the secure sum protocol as
a building block, but we extend it to support counting the
number of distinct values in a set, as well revealing the
most popular value, while keeping the individual contributions
private. We also make sure to send the results of the aggregate
to a single node, different than the cluster entrance, such that
collusion between at least two nodes is required to find out
the cluster-wide sum.

Another technique for privacy-preserving data aggregation
is to introduce random perturbations [1] at each input. The
idea is that these perturbations would not significantly affect
the aggregate, while hiding individual contributions. However,
this is only true when a large number of samples are collected;
with only 10 samples needed for PeerPressure, the random

noise would significantly impact ranking accuracy. Increasing
the number of samples for effective noise filtering would un-
acceptably increase the overhead of troubleshooting requests.

Our problem of privacy-preserving parameter aggregation
shares much similarity to the problem of secure and privacy-
preserving voting [8], [2] with three distinctions. First, voting
requires voters to be authenticated by a centralized authority,
such as the government. Second, our protocol has an additional
requirement of participation privacy; otherwise, the privacy of
the application ownership is compromised. Lastly, most voting
scenarios involve a fixed, limited number of voting chances,
while our troubleshooting problem does not.

The authors of SIA[13] presented a set of techniques for
secure information aggregation in sensor networks with the
presence of malicious sensors and aggregators. The integrity
of information aggregation is achieved essentially through
authentication which is identity-revealing. In FTN, we cannot
do the same because of the privacy concerns.

VIII. C ONCLUSIONS

In this paper, we have presented the design, implementation,
and the evaluation of theFriends Troubleshooting Network, a
peer-to-peer overlay network that aggregates privacy-sensitive
configuration data from peers to carry out PeerPressure-based
misconfiguration root-cause diagnosis. The links between FTN
nodes reflect the friendship of their owners. The FTN man-
ifests recursive trustrather than transitive trust. In FTN, we
use ahistorylessand futurelessrandom walk for integrated
search and cluster-based parameter aggregation to achieve pri-
vacy. We further introduce a cluster-based secure aggregation
protocol to find the cardinality and mode of a collection of
values while preserving the privacy of individual contributions.
Many of our design decisions are guided by a real-world
friends network topology obtained from the MSN IM network.
FTN poses interesting tradeoffs between privacy and protocol
efficiency which we have analyzed in detail with the real-
world friends network data. The performance of our current
prototype allows enterprise users to diagnose misconfigura-
tions in a minute with a high privacy guarantee. We believe
our techniques can be applied to other application scenarios
that require privacy-preserving information aggregation.
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