
Proxy Cryptography Revisited

Anca Ivan, Yevgeniy Dodis
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012

{ivan,dodis}@cs.nyu.edu

Abstract

In this work we revisit and formally study the notion
of proxy cryptography. Intuitively, various proxy func-
tions allow two cooperating parties F (the “FBI”) and P
(the “proxy”) to duplicate the functionality available to the
third party U (the “user”), without being able to perform
this functionality on their own (without cooperation). The
concept is closely related to the notion of threshold cryp-
tography, except we deal with only two parties P and F ,
and place very strict restrictions on the way the operations
are performed (which is done for the sake of efficiency, us-
ability and scalability). For example, for decryption (resp.
signature) P (F ) sends a single message to F (P ), after
which the latter can decrypt (sign) the message. Our for-
mal modeling of proxy cryptography significantly general-
izes, simplifies and simultaneously clarifies the model of
“atomic proxy” suggested by Blaze and Strauss [4]. In
particular, we define bidirectional and unidirectional vari-
ants of our model1, and show extremely simple generic so-
lutions for proxy signature and encryption in these models.
We also give more efficient solutions for several specific
schemes. We conclude that proxy cryptography is a rela-
tively simple concept to satisfy when looked from the cor-
rect and formal standpoint.

1 Introduction

The Blaze and Strauss [4] paper introduced the notion of
(atomic) proxy cryptography. The authors define “atomic
proxy functions” as functions that transform ciphertext cor-
responding to one key into ciphertext for another key with-
out revealing any information about the secret decryption
keys or the clear text. In the case of signatures, the proxy
functions convert a valid signature for one key into a valid

1We will also mention yet another off-line variant implicitly studied
by [9, 10].

signature for another key without disclosing the secret sig-
nature keys. We extend and generalize this notion as fol-
lows. Intuitively, proxy functions allow one user to cor-
rectly decrypt ciphertexts or generate valid signatures on
behalf of another user without holding any information
about the secret keys of the latter user.

We consider that the proxy functions can be divided into
two categories: bidirectional and unidirectional . The uni-
directional proxy functions allow one user (U1) to decrypt
ciphertexts or generate signatures corresponding to the se-
cret key of another user (U2) even if the first user does
not hold that secret key. However, the owner of the secret
key (U2) needs a completely different unidirectional func-
tion if he desires to decrypt ciphertexts or generate signa-
tures on behalf of the first user (U1). Unlike the unidirec-
tional proxy functions, the bidirectional ones can be used
by both users to decrypt ciphertexts or generate signatures,
by transforming the ciphertext/signature for one key into
ciphertext/signature for another key. In other words, both
users U1 and U2 can use the same bidirectional proxy func-
tion to transform ciphertexts from one key to another key.

The original paper [4] informally defines the notion of
bidirectional proxy functions and describes two examples
of proxy functions: one for encryption, based on El Gamal
encryption, and one for signatures. However, both exam-
ples are proved to have low security guarantees. Our paper
formally defines both the bidirectional and unidirectional
proxy functions for encryption and signature, and their se-
curity guarantees (e.g. indistinguishability/unforgeability
under various attacks). In addition, this paper presents
generic schemes for bidirectional and unidirectional proxy
functions for both public-key and private-key encryption
and signature schemes. All generic schemes can be used
to transform any standard cryptographic primitive into a
proxy function, with a factor of two slowdown. This
slowdown is eliminated by the proxy functions specifi-



cally designed for a few cryptographic primitives (e.g. El
Gamal [12], RSA [25], RSA Hash-and-Sign [2, 1]).

The notion of proxy cryptography can be very useful
in cases when one user needs to perform sensitive oper-
ations (e.g. ciphertext decryption, signature generation)
without holding the necessary secret keys. For example,
the president of a company can delegate his signature rights
by giving a proxy key to his assistent. The proxy key
transforms a signature created by the vice-president into
the president’s signature, thus allowing the assistent to co-
sign only if the document was first signed by the vice-
president. Another example is that of a key escrow sys-
tem [13, 23, 18, 17, 14, 27], where a trusted party can
mediate the conflicts between users and the law enforce-
ment agencies. The problem is to allow the law enforce-
ment agency to read messages encrypted for a set of users,
for a limited period of time, without knowing the users’
secrets. The solution is to locate a key escrow agent be-
tween the users and the law enforcement agency, such that
it controls which messages are read by the law enforce-
ment agencies. In classic schemes, the users have to give
their secret keys to the key escrow agent. Whenever the law
enforcement agency wants to reads a message belonging to
a user, the key escrow agent decrypts the message and re-
encrypts it with the key of the law enforcement agency. In
order to prevent the key escrow agent from knowing the se-
cret keys and cleartext messages, we propose that the key
escrow agent holds proxy keys that uses proxy functions
to transform ciphertext corresponding to user keys into ci-
phertext corresponding to the law enforcement agency.

The rest of the paper is structured as follows. The next
chapter presents other projects that studied the notion of
proxy functions. Chapter 3 uses the key escrow scenario to
describe the computational model used to define the proxy
functions. The next four chapters present the actual unidi-
rectional and bidirectional functions. The paper ends with
some final thoughts about learned lessons and ideas for the
future.

2 Related Work

The idea of delegating decryption/signature rights was
previously researched and presented in several papers [16,
15, 3, 22, 21, 4]. The goal of the [16, 15] paper is similar to
ours. In the context of mobile computing, agents should be
able to carry signature functions such that untrusted entities
sign on behalf of a user without knowing his key. However,
the result of signing a message m is a brand new signa-
ture that combines the identities of the original user and

the actual signer. Our schemes differ from theirs in that
that the new signature is identical to the one that would
have been produced by the original delegator. In fact, this
indistinguishability is one of the most important feature of
our schemes. In [3], the RSA-based unidirectional signa-
ture scheme splits the secret key between a client and a
server such that neither is able to create a valid key without
working together. The security proofs rely on the fact that
the server is always trusted, thus obtaining lower levels of
security then the ones we propose here. MacKenzie and
Reiter [22, 21, 20] consider a similar question of two-party
signature generation to the one we consider here. However,
their solutions, especially [22] are highly complex and in-
teractive as compared to the notion of unidirectional proxy
signatures we propose here (they also have a slightly more
sophisticated scenario, where the user has a personal pass-
word in addition to the split secret key).

As mentioned, the most closely related work is that of
Blaze and Strauss [4] who introduce the notions of bidi-
rectional decryption and bidirectional signature. However,
lack of proper definitions makes them consider only the
question of changing the existing encryption or signature
schemes (like ElGamal encryption or Fiat-Shamir signa-
ture [11]) into a corresponding proxy primitive, instead of
looking at the abstract problem itself. As the result, they
provide very limited schemes satisfying very weak (semi-
formally stated) security properties. We contribute to this
work by clarifying and precisely defining the problems at
hand (i.e., presenting formal definitions for all bidirectional
and unidirectional proxy functions and their security guar-
antees), and describe generic as well as specific schemes
for both encryption and signature proxy functions.

We briefly consider extensions to the multi-user set-
ting, and use recent results from identity based cryptogra-
phy [26, 5] to improve the efficiency in this setting. In addi-
tion, we adapt the key-insulated model presented in [9, 10]
to create offline bidirectional schemes that do not require
the proxy agent P to continuously assist the law enforce-
ment agency F.

The unidirectional and bidirectional primitives can be
considered as special cases of general threshold cryptog-
raphy [6, 8]. However, most threshold systems assume a
honest majority and work only for n ≥ 3. Thus, many
threshold techniques cannot be applied to a two-party set-
ting. Recently, people have considered two-party primi-
tives in a multi-round setting: GQ, Schnorr [24] and DSA
signatures [22], while [19] talks about encryption.



3 Model

For a better understanding and consistency throughout
the rest of the paper, we will explain and use the key escrow
scenario as a model for our definitions.

The key escrow scenario has four classes of actors: (i)
the general users U who delegate their decryption rights,
(ii) the law enforcement agency F that tries to decrypt ci-
phertexts belonging to the general users, (iii) the proxy
agent P responsible for helping the latter user to decrypt
ciphertexts, and (iv) the legal court that is trusted by ev-
eryone. All users register with the key escrow system by
providing some kind of secret information to the proxy P.
After registration, they are free to send encrypted messages
to each other. Whenever the law enforcement agency wants
to eavesdrop on the communication between two users, it
asks the legal court for a warrant. The legal court creates
a time-bounded warrant and gives it to the proxy agent.
Then, the proxy agent helps the law enforcement agency
to decrypt the ciphertexts belonging to the specified users
and period of time. In our model, we will disregard the last
actor, because the legal court is not directly involved in the
cryptographic part of the protocol.

The next paragraphs informally define the bidirectional
and unidirectional proxy functions for encryption and sig-
nature generation and explain how they can be easily used
to construct key escrow systems.

Unidirectional encryption proxy function. A unidirec-
tional encryption proxy function is defined as a tuple E =
(UniGen, UniEnc, UniDec, PDec, FDec). The key gener-
ation algorithm UniGen generates keys for every general
user U. Then, for each user U, it generates two more keys
for the proxy P and the user F. The general users encrypt
cleartext messages using the UniEnc algorithm and decrypt
them using the UniDec algorithm. Whenever the user F

wants to decrypt a ciphertext e, it asks the proxy P for help.
The proxy P uses PDec to transform the ciphertext e into a
different ciphertext e′ and sends it to the user F. The user F

applies the FDec function to the received ciphertext e′ and
gets the original cleartext m.

Unidirectional signature proxy function. An unidirec-
tional signature proxy function is defined as a tuple S =
(UniGen, UniSig, UniVer, PSig, FSig). As in the unidirec-
tional encryption case, the key generation algorithm gen-
erates keys for every general user U. Then, for each user
U, it generates two more keys for the proxy P and the user
F. The general users sign messages using the UniSig algo-
rithm and verify them using the UniVer algorithm. When-

ever the user F wants to sign a message m on behalf of a
certain user U, it asks the proxy P for help. First, the user F

uses FSig to generate a partial signature of the message m.
The proxy P transforms the partial signature into a valid
signature by applying the PSig on the partial signature.

Bidirectional encryption proxy function. A bidirec-
tional encryption function is defined as a tuple E = (BiGen,
BiEnc, BiDec, Π). The key generation algorithm BiGen

creates keys for all users in the system, including the user
F. For each pair of keys (kU, kF), the BiGen algorithm gen-
erates a bidirectional key π. The general users U encrypt
messages using BiEnc and decrypt them using BiDec. In
order to decrypt a ciphertext belonging to a general user U,
the user F asks the proxy P for help. The proxy P uses
the bidirectional function Π and the bidirectional key π to
transform the ciphertext for user U into ciphertext for user
F. After that, the user F can decrypt the new ciphertext with
its own key and obtain the cleartext message.

Bidirectional signature proxy function. A bidirectional
signature function is defined as a tuple S = (BiGen, BiSig,
BiVer, Π). As in the bidirectional encryption case, the key
generation algorithm BiGen creates keys for all users in
the system, including the user F. For each pair of keys
(kU, kF), the BiGen algorithm generates a bidirectional key
π. The general users U sign messages using BiSig and veri-
fies the signatures using BiVer. Whenever the user F wants
to generate a valid signature for a message m on behalf of
a user U, it first generates a signature with its own key and
then asks the proxy P for help. The proxy P uses the bidi-
rectional function Π and the bidirectional key π to trans-
form the signature generated by the user F into a signature
generated with the user’s key.

Table 1 reflects the way the unidirectional and the bidi-
rectional techniques work for both encryption and signa-
tures.

Even though both bidirectional and unidirectional proxy
functions achieve the same goal, there are a few notable
differences between them. First, the unidirectional proxy
functions can be used only one way, from one user to an-
other user. The reverse sense requires a different unidirec-
tional function. The bidirectional proxy functions can be
used in both directions. Second, the bidirectional schemes
assume that the law enforcement agency (user F) has its
own key. The unidirectional schemes do not make this as-
sumption but pay an increased storage requirement price
because the user F needs to store one key for each user in
the system. In both cases, the proxy P has the increased
space problem because it needs to save one key for every



Bidirectional Unidirectional

Encryption

U(skU) P(  )

e=EncU(m) e'=EncF(m)e'=    (e)

F(skF)

U(DKU)

P(DKP)
e=EncU(m) FDec(PDec(e))=mPDec(e)

F(DKF)

Signature

U(skU)P(  )

s=SigU(m)s'=SigF(m) s'=    (s)

F(skF)

U(sk)

F(skF)m s=Psig(FSig(m))FSig(m)
P(skP)

Table 1. Unidirectional vs. Bidirectional techniques

user. This problem can be very important in systems where
the number of general users is extremely large. A solu-
tion is offered by the identity-based primitives [5], where
the proxy needs to save only a share of the master secret
key. Third, in both cases, revocation is easily achieved by
having the third party P refuse to help.

The unidirectional and bidirectional schemes described
in this paper require the proxy agent P to continuously as-
sist the law enforcement agency F when decrypting cipher-
text or generating valid signatures on behalf of a user. The
key-insulated model presented in [9, 10] can be easily ex-
tended such that the proxy agent P helps the law enforce-
ment agency only once, at the beginning of its warrant. The
key-insulated model has two actors, the proxy agent P and
the user U. The user U updates its secret key using the
index of the current time period and some information pro-
vided by a third party (P). Our model adds another player,
the law enforcement agency F, that receives from the proxy
P the user’s key for an unused period of time T0. Similar
to the original key-insulated model, the proxy P helps the
user to update its key. In addition, the proxy P helps the
law enforcement agency F to compute the user’s key for
time period Ti if presented with an warrant for the time Ti.
All primitives presented in [9, 10] can be easily extended
for our offline model.

With this model in mind, we introduce in the next sec-
tions the unidirectional and bidirectional encryption and
signature schemes. For each scheme, we give formal def-
initions, present one generic scheme and several specific
schemes, and prove their security guarantees. For simplic-
ity, all general definitions will be given in the context of
public-key cryptography.

4 Unidirectional Encryption Primitives

Definition 1 A unidirectional encryption scheme consists
of five algorithms, E = (UniGen, UniEnc, UniDec, PDec,
FDec).

The generation algorithm UniGen(1k) outputs a tuple of
keys (EK,DK) for each general user U. EK is the encryption
key and DK is the decryption key. For each secret key DK,
the key generation algorithm creates two secret keys DKP

and DKF for the proxy P, and respectively the user F. For
simplicity, the definitions given in table 2 show that the key
generation algorithm outputs only user keys, even though
it also builts the keys for the proxy P and the user F.

UniEncEK is the encryption algorithm and encrypts a
message m from the corresponding message space M (e.g.,
{0, 1}k) as e = UniEncEK(m). The decryption algo-
rithm UniDecDK is a deterministic decryption algorithm
that takes the ciphertext e, the secret key DK, and out-
puts m ∈ M (or invalid in case e was an improper ci-
phertext). The correctness property of encryption states
that UniDec(UniEnc(m)) = m, for any message m and
pair of keys (EK, DK). The function PDec uses the se-
cret key of the proxy P, DKP, to transform a ciphertext
e into ciphertext e′. The FDec function takes this cipher-
text e′ and the secret key DKF of the user F and produces
the original message m ∈ M or invalid if the ciphertext
e′ was not correct. The correctness property specifies that
FDec(PDec(UniEnc(m))) = m, for any m and (EK, DK).

Informally, a unidirectional encryption scheme is con-
sidered to be secure if none of the participating entities
(user F, proxy P, user U) can break it even if they hold
extra secrets. For simplicity, the definitions presented in ta-
ble 2 will be specific to the CCA2 security for public key
encryption 2. In our definitions, the proxy agent P gets only

2CPA and ONE-WAY security definitions are given when necessary.



Definition 2 Let E = (UniGen, UniEnc, UniDec, PDec, FDec) be an unidirectional encryption scheme.

1. E is CCA2 secure against the proxy P if | SuccP,E(1k)− 1/2 | is negligible, SuccP,E is defined as below, PDec

is a deterministic algorithm, and the proxy P never submits PDec(UniEncEK(mb)) to the FDec oracle.

SuccP,E
def
= Pr

[

b = b̃
∣

∣

∣

(EK, DK)← UniGen(1k), (m0, m1)← PFDec(EK, DKP),

b← {0, 1}, b̃← PFDec(EK, DKP, UniEncEK(mb))

]

2. E is CCA2 secure against the user F if | SuccF,E(1k)− 1/2 | is negligible, SuccF,E is defined as below, and the
user F cannot submit the challenge UniEncEK(mb) to the PDec oracle.

SuccF,E
def
= Pr

[

b = b̃
∣

∣

∣

(EK, DK)← UniGen(1k), (m0, m1)← FPDec(EK, DKF),

b← {0, 1}, b̃← FPDec(EK, DKF, UniEncEK(mb))

]

3. E is CCA2 secure against any user U if | SuccU,E(1k) − 1/2 | is negligible, SuccU,E is defined as below, and
the user U cannot submit the challenge UniEncEK(mb) to the decryption oracle UniDec.

SuccU,E
def
= Pr

[

b = b̃
∣

∣

∣

(EK, DK)← UniGen(1k), (m0, m1)← UUniDec(EK),

b← {0, 1}, b̃← UUniDec(EK, UniEncEK(mb))

]

Table 2. Online encryption definitions.

oracle access to the FDec. In fact, P does not need access to
UniDec because it can simulate it by itself. The only condi-
tions necessary are that PDec is a deterministic algorithm,
and the proxy P never submits PDec(UniEncEK(mb)) to
the FDec oracle.

For each of the unidirectional schemes described next,
we will prove that they are secure according to all three
definitions.

4.1 Unidirectional Generic Encryption Scheme

We first present a unidirectional generic technique
that transforms a general encryption scheme E =
(Enc-Gen, Enc, Dec) into an unidirectional encryption
scheme E ′ = (UniGen, UniEnc, UniDec, PDec, FDec).
The key generation algorithm UniGen generates two pairs
of keys (EK1, DK1, EK2, DK2) by running the Enc-Gen

algorithm twice. The user U keeps both keys, while
proxy P and the user F get (EK1, EK2, DK1), respec-
tively (EK1, EK2, DK2). We define DKP = DK1 and
DKF = DK2. The encryption algorithm UniEnc is equiva-
lent to encrypting the message with the two keys EK1 and
EK2: UniEnc(m) = Enc1(Enc2(m)) = e. The unidirec-
tional decryption algorithm UniDec decrypts the ciphertext
e by applying the original decryption algorithm Dec twice:
m = Dec2(Dec1(e)). The proxy P uses the function PDec

to transform the ciphertext e into ciphertext e′ by decrypt-
ing once with its key DKP = DK1: e′ = Dec1(e). The
user F uses FDec to transform the ciphertext e′ into the ini-
tial message m (or invalid) by decrypting once with its key
DKF = DK2: m = Dec2(e

′).

The double encryption can be also defined using two dif-
ferent encryption schemes E1 = (Enc-Gen1, Enc1, Dec1),
E2 = (Enc-Gen2Enc2, Dec2). In this case, the unidirec-
tional encryption scheme E ′ = (UniGen, UniEnc, UniDec,
PDec, FDec) is defined as:

• UniGen(1k) = (Enc-GenE1
(1k), Enc-GenE2

(1k))

• UniEnc(m) = EncE1
(EncE2

(m))

• UniDec(e) = DecE2
(DecE1

(e))

• PDec(e) = DecE1
(e)

• FDec(e′) = DecE2
(e′)

For simplicity, we assume that both encryption schemes
are identical. Next, we prove that the generic unidirectional
encryption scheme is secure according to our definitions.
We make the assumption that the initial encryption scheme
we started from is CCA2 and show that the new unidirec-
tional encryption scheme is also CCA2 . The proofs are in
the Appendix A.1.



Theorem 1 Let’s consider a standard encryption scheme
E = (Enc-Gen, Enc, Dec). Based on E , we build an uni-
directional encryption scheme E ′ = (UniGen, UniEnc,
UniDec, PDec, FDec). If E is CCA2 secure, than E ′ is
also CCA2 secure against (1) the proxy P, (2) the user F,
and (3) any user U.

The generic scheme is twice slower than the original
scheme it started from. In order to eliminate this slow-
down, we developed a few specific unidirectional encryp-
tion functions based on El Gamal, RSA, and IBE.

4.2 Unidirectional El Gamal Encryption Scheme

Let’s assume that we have an El Gamal encryption
scheme E = (Enc-Gen, Enc, Dec). The key generation al-
gorithm outputs the public key EK = (g, p, q, y) and the
secret key DK = (x), where p is a prime number, g is a
generator for the Z∗

p, x is randomly chosen from Zq , and
y = gx mod p. The encryption algorithm is defined as
e = EncEK(m) = (gr mod p, mgxr mod p), where r is
chosen at random from Zq . The decryption algorithm com-
putes the message m from e by dividing mgxr to (gr)x

mod p.

The unidirectional El Gamal encryption scheme is de-
fined as E ′ = (UniGen, UniEnc, UniDec, PDec, FDec).
For each user U, the key generation algorithm UniGen(1k)
generates a public-key pair (EK, DK) and splits the secret
key DK = x into two parts x1 and = x2 such that x =
x1+x2. The proxy P receives DKP = x1 and the user F re-
ceives DKF = x2. The encryption UniEnc and the decryp-
tion UniDec algorithms are identical to the standard algo-
rithms: Enc and Dec. The transformation algorithms PDec

and FDec are equivalent to Dec under x1, respectively x2.
The unidirectional encryption scheme is correct because
FDecx2

(PDecx1
(Ency(m))) = FDecx2

(mgxr/(gr)x1) =
mgx2r/(gr)x2 = m.

According to our definitions, the next theorem proves
that the unidirectional El Gamal is as secure as the original
El Gamal scheme. The proofs are presented in Appendix
A.2.

Theorem 2 Let E ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional El Gamal encryption scheme.
E ′ is CPA secure against (1) the proxy P, (2) the user F,
and (3) any user U.

4.3 Unidirectional RSA Encryption Scheme

Let’s assume we have the RSA encryption scheme E =
(Enc-Gen, Enc, Dec). The RSA key generation algorithm
outputs the public key EK = (e, N) and the secret key
SK = (d, N, ϕ(N)), where ed = 1 mod ϕ(N), N = pq, p,
q are two large primes and ϕ is the Euler totient function.
The encryption is defined as EncEK(m) = me mod N = c.
The decryption algorithm is DecEK(c) = cd mod N = m.

The unidirectional key generation algorithm E ′ =
(UniGen, UniEnc, UniDec, PDec, FDec). For each user
U, the key generation algorithm UniGen(1k) generates a
public-key pair (EK, DK) and splits the secret key into two
parts d1 and d2 such that d = d1d2 mod ϕ(N). The proxy
P gets DKP = d1 and the user F gets DKF = d2. The
encryption UniEnc and the UniDec algorithms are iden-
tical to the original algorithms Enc and Dec. The trans-
formation functions PDec and FDec execute the Dec de-
cryption algorithm with keys d1 and respectively d2. The
correctness of unidirectional RSA is given by the equality
FDecd2

(PDecd1
(Ence(m))) = m.

The original RSA scheme is OW-CPA secure. Thus,
we will prove in the next theorem that unidirectional RSA
is also OW-CPA secure. The proofs are in Appendix A.3.

Theorem 3 Let E ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional RSA encryption scheme. E ′ is
ONE-WAY secure against (1) the proxy P, (2) the user F,
and (3) any user U.

4.4 Unidirectional Identity-Based Encryption
Scheme

Our specific IBE scheme is a slightly modification of the
original IBE scheme introduced by [5]. The original IBE
scheme uses a bilinear map ê defined as ê : G1×G1 → G2,
where G1 and G2 are two groups of order q and q is a large
prime number. This means that ê(aP, bQ) = ê(aQ, bP ) =
ê(P, Q)ab, where P, Q ∈ G1 and a, b ∈ Zq . The origi-
nal scheme bases its security on the computational Bilinear
Diffie-Hellman problem. In order to obtain a homomor-
phic scheme, we make a stronger assumption (decisional
Bilinear Diffie-Hellman problem), eliminate the use of a
hash function, require that the messages are m ∈ G2, and
replace the XOR operation by multiplication.

Our scheme is defined as the tuple E =
(Enc-Gen, Extract, Enc, Dec). The key generation al-
gorithm creates the master secret key s and the master
public key Ppub = sP . For every user U, the Extract



algorithm takes as input the user’s ID and returns a secret
key DK = sID and a public key equal to the ID. The
user’s ID is actually defined to be the hash value of the
“real” ID. The encryption algorithm Enc takes the message
m and the public key ID as the input and creates the
ciphertext 〈U, V 〉 = 〈rP, mê(rID, sP ))〉. The decryption
algorithm Dec computes V/ê(sID, U)) = m. The IBE
scheme is CPA secure if the Bilinear Diffie-Hellman
(BDH) problem is hard.

Decisional Bilinear Diffie-Hellam Problem (dBDH).
Let G1 and G2 be two groups of prime order q. Let ê : G1×
G1 → G2 be a bilinear map and let P be a generator for
G1. The decisional BDH problem 〈G1, G2, ê〉 is defined
as follows: Given 〈P, aP, bP, cP 〉 for some a, b, c ∈ Z∗

q ,
it is hard to differentiate ê(P, P )abc ∈ G2 from a random
g ∈ G2.

Based on our specific IBE scheme E , we will build
an unidirectional IBE scheme E ′ = (UniGen, UniEnc,
UniDec, PDec, FDec). The key generation algo-
rithm UniGen uses the original key generation algorithm
Enc-Gen to create the master secret key s and the master
public key Ppub = sP . The master secret key is split in
two parts s1 and s2, and each part is given to the proxy P

and the user F. The encryption and decryption algorithms
are identical with the original ones. PDec is defined as
PDec(U, V ) = 〈U, V/ê(rP, s1ID)〉 = (U, V ′). The user
F uses the ciphertext generated by PDec and the function
FDec to compute the cleartext message m by computing
V ′/ê(rP, s2ID).

Theorem 4 Let E ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional IBE encryption scheme. E ′ is
CPA secure against (1) the proxy P, (2) the user F, and (3)
any user U.

In all the other unidirectional schemes, the proxy P

has the increased space problem because it needs to save
one key for every user. Our modified homomorphic IBE
scheme solves this problem by allowing the proxy agent P

to save only a single share of the master key for the entire
system.

5 Unidirectional Signature Primitives

Definition 3 A unidirectional signature scheme consists
of five algorithms: S = (UniGen, UniSig, UniVer, PSig,
FSig).

The generation algorithm UniGen(1k) outputs a tuple

of keys (SK,VK) for each user U. VK is the verification
key and SK is the signing key. SK is used to generate
the keys SKP and SKF given to the proxy P, respectively
the user F. The signature algorithm UniSig signs a mes-
sage m ∈ M (e.g. {1, 0}k), s = UniSigSK(m) using
the secret key SK. The signature is formed by the tuple
(m, s). The verification algorithm UniVer uses the pub-
lic key to verify that a signature (m, s) is valid. The ver-
ification algorithm output succeed if the signature is cor-
rect and fail otherwise. The correctness property requires
that UniVer(UniSig(m)) = succeed. The proxy P uses the
function PSig to generate a partial signature of a message
m ∈ M based on SKP. The user F uses FSig to generate
a partial signature of a message m ∈ M based on SKF.
PSig(FSig(m)) form a complete signature of the message
m.

We define the unidirectional signature scheme to be safe
if neither entity (proxy P, user F, user U) can generate alone
valid signatures under key SK, even if they know SKP or
SKF and any of the available public information. The for-
mal definitions are given in table 3.

5.1 Unidirectional Generic Signature Scheme

This generic scheme transforms any given signature
primitive into a unidirectional generic signature scheme.
Let’s assume that S = (Sig-Gen, Sig, Ver) is a standard
signature scheme. The new unidirectional generic sig-
nature scheme is S ′ = (UniGen, UniSig, UniVer, PSig,
FSig). The generation algorithm UniGen generates two
pairs of keys (SK1, VK1, SK2, VK2) for each user U. The
secret key for the unidirectional signature scheme is SK =
(SK1, SK2). The proxy P gets (VK1, VK2, SKP = SK1)
and the user F gets (VK1, VK2, SKF = SK2). The sig-
nature algorithm UniSig generates a valid signature for a
message m ∈ M by applying the signature Sig twice:
s = (s1, s2) = Sig1(m)Sig2(m). Similarly, the verifica-
tion algorithm UniVer verifies whether the signatures gen-
erated by UniSig are valid by applying the original verifi-
cation algorithm Ver algorithm twice: Ver1(s1)Ver2(s2).
The proxy P uses PSig to generate part of the total
unidirectional signature: Sig1(m), while the user F uses
FSig = Sig2(m) to generate the entire signature together
with PSig.

According to our definitions, the generic unidirectional
signature scheme is secure if the following theorem is
proved to be true. The actual proofs are contained in Ap-
pendix B.1.



Definition 4 Let S = (UniGen, UniSig, UniVer, PSig, FSig) be an unidirectional signature scheme.

1. S is UF-CMA against the proxy P if |SuccP,S(1k)| is negligible, SuccP,S is defined as below, and the proxy P

is not allowed to ask the FSig oracle for UniSig(m).

SuccP,S
def
= Pr

[

UniVer(m, s) = succeed
∣

∣

∣
(SK, VK)← UniGen(1k), (m, s)← PFSig(SKP, VK)

]

2. S is UF-CMA against the user F if |SuccF,S(1k)| is negligible, SuccF,S is defined as below, and the user F is
not allowed to ask the signature oracle for UniSig(m).

SuccF,S
def
= Pr

[

UniVer(m, s) = succeed
∣

∣

∣
(SK, VK)← UniGen(1k), (m, s)← FUniSig(SKF, VK)

]

3. S is UF-CMA against any user U if |SuccU,S(1k)| is negligible for any PPT adversary U, SuccU,S is defined
as below, and the user U is not allowed to ask the signature oracle for UniSig(m).

SuccU,S
def
= Pr

[

UniVer(m, s) = succeed
∣

∣

∣
(SK, VK)← UniGen(1k), (m, s)← UUniSig(VK)

]

Table 3. Online signature definitions.

Theorem 5 Let S = (Sig-Gen, Sig, Ver) be a standard
signature scheme. Let’s consider S ′ = (UniGen, UniSig,
UniVer, PSig, FSig) a unidirectional signature scheme
constructed as described above, based on S. If S is UF-
CMA , than S ′ is UF-CMA against (1) the proxy P, (2) the
user F, and (3) any user U.

The unidirectional generic signature scheme has two
main performance disadvantages. First, the size of the se-
cret key increases. Each user no longer has one, but two
keys. Second, the number of operations performed when
signing and verifying doubles. In order to improve these
numbers, we developed an efficient unidirectional signa-
ture scheme based on RSA-Hash.

5.2 Unidirectional RSA-Hash Signature Scheme

Let’s assume that we have S = (Sig-Gen, Sig, Ver)
a standard RSA-Hash(Full Domain Hash) [1] signature.
Sig-Gen generates the public key VK = (e, N) and the
secret key SK = (d, ϕ(N)). The signature function is de-
fined as Sig = hash(m)d mod N = s, where hash is a
hash function associated with Sig. The verification returns
succeed if se = hash(m) mod N . Otherwise, it returns
fail.

The standard RSA-Hash signature scheme S is trans-
formed into a unidirectional signature scheme S ′ =
(UniGen, UniSig, UniVer, PSig, FSig) by the following
steps. The key generation algorithm UniGen generates keys

for all users U by executing Sig-Gen and then splits each
secret key d in two parts d = d1 + d2 modϕ(n). d1 be-
comes the key SKP of the proxy P and d2 becomes the
key SKF of the user F. The signature and verification al-
gorithms UniSig and UniVer are identical with the original
algorithms Sig and Ver. The user F uses the FSig function
to generate one part of the unidirectional RSA-Hash sig-
nature by computing s′ = Sigd2

(m). The proxy P uses
the PSig function to generate the other part of the unidi-
rectional RSA signature by computing s = Sigd1

(m). The
signature is formed by s and s′.

The standard RSA-Hash signature scheme is existen-
tially unforgeable against chosen message attacks. Thus,
we formally prove in the next theorem that the unidirec-
tional RSA-Hash scheme holds the same level of security.
The actual proofs are in Appendix B.2.

Theorem 6 Let S = (Sig-Gen, Sig, Ver, ) be a classic
RSA-Hash signature scheme. Let’s consider that S ′ =
(UniGen, UniSig, UniVer, PSig, FSig) is an unidirectional
RSA-Hash signature scheme constructed as above. S ′ is
UF-CMA against (1) the proxy P, (2) the user F, and (3)
all users U.

The probabilistic RSA-Hash described by [7] has better
security that the RSA-Hash function used above, and can
be transformed into an unidirectional primitive if we allow
the user F to generate the necessary randomness.



6 Bidirectional Encryption Primitives

Definition 5 A bidirectional encryption scheme consists of
four algorithms: E = (BiGen, BiEnc, BiDec, Π).

The key generation algorithm BiGen outputs one pair of
keys (EKU,DKU) for each user U. In addition, it generates
keys for the user F, (EKF,DKF). After that, it creates one
bidirectional key π for each user U. The bidirectional keys
π are given to proxy P. The encryption algorithm BiEncEK

takes as input a message m to be encrypted and a public key
EK and outputs the ciphertext e = BiEncEK(m). BiDecDK

is the deterministic decryption algorithm that takes the ci-
phertext e, the secret key DK corresponding to the pub-
lic key, and produces m ∈ M (or invalid in case e was
an improper ciphertext). The correctness property of en-
cryption states that BiDec(BiEnc(m)) = m, for any m and
(EK, DK). Π is the bidirectional function and transforms
ciphertexts encrypted with one key (EKU) into ciphertexts
encrypted with another key (EKF).

We define the bidirectional encryption schemes to be
secure if neither the third party (proxy P) nor the users
(U, F) can attack the scheme. For simplicity, the defini-
tion presented in table 4 uses the CCA2 level of security.
For technical reasons, we assume that there exists an effi-
cient algorithm that evaluates the relation Rπ(e, e′) to true
or false, where e = BiEnc(m) is the original chiphertext
and e′ = Π(e) is the modified ciphertext computed by the
proxy P. The output of the algorithm is true, it must be the
case that DecEKU

(e) = DecEKF
(e′). Having such an algo-

rithm, we allow the proxy P has oracle access to BiDecF

because it can simulate oracle access to BiDecU by itself.
In addition, we restrict its access to the BiDecF by not let-
ting the proxy P to submit to the oracle a ciphertext e′ such
that Rπ(e, e′) = true.

6.1 Bidirectional Generic Encryption Scheme

In this section, we present a generic implementation of
a bidirectional encryption scheme based on standard en-
cryption schemes. Let’s assume that we have an encryp-
tion scheme E = (Enc-Gen, Enc, Dec). We transform
E into a bidirectional encryption scheme E ′ = (BiGen,
BiEnc, BiDec, Π) by following the next steps. For every
user U, the generation algorithm BiGen executes the orig-
inal generation algorithm Enc-Gen to generate three pairs
of keys (k1, k2, k3), where each ki = (EKi, DKi). The
users U, P, and F receive each two pairs of keys such that
any two entities have only one pair of keys in common.

For example, the keys of user U are EKU = (EK1, EK2),
DKU = (DK1, DK2), the keys of proxy P are EKP =
(EK2, EK3), DKP = (DK2, DK3), and the keys of user F

are EKF = (EK1, EK3), DKF = (DK1, DK3). In the con-
text of bidirectional encryption, we say that both users U

and F have private keys, while the proxy P has the bidirec-
tional key π. The encryption algorithm BiEnc performs
double encryption e = BiEncU(m) = Enc1(Enc2(m)).
Similarly, the decryption algorithm Π is defined as double
decryption m = BiDecU(e) = Dec2(Dec1(e)). The proxy
function Π transforms the ciphertext encrypted with the
user U’s key into ciphertext encrypted with the user F’s key.
The first step is to decrypt the ciphertext e = BiEncU(m) =
Enc1(Enc2(m)) by executing e′ = Dec1(e). Then, it en-
crypts e′ with the other half of the key e′′ = Enc3(e

′). The
result is e′′ = BiEncF(m).

The generic bidirectional encryption scheme described
above is secure if no adversary (proxy P, user F, userU)
is able to break it. Let’s assume that the initial encryption
scheme is CCA2 secure. We will show that in this case, the
bidirectional encryption is also CCA2 secure. The proofs
are in Appendix C.1.

Theorem 7 Let’s consider a standard encryption scheme
E = (Enc-Gen, Enc, Dec). Based on E , we build an uni-
directional encryption scheme E ′ = (UniGen, UniEnc,
UniDec, PDec, FDec). If E is CCA2 secure, than E ′ is
also CCA2 secure against (1) the proxy P, (2) the user F,
and (3) any user U.

6.2 Bidirectional El Gamal Encryption Scheme

Let’s assume we have the El Gamal encryption scheme
E = (Enc-Gen, Enc, Dec). The key generation algorithm
of the original El Gamal encryption scheme outputs the
public key EK = (g, p, q, y) and the secret key DK = x,
and the public key is y = gx mod p. The encryption al-
gorithm is defined as e = EncEK(m) = (gr mod p, mgxr

mod p), where r is chosen at random from Zq . The decryp-
tion algorithm computes the message m from e by dividing
mgxr to (gr)x mod p.

Based on E , we will build the bidirectional El Gamal
encryption scheme E ′ = (BiGen, BiEnc, BiDec, Π) by fol-
lowing the next steps. The generation algorithm BiGen

generates the keys for all users U and F by executing
Enc-Gen twice. Let’s assume that the generated keys
are (DKU = x1, EKU = gx1), (DKF = x2, EKF =
gx2). After this, it computes one proxy key π for ev-
ery user U: π = x2 − x1. The encryption algorithm



Definition 6 Let E = (BiGen, BiEnc, BiDec, Π) be a bidirectional encryption scheme.

1. E is CCA2 secure against the proxy P if |SuccP,E(1k) − 1/2| is negligible, SuccP,E is defined as below, and
BiEnc(mb) is never submitted to the decryption oracle BiDec.

SuccP,E
def
= Pr

[

b = b̃
∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), (m0, m1)← PBiDec(EKU, EKF, π),

b← {0, 1}, b̃← PBiDec(EKU, EKF, π, BiEnc(mb))

]

2. E is CCA2 secure against the user F if |SuccF,E(1k) − 1/2| is negligible, SuccF,E is defined as below, and
BiEnc(mb) was never submitted to the P oracle.

SuccF,E
def
= Pr

[

b = b̃
∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), (m0, m1)← FΠ(EKU, EKF, DKF),

b← {0, 1}, b̃← FΠ(EKU, EKF, DKF, BiEnc(mb))

]

3. E is CCA2 secure against any user U if |SuccU,E(1k)− 1/2| is negligible, for any PPT adversary A, we define
SuccU,E as below, and BiEnc(mb) was never submitted to the decryption oracle BiDec.

SuccA,E
def
= Pr

[

b = b̃
∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), (m0, m1)← A
BiDec(EKU, EKF),

b← {0, 1}, b̃← ABiDec(EKU, EKF, BiEnc(mb))

]

Table 4. Bidirectional encryption definitions.

BiEnc encrypts messages m ∈ M by executing Enc:
e = BiEnc(m) = Enc(m). The decryption algorithm
BiDec uses Dec to decrypt the ciphertext e: BiDec(e) =
Dec(e). The proxy function Π transforms messages en-
crypted with the secret key of the user U (DKU) into mes-
sage encrypted with the secret key of the user F (DKF).
We define Π to be Π(BiEncx1

(m), π) = (gr, grxm(gr)π).
The function is correct because Π(BiEncx1

(m), π) =
(gr, grxmgr(x2−x1)) = (gr, grx2m) = BiEncx2

(m).

The proxy function described above is secure if neither
the proxy P nor the user F can distinguish between encryp-
tions of two messages even if provided with the proxy key.
In addition, it should retain the same level of security as the
original El Gamal scheme against all other users U. The
proofs are described in Appendix C.2.

Theorem 8 Let E = (BiGen, BiEnc, BiDec, Π) be an bidi-
rectional El Gamal encryption scheme. E is CPA secure
against (1) the proxy P, (2) the user F, and (3) any user U.

7 Bidirectional Signature Primitives

Definition 7 A bidirectional signature scheme consists of
four algorithms: S = (BiGen, BiSig, BiVer, Π).

The key generation algorithm BiGen(1k), where k is
the security parameter, generates keys for all users, includ-
ing the user F. For example, the user U gets the keys
(SKU, VKU) and the user F gets (SKF, VKF). The gener-
ation algorithm is also computing one bidirectional key π
for every user and gives it to proxy P. The signature al-
gorithm BiSig signs a message m ∈ M (e.g. {1, 0}k),
s = BiSigSK(m) using a secret key SK. The signature
is formed by the tuple (m, s). The signature (m, s) is
verified by the verification algorithm BiVer. The verifica-
tion algorithm outputs succeed if the signature is correct
and fail otherwise. The correctness property requires that
BiVer(BiSig(m)) = succeed. The proxy function Π uses
the bidirectional key π to transform a signature generated
with a secret key into a signature generated with another
secret key.

A bidirectional encryption scheme defined as above is
considered to be safe if it can not be successfully attacked
by any user (U, F) or by the third party (P). The formal
definitions are presented in table 5. We assume that partial
signature contains the message.

Next, we present a few bidirectional signature schemes
that respect the above definition of security.



Definition 8 Let S = (BiGen, BiSig, BiVer, Π) be an bidirectional signature scheme.

1. S is UF against the proxy P if |SuccP,S(1k)| is negligible, where SuccP,S | is defined as below and P is not
allowed to ask the signature oracle for BiSig(m).

SuccP,S
def
= Pr

[

BiVer(m, s) = succeed
∣

∣

∣

(SKU, VKU, SKF, VKF, π)← BiGen(1k)
(m, s)← PBiSigF(VKU, VKF, π)

]

2. S is UF against the user F if |SuccF,S(1k)| is negligible, SuccF,S | is defined as below and F is not allowed to
ask P for Π(m).

SuccF,S
def
= Pr

[

BiVer(m, s) = succeed
∣

∣

∣

(SKU, VKU, SKF, VKF, π)← BiGen(1k)
(m, s)← FΠ(VKU, VKF, SKF)

]

3. S is UF against any user U for any PPT adversary U, if |SuccU,S(1k)| is negligible, where SuccU,S is defined
as below, and U is not allowed to ask the signature oracle for BiSig(m).

SuccA,S
def
= Pr

[

BiVer(m, s) = succeed
∣

∣

∣

(SKU, VKU, SKF, VKF, π)← BiGen(1k)
(m, s)← ABiSigU(VKU, VKF)

]

Table 5. Bidirectional signature definitions.

7.1 Bidirectional Generic Signature Scheme

First, let’s consider a standard signature scheme S =
(Sig-Gen, Sig, Ver). The next paragraph explains how
to build an bidirectional generic signature scheme S ′ =
(BiGen, BiSig, BiVer, Π) from the original scheme S.
The key generation algorithm BiGen uses the original
key generation algorithm Sig-Gen to generate three keys
(k1, k2, k3), where ki = (SKi, VKi), and gives them to
the users U, F, and P, such that they have in common
only one key. For example, the user U gets VKU =
(VK1, VK2), SKU = (SK1, SK2), the user F gets VKF =
(VK1, VK3), SKF = (SK1, SK3), and the proxy P gets
VKP = (VK2, VK3), SKU = (SK2, SK3). The signature al-
gorithm BiSig computes the signature of a message m ∈M
by applying the standard signature algorithm twice, once
for each key. For example, the user U signs a message m as
(s1, s2) = Sig1(m)Sig2(m). BiVer verifies if a signature
generated with BiSig is correct, by executing the standard
verification algorithm twice Ver1(s1) and Ver2(s2). The
proxy function Π transforms a valid signature generated by
BiSig for a pair of keys into a valid signature generated with
another pair of keys: Π(BiSigU(m)) = BiSigF(m).

The generic bidirectional signature scheme is secure if
the next theorem is true. The proofs are in Appendix D.1.

Theorem 9 Let’s consider a standard signature scheme
S = (Sig-Gen, Sig, Ver). Based on S, we build an bidi-
rectional signature scheme S ′ = (BiGen, BiSig, BiVer, Π).
If S is UF than S ′ is UF against (1) the proxy P, (2) the
user F, and (3) all users U.

8 Unidirectional and Bidirectional Private
Key Primitives

Unidirectional and bidirectional private key schemes
for encrypting and signing messages (MAC) can be eas-
ily build on top of pseudo-random functions (PRF).Thus,
it suffices to build unidirectional and bidirectional PRF
functions. The encryption can be defined as Enc(m) =
〈r, f(r) ⊕ m〉, where r is chosen at random, and f is a
PRF. The signature is defined as Sig(m) = f(m), which in
fact is message authetication code (MAC).

8.1 Unidirectional PRF Functions

Informally, a unidirectional PRF function allows two
users P and F to compute its value in any given point x,
even if none of them knows the entire description of the
function.



Definition 9 A PRF function f is a unidirectional PRF
function if there exist f1 and f2 two PRF functions such
that the value f(x) can be computed as f1(f2(x)).

Based on the above definition, we construct the follow-
ing unidirectional PRF. Let’s consider F = fs a family of
pseudo random function with seed s. We define UniPRF

such that the value of the unidirectional PRF in a given
point x is defined as UniPRF(x) = gs1

(x)⊕ gs2
(x), where

g ∈ F . The proxy P and the user F are both given one
of the two seeds. For example, the proxy P receives s1 and
the user F gets s2. In this way, they can cooperate and com-
pute UniPRF(x) by first computing gs1

(x) and gs2
(x) and

applying the XOR operation.

Theorem 10 The unidirectional PRF function defined as
UniPRF(x) = f1(x) ⊕ f2(x), where f1 and f2 are two
PRF functions, is a PRF function.

8.2 Bidirectional PRF Functions

In a similar way, we can informally define a bidirec-
tional PRF function as a PRF function that can be trans-
formed into a new PRF function. This means that one can
compute the value f2(x), given an initial value f1(x) and a
simple transformation Π.

Definition 10 A PRF function f1 is a bidirectional PRF
function if for any PRF function f2, there exists a trans-
formation Π such that the value f2(x) can be computed as
Π(f1(x)).

Let’s consider F = fs a family of PRF functions
with seed s. We construct a PRF function BiPRF1(x) =
gs1

(x) ⊕ gs2
(x), where g ∈ F is a PRF function.

The function BiPRF is bidirectional because from any
value BiPRF1(x), one can easily obtain the value of
BiPRF2(x) = gs1

(x)⊕gs3
(x) by computing BiPRF1(x)⊕

(gs2
(x) ⊕ gs3

(x)). The transformation function is defined
as Π(x) = gs2

(x) ⊕ gs3
(x). The obvious way to split the

keys between F, P, and user is to give 2 keys to each one
such that any two users have only 1 key in common. For
example, the user U gets (s1, s2), the proxy P gets (s2, s3),
and the user F receives (s1, s3).

Theorem 11 The bidirectional PRF function defined as
BiPRF(x) = f1(x)⊕ f2(x), where f1 and f2 are two PRF
functions, is a PRF function.

9 Conclusions

At the beginning of the paper we started describing the
for unidirectional functions. The unidirectional notation is
justified by the fact that the proxy P needs to help the law
enforcement agency (user F) for every message that needs
to be decrypted or signed. There is also an offline version
of the unidirectional proxy function. Because of space con-
sideration, we shortly describe it as part of the conclusions.
The offline proxy functions are based on the key-insulated
encryption and signature primitives created by [9, 10]. In
the offline scheme, users U protect their secrets by period-
ically updating their secret keys. The user U updates its
secret key using the index of the current time period and
some information provided by a third party (P). The same
third party P can help the law enforcement agency F to de-
crypt or sign messages on behalf of other users U, by pro-
viding special pieces of information at the beginning of the
time period. There is one main difference between unidi-
rectional and offline proxy functions: in the unidirectional
case, the law enforcement agency F is strictly controlled by
the proxy P and cannot decrypt or sign a message without
its help; in the offline case, the law enforcement agency can
misbehave 3 for one time period once it has the necessary
information.

The main contribution of this paper is the formalized
definitions of the bidirectional and unidirectional proxy
functions for encryption and signatures and their security
guarantees. In addition, for each class of proxy func-
tions, the paper describes one generic technique and several
specific techniques to transform a standard cryptographic
primitive into a proxy function.

References

[1] M. Bellare and P. Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In ACM Con-
ference on Computer and Communications Security, pages
62–73, 1993.

[2] M. Bellare and P. Rogaway. The exact security of digital
signatures — how to sign with RSA and Rabin. Lecture
Notes in Computer Science, 1070, 1996.

[3] M. Bellare and R. Sandhu. The Security of Practical Two-
party RSA Signature Schemes. Cryptology ePrint Archive,
Report 2001/060, 2001.

[4] M. Blaze and M. Strauss. Atomic Proxy Cryptography. Eu-
rocrypt, 1998.

[5] D. Boneh and M. Franklin. Identity-Based Encryption from
the Weil Pairing. Proceedings of Crypto ’2001, Lecture
Notes in Computer Science, 2139:213–229, 2001.

3Misbehave i.e. decrypt or sign messages it is not supposed to



[6] C. Boyd. Digital Multisignatures, volume Cryptography
and Coding, pages 241–246. Claredon Press, 1986.

[7] J.-S. Coron. On the Exact Security of Full Domain Hash.
Advances in Cryptology - CRYPTO 2000, 20th Annual In-
ternational Cryptology Conference, pages 229–235, 2000.

[8] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. Ad-
vances in Cryptology – Crypto ’89, pages 307–315, 1989.

[9] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-Insulated Public
Key Cryptosystems. Eurocrypt, 2002.

[10] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated
Signature Schemes. PKC, 2002.

[11] A. Fiat and A. Shamir. How to Prove Yourself: Practical So-
lution to Identification and Signature Problems. CRYPTO,
263:186–194, 1987.

[12] T. E. Gamal. A Public Key Cryptosystem and a Signature
Scheme Based on the Discrete Logarithm. IEEE Transac-
tions of Information Theory, pages 31(4): 469–472, 1985.

[13] B. Horne, B. Pinkas, and T. Sander. Escrow Services and
Incentives in Peer-to-Peer Networks. 3rd ACM Conference
on Electronic Commerce, 2001.

[14] J. Kilian and F. T. Leighton. Fair Cryptosystems, Revisited.
Advances of Cryptology - CRYPTO ’95 Proceedings, Berlin:
Springer-Verlag, 1995.

[15] H. Kim, J. Baek, B. Lee, and K. Kim. Computing with
Secrets for Mobile Agent Using One-time Proxy Signature.
SCIS2001, vol 2/2, pages 845–850, 2001.

[16] B. Lee, H. Kim, and K. Kim. Strong Proxy Signature and
its Applications. SCIS2001, vol 2/2, pages 603–608, 2001.

[17] F. T. Leighton. Failsafe Key Escrow Systems. Technical
Memo 483, MIT Lab. for Computer Science, 1994.

[18] A. K. Lenstra, P. Winkler, and Y. Yacobi. A Key Escrow
System with Warrant Bounds. Advances in Cryptology -
CRYPTO, pages 197–207, 1995.

[19] P. MacKenzie. An Efficient Two-Party Public Key Cryp-
tosystem Secure Against Adaptive Chosen Ciphertext At-
tack. PKC, 2003.

[20] P. MacKenzie and M. Reiter. Delegation of cryptographic
servers for capture-resilient devices. CCS, 2001.

[21] P. MacKenzie and M. K. Reiter. Networked Cryptographic
Devices Resilient to Capture. Eighth ACM Conference on
Computer and Communications Security (CCS-8), 2001.

[22] P. MacKenzie and M. K. Reiter. Two-Party Generation of
DSA Signatures. Advances in Cryptology - CRYPTO 2001
(Lecture Notes in Computer Science 2139), 2001.

[23] S. Micali. Fair Public-Key Cryptosystems. Advances in
Cryptology - CRYPTO ’92 Proceedings, Berlin: Springer-
Verlag, 1993.

[24] A. Nicolosi, M. Krohn, Y. Dodis, and D. Mazieres. Proac-
tive Signatures for User Authentication. NDSS, 2003.

[25] R. L. Rivest, A. Shamir, and L. M. Adelman. A Method
for Obtaining Digital Signatures and Public-Key Cryptosys-
tems. Technical Report MIT/LCS/TM-82, 1977.

[26] A. Shamir. Identity-Based Cryptosystems and Signa-
ture Schemes. Advances in Cryptology: Proceedings of
CRYPTO 84, Lecture Notes in Computer Science, 7:47–53,
1984.

[27] Y.Frankel and M.Yung. Escrow Encryption Systems Vis-
ited: Attacks, Analysis and Designs. Advances in Cryp-
tology - CRYPTO ’95 Proceedings, Berlin:Springer-Verlag,
1995.

A Unidirectional Encryption Scheme

A.1 Unidirectional Generic Encryption Scheme

Theorem 1 Let’s consider a standard encryption
scheme E = (Enc-Gen, Enc, Dec). Based on E , we build an
unidirectional encryption scheme E ′ = (UniGen, UniEnc,
UniDec, PDec, FDec). If E is CCA2 secure, than E ′ is
also CCA2 secure against (1) the proxy P, (2) the user F,
and (3) all users U, where the success of the adversary is
defined in table 6.

Proof

1. Let’s assume that E ′ is not CCA2 secure against the
proxy P. This means that the proxy P can break E ′

with probability of success greater than 1/2. We as-
sume that PDec is a deterministic algorithm and the
proxy P never submits PDec(UniEncEK(mb)) to the
FDec oracle. Based on P, we build an adversary B
capable of breaking the original encryption scheme
E . The adversary B receives as input the public key
EK2 of the original encryption scheme E . B simulates
the conditions necessary for the proxy P to break the
unidirectional encryption E ′ by randomly choosing a
public/private key pair (EK1, DK1) and forwarding it
to the proxy P together with EK2. The adversary B
starts running the proxy P. Whenever the proxy P

needs to make a query to the FDec oracle, B simu-
lates the FDec oracle by taking the P’s query q, and
forwards it to its own Dec oracle access. B sends
to the proxy P the output of the Dec oracle. At one
moment, P challenges the unidirectional encryption
scheme E ′ by choosing two messages (m0, m1) and
sending them to B. B chooses the same two mes-
sages to challenge the original encryption scheme E .
When B is presented with the challenge Enc2(mb),
where mb is chosen at random from the two messages
(m0, m1), B applies Enc1(Enc2(m)) and sends the
challenge as UniEnc(mb) to the proxy P. We assumed
that the proxy P can break the unidirectional encryp-
tion scheme with probability greater than 1/2. Thus, B
can break the standard encryption scheme with prob-
ability greater than 1/2.

2. Let’s assume that E ′ is not CCA2 secure against the
user F. This means that the user F can break E ′ with
probability of success greater than 1/2. Based on the
user F, we build an adversary B capable of breaking
the orginal encryption scheme E . The adversary B
receives as input the public key EK1 of the original



Generic
SuccP,E′

def
= Pr

[

b = b̃

∣

∣

∣

∣

(EK1, DK1, EK2, DK2)← UniGen(1k), (m0, m1)← P
FDec(EK1, EK2, DK1),

b← {0, 1}, b̃← P
FDec(EK1, EK2, DK1, UniEnc(mb))

]

SuccF,E′

def
= Pr

[

b = b̃

∣

∣

∣

∣

(EK1, DK1, EK2, DK2)← UniGen(1k), (m0, m1)← F
PDec(EK1, EK2, DK2),

b← {0, 1}, b̃← F
PDec(EK1, EK2, DK2, UniEnc(mb))

]

El-Gamal
SuccP,E′

def
= Pr

[

b = b̃

∣

∣

∣

∣

(EK, DK)← UniGen(1k), (m0, m1)← P(EK, DKP),

b← {0, 1}, b̃← P(EK, DKP, UniEncEK(mb))

]

SuccF,E′

def
= Pr

[

b = b̃

∣

∣

∣

∣

(EK, DK)← UniGen(1k), (m0, m1)← F
PDec∗(EK, DKF),

b← {0, 1}, b̃← F
PDec∗(EK, DKF, UniEncEK(mb))

]

RSA SuccP,E
def
= Pr

[

m
′ = m

∣

∣

∣

∣

(EK, DK)← UniGen(1k), m←M, m′ ← P(EK, DKP, UniEncEK(m))

]

IBE
SuccP,E′

def
= Pr

[

b = b̃

∣

∣

∣

∣

(s = (s1, s2), sP )← UniGen(1k), (m0, m1)← P(s1, sP ),

b← {0, 1}, b̃← P(s1, sP, UniEncID(mb))

]

SuccF,E′

def
= Pr

[

b = b̃

∣

∣

∣

∣

(s = (s1, s2), sP )← UniGen(1k), (m0, m1)← F
PDec∗(EK, DKF),

b← {0, 1}, b̃← F
PDec∗(EK, DKF, UniEncEK(mb))

]

Table 6. Online generic encryption definitions for adversary’s success.

encryption scheme E . First, B simulates the condi-
tions necessary for the user F to break the unidirec-
tional encryption E ′ by choosing at random a pub-
lic/private key pair (EK2, DK2) and forwarding it to
F together with the EK1. The adversary B starts run-
ning the user F. When the user F makes a query
q = Enc1(Enc2(m)) to the PDec oracle, B takes the
query e, forwards it to its own Dec oracle, and sends
the answer Enc2(m) directly to F. When the user F

challenges the adversary B, it chooses two messages
(m0, m1) and sends them to B. B encrypts those two
messages using the key EK2 and sends them to chal-
lenge the standard encryption. When B is presented
with the challenge Enc1(mb), where mb is chosen at
random from two messages (Enc2(m0), Enc2(m1)),
B sends the challenge to F. We assumed that the user
F can break the unidirectional encryption scheme with
probability greater than 1/2. Thus, B can break the
standard encryption scheme with probability greater
than 1/2.

3. This part is implied by the two previous parts.

A.2 Unidirectional El Gamal Encryption Scheme

Theorem 2 Let E ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional El Gamal encryption scheme.
E ′ is CPA secure against (1) the proxy P, (2) the user F, and
(3) all users U, where the adversary’s success is defined in
table 6.

Proof

1. Let’s assume that P is capable of breaking the unidi-
rectional El-Gamal encryption scheme. This means
that | SuccP,E′(1k) − 1/2 | is not negligible. Based
on P, we will build an adversary B that breaks the
original El-Gamal scheme with non-negligible prob-
ability. Initially, B is given the public key EK of the
original EL-Gamal scheme. Based on EK, B simu-
lates the conditions necessary for P to break the uni-
directional ElGamal. For this, B chooses a random
number as x1 and gives it to P. As part of the unidirec-
tional challenge, P chooses two messages (m0, m1)
and forwards them to B. B uses the same two mes-
sages to challenge the standard El-Gamal. When B is
given the encryption of mb, where b ← {0, 1}, it for-
wards Enc(mb) to P. We assumed that P is capable
of breaking the unidirectional El-Gamal and by defi-
nition, UniEnc(mb) = Enc(mb). Thus, if P decrypts



UniEnc(mb) with probability greater than 1/2, then B
decrypts Enc(mb) with probability greater than 1/2.

2. Let’s assume that F is capable of breaking the unidi-
rectional El-Gamal encryption scheme. This means
that | SuccF,E′(1k) − 1/2 | is not negligible. We
use the notation FP∗ to indicate that the user F can
have honest access to the PDec function. Based on
F, we will build an adversary B that breaks the origi-
nal El-Gamal scheme with non-negligible probability.
Initially, B is given the public key EK of the origi-
nal EL-Gamal scheme. Based on EK, B simulates the
conditions necessary for F to break the unidirectional
ElGamal. For this, B chooses a random number as
x2 and gives it to F. The adversary B simulates the
honest access of F to PDec and the encryption ora-
cle UniEnc by taking the query message m and re-
turning mgex2 and Enc(m). As part of the unidirec-
tional challenge, F chooses two messages (m0, m1)
and forwards them to B. B uses the same two mes-
sages to challenge the standard El-Gamal. When B is
given the encryption of mb, where b ← {0, 1}, it for-
wards Enc(mb) to F. We assumed that F is capable
of breaking the unidirectional El-Gamal and by defi-
nition, UniEnc(mb) = Enc(mb). Thus, if F decrypts
UniEnc(mb) with probability greater than 1/2, then B
decrypts Enc(mb) with probability greater than 1/2.

3. This part is implied by the two previous parts.

A.3 Unidirectional RSA Encryption Scheme

Definition 11 A function f : {0, 1}∗ → {0, 1}∗ is ONE-
WAY if it satisfies two conditions:

1. There exists a poly-time algorithm that correctly com-
putes f(x) for any x ∈ {0, 1}∗.

2. For any PPT adversary A, Pr(f(z) = y | x ←
{0, 1}k; y = f(x); z ← A(y, 1k)) ≤ negl(k).

Theorem 3 Let E ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional RSA encryption scheme. E ′ is
ONE-WAY secure against (1) the proxy P, (2) the user F,
and (3) all users U, where the success of the adversary is
defined in table 6.

Proof

1. Let’s assume that P breaks the unidirectional RSA.
This means that SuccP,E (1k) is not negligible. We

will show that based on P we can build an adversary
B that breaks the original RSA encryption scheme. B
is given the public key EK and based on it creates the
conditions necessary for P to break the unidirectional
RSA. B chooses a random number d1 and forwards
it to P as its part of the secret key. The goal of the
adversary B is to find m′ such that m′ = m when
given Enc(m). B forwards the ciphertext Enc(m) =
UniEnc(m) to P. We assumed that P is able to find
m′ = m when given UniEnc(m) with non-negligible
probability. Thus, B is able to find m′.

2. This proof is similar to the previous one.

3. This part is implied by the two previous parts.

A.4 Unidirectional IBE Encryption Scheme

Theorem 4 Let E ′ = (UniGen, UniEnc, UniDec, PDec,
FDec) be an unidirectional IBE encryption scheme. E ′ is
CPA secure against (1) the proxy P, (2) the user F, and (3)
all users U, where the success of the adversary is defined
in table 6.

Proof

1. Let’s assume that P is capable of breaking the uni-
directional IBE encryption scheme. This means that
| SuccP,E′(1k)− 1/2 | is not negligible. Based on P,
we will build an adversary B that breaks the original
IBE scheme with non-negligible probability. Initially,
B is given the public key Ppub = sP of the original
IBE scheme. Based on sP , B simulates the conditions
necessary for P to break the unidirectional IBE. For
this, B chooses a random number as s1 and gives it to
P. As part of the unidirectional challenge, P chooses
two messages (m0, m1) and forwards them to B. B
uses the same two messages to challenge the standard
IBE. When B is given the encryption of mb, where
b ← {0, 1}, it forwards Enc(mb) to P. We assumed
that P is capable of breaking the unidirectional IBE
and by definition, UniEnc(mb) = Enc(mb). Thus, if
P decrypts UniEnc(mb) with probability greater than
1/2, then B decrypts Enc(mb) with probability greater
than 1/2.

2. Let’s assume that F is capable of breaking the uni-
directional IBE encryption scheme. This means that
| SuccF,E′(1k) − 1/2 | is not negligible. We use
the notation FP∗ to indicate that the user F can have
honest access to the PDec function. Based on F, we



will build an adversary B that breaks the original IBE
scheme with non-negligible probability. Initially, B
is given the public key Ppub = sP of the original
IBE scheme. B simulates the conditions necessary
for F to break the unidirectional IBE by choosing a
random number as s2 and giving it to F. The adver-
sary B simulates the honest access of F to PDec and
the encryption oracle UniEnc by taking the query mes-
sage m and returning ê(rID, s1P ) and Enc(m) =<
rID, m ⊕ ê(rID, sP ) >. As part of the unidirec-
tional challenge, F chooses two messages (m0, m1)
and forwards them to B. B uses the same two mes-
sages to challenge the standard IBE. When B is given
the encryption of mb, where b ← {0, 1}, it forwards
Enc(mb) to F. We assumed that F is capable of
breaking the unidirectional El-Gamal and by defini-
tion, UniEnc(mb) = Enc(mb). Thus, if F decrypts
UniEnc(mb) with probability greater than 1/2, then B
decrypts Enc(mb) with probability greater than 1/2.

3. This part is implied by the two previous parts.

B Unidirectional Signature Scheme

B.1 Unidirectional Generic Signature Scheme

Theorem 5 Let S = (Sig-Gen, Sig, Ver) be a standard
signature scheme. Let’s consider S ′ = (UniGen, UniSig,
UniVer, PSig, FSig) an unidirectional signature scheme
constructed as described above, based on S. If S is UF-
CMA , than S ′ is UF-CMA against (1) the proxy P, (2) the
user F, and (3) all users U, where the adversary’s success
is defined in table 7.

Proof

1. Let’s assume that S ′ is not UF-CMA against the proxy
P. This means that |SuccP,S′(1k)| is not negligi-
ble. We assume that the proxy P is not allowed to
ask the FSig oracle for FSig(m). Based on S ′ we
build a forger B capable to break the original signa-
ture scheme S. The forger B receives as input the
public key VK2 and tries to generate a valid signa-
ture of a message m under the secret key SK2. The
forger B chooses at random a public/private key pair
(VK1, SK1) and forwards it to P together with VK2.
The forger B starts running the proxy P. When P

makes a query on the hash oracle for a message m′,
the forger B forwards the request to its own hash or-
acle and sends the answer to the proxy P. When P

asks the FSig oracle to produce a signature for a mes-
sage m′, B asks its own signature oracle to produce
a signature for m′ under SK2 and sends the result to
the proxy P. At one moment, the proxy P generates a
valid unidirectional signature for a message m with a
non-negligible probability, where m is a completely
new message. B takes the unidirectional signature
UniSig(m) = Sig1(m)Sig2(m), removes the first part
and outputs Sig2(m) as a valid signature of m.

2. Let’s assume that S ′ is not UF-CMA against F. This
means that |SuccF,S′(1k)| is not negligible. We as-
sume that F is not allowed to ask the PSig oracle about
m. Based on S ′ we build a forger B capable to break
the original signature scheme S. The forgerB receives
as input the public key VK1 and tries to generate a
valid signature of a message m under the secret key
SK1. The forger B chooses at random a public/private
key pair (VK2, SK2) and forwards it to the user F to-
gether with VK1. The forgerB starts running F. When
the user F makes a query on the hash oracle for a mes-
sage m′, the forger B forwards the request to its own
hash oracle and sends the answer back to F. When F

asks the PSig oracle to produce part of the signature
for a message m′, B asks its own signature oracle to
produce a signature for m′ under SK1. After that, B
sends to F Sig1(m

′). At one moment, F generates a
valid unidirectional signature for a message m with a
non-negligible probability, where m is a completely
new message. B takes the unidirectional signature
UniSig(m) = Sig1(m)Sig2(m), removes the second
part and outputs Sig1(m) as a valid signature of m.

3. This part is implied by the previous two parts.

B.2 Unidirectional RSA-Hash Signature Scheme

Theorem 6 Let S = (Sig-Gen, Sig, Ver) be a clas-
sic RSA-Hash signature scheme. Let’s consider S ′ =
(UniGen, UniSig, UniVer, PSig, FSig) an unidirectional
RSA-Hash signature scheme constructed as described
above. S ′ is UF-CMA against (1) the proxy P, (2) the user
F, and (3) all users U, where the adversary’s success is
defined in table 7.

Proof

1. Let’s assume that P can break the unidirectional RSA-
Hash scheme. This means that |SuccP,S(1k)| is not
negligible. Based on the proxy P, we build a forger B



Generic
SuccP,S′

def
= Pr

[

UniVer(m,s) = succeed

∣

∣

∣

∣

(VK1, SK1, VK2, SK2)← UniGen(1k)
(m, s)← P

FSig(VK1, VK2, SK1)

]

SuccF,S′

def
= Pr

[

UniVer(m, s) = succeed

∣

∣

∣

∣

(VK1, SK1, VK2, SK2)← UniGen(1k)

(m,s)← F
PSig(VK1, VK2, SK2)

]

RSA-Hash
SuccP,S

def
= Pr

[

UniVer(m, s) = succeed

∣

∣

∣

∣

(SK, VK)← UniGen(1k), (m, s)← P
FSig(SKP, VK)]

]

SuccF,S
def
= Pr

[

UniVer(m, s) = succeed

∣

∣

∣

∣

(SK, VK)← UniGen(1k), (m, s)← F
PSig(SKF, VK)

]

Table 7. Online generic signature definitions for adversary’s success.

capable of breaking the RSA encryption scheme. The
forgerB receives as input a public key (N, e) and tries
to invert x = f−1(y), where f is the RSA function
defined by N and e. The adversary B starts running
the proxy P for this public key and a randomly chosen
number d1 given as a secret key. When the proxy P

makes the i-th hash query, the adversary looks to see
if the message mi was already asked. If not, it picks
a random xi, sets h(mi) = xe

i with probability p and
h(mi) = y ∗ xe

i with probability 1 − p. If the proxy
P makes a query to FSig for a message mi, the ad-
versary returns xi if mi was asked before. Otherwise
it fails. Eventually, P outputs a correct unidirectional
RSA-Hash signature (m, s) for a brand new message
m. If the message m was not hashed before, the ad-
versary computes its has value. If h(m) = y∗xe

i , then
the adversary returns yd = s/xe

i as the x = f−1(y).
Otherwise, it fails.

2. Let’s assume that F can break the unidirectional RSA-
Hash scheme. This means that |SuccF,S(1k)| is not
negligible. Based on the user F, we build a forger B
capable of breaking the RSA encryption scheme. The
forgerB receives as input a public key (N, e) and tries
to invert x = f−1(y), where f is the RSA function
defined by N and e. The adversary B starts running
the user F for this public key and a randomly chosen
number d2 given as a secret key. When the user F

makes the i-th hash query, the adversary looks to see
if the message mi was already asked. If not, it picks
a random xi, sets h(mi) = xe

i with probability p and
h(mi) = y ∗ xe

i with probability 1 − p. If the user
F makes a query to PSig for a message mi, the ad-
versary returns xi if mi was asked before. Otherwise
it fails. Eventually, F outputs a correct unidirectional
RSA-Hash signature (m, s) for a brand new message
m. If the message m was not hashed before, the ad-

versary computes its has value. If h(m) = y∗xe
i , then

the adversary returns yd = s/xe
i as the x = f−1(y).

Otherwise, it fails.

3. This part is implied by the previous two parts.

C Bidirectional Encryption Scheme

C.1 Bidirectional Generic Encryption Scheme

Theorem 7 Let’s consider a standard encryption
scheme E = (Enc-Gen, Enc, Dec). Based on E , we build
an bidirectional encryption scheme E ′ = (BiGen, BiEnc,
BiDec, PDec, FDec). If E is CCA2 secure, than E ′ is also
CCA2 secure against (1) the proxy P, (2) the user F, and
(3) all users U, where the adversary’s success is defined in
table 8.

For technical reasons, we assume that there exists an
efficient algorithm that evaluates the relation Rπ(e, e′) to
true or false, where e = BiEnc(m) is the original chipher-
text and e′ = Π(e) is the modified ciphertext computed by
the proxy P. The output of the algorithm is true, it must
be the case that DecEKU

(e) = DecEKF
(e′). Having such

an algorithm, we allow the proxy P has oracle access to
BiDec because it can never submit a ciphertext e′ such that
Rπ(e, e′) = true.

Proof

1. Let’s assume that E ′ is not CCA2 secure against P.
This means that |Succ(P, E ′) − 1/2| is not negligi-
ble. Based on P, we will build an adversary B that
breaks the standard encryption scheme E for the key
k2 = (EK2, DK2). The adversary B tries to decrypt



Generic

SuccP,E
def
= Pr

[

b = b̃

∣

∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), b← {0, 1},

(m0, m1)← P
BiDec(EKU, EKF, π), b̃← P

BiDec(EKU, EKF, π, BiEnc(mb))

]

SuccF,E
def
= Pr

[

b = b̃

∣

∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), b← {0, 1},

(m0, m1)← F
P(EKU, EKF, DKF), b̃← F

P(EKU, EKF, DKF, BiEnc(mb))

]

SuccA,E
def
= Pr

[

b = b̃

∣

∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), b← {0, 1},

(m0, m1)← A
BiDec(EKU, EKF), b̃← A

BiDec(EKU, EKF, BiEnc(mb))

]

El Gamal

SuccP,E
def
= Pr

[

b = b̃

∣

∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), b← {0, 1},

(m0, m1)← P(EKU, EKF, π), b̃← P(EKU, EKF, π, BiEncEKU
(mb))

]

SuccF,E
def
= Pr

[

b = b̃

∣

∣

∣

∣

(EKU, DKU, EKF, DKF, π)← BiGen(1k), b← {0, 1},

(m0, m1)← F(EKU, EKF, DKF), b̃← F(EKU, EKF, DKF, BiEncEKU
(mb))

]

SuccA,E
def
= Pr

[

b = b̃

∣

∣

∣

∣

(EKU, DKU, EKA, DKA, π)← BiGen(1k), b← {0, 1},

(m0, m1)← A(EKU, EKA, DKA), b̃← A(EKU, EKA, DKA, BiEncEKU
(mb))

]

Table 8. Bidirectional encryption definitions for adversary’s success.

the ciphertext Enc2(m). B chooses two pairs of keys
(k1, k3), gives them to P, and then starts P. B simu-
lates P’s access to the decryption oracle BiDec by tak-
ing each query e of P, and sending Deck1

(e) to its own
decryption oracle. The message received as the an-
swer is sent to the proxy ]proxy. P chooses two mes-
sages (m0, m1) to challenge the bidirectional encryp-
tion scheme E ′ and sends them to B. B uses the same
two messages to challenge the standard encryption
scheme E . When B is presented with the challenge
Enck2

(mb), where mb ∈ (m0, m1), B sends to P

BiEnc(mb) = Enck1
(Enck2

(mb)). We assumed that
P is able to break the bidirectional encryption scheme
with non-negligible probability. Thus, B breaks the
standard encryption scheme with non-negligible prob-
ability.

2. Let’s assume that E ′ is not CCA2 secure against F.
This means that |Succ(F, E ′) − 1/2| is not negligi-
ble. Based on P, we will build an algorithm B that
breaks the standard encryption scheme E for encryp-
tion key k1. B chooses two random numbers as keys
(k2, k3) and gives them to F. In addition, B simu-
lates oracle access to P by taking each query e of F,
forwarding it to its own decryption oracle and send-
ing back to F Enck3

(Deck1
(e)). F chooses two mes-

sages (m0, m1) to challenge the bidirectional encryp-
tion scheme E ′ and sends them to B. B encrypts the
two messages and uses (Enck2

(m0), Enck2
(m1)) to

challenge the standard encryption scheme E . When
B is presented with the challenge Enck1

(mb), where
mb ∈ (Enck2

(m0), Enck2
(m1)), B sends to F the

challenge Enck1
(mb). We assumed that F is able to

break the bidirectional encryption scheme with non-
negligible probability. Thus, B breaks the standard
encryption scheme with non-negligible probability.

3. Let’s assume that E ′ is not CCA2 secure. This
means that there is a PPT adversary A such that
|Succ(A, E ′) − 1/2| is not negligible. Based on A,
we will build an adversary B that breaks the standard
encryption scheme E for the key (EK2, DK2). The
adversary B tries to decrypt the ciphertext Enc2(m).
B starts A. B simulates A’s access to the decryp-
tion oracle BiDec by taking each query e of A, and
sending Deck1

(e) to its own decryption oracle. A
chooses two messages (m0, m1) to challenge the bidi-
rectional encryption scheme E ′ and sends them to B.
B uses the same two messages to challenge the stan-
dard encryption scheme E . When B is presented with
the challenge Enck2

(mb), where mb ∈ (m0, m1), B
sends to A BiEnc(mb) = Enck1

(Enck2
(mb)). We as-

sumed that P is able to break the bidirectional encryp-
tion scheme with non-begligible probability. Thus,
B breaks the standard encryption scheme with non-
negligible probability.



Generic
SuccP,S

def
= Pr

[

BiVer(m, s) = succeed

∣

∣

∣

∣

(SKU, VKU, SKF, VKF, π)← BiGen(1k)
(m,s)← P

BiSig(VKU, VKF, π)

]

SuccF,S
def
= Pr

[

BiVer(m, s) = succeed

∣

∣

∣

∣

(SKU, VKU, SKF, VKF, π)← BiGen(1k)

(m, s)← F
P(VKU, VKF, SKF)

]

Table 9. Bidirectional signature definitions for adversary’s success.

C.2 Bidirectional El Gamal Encryption Scheme

Theorem 8 Let E ′ = (BiGen, BiEnc, BiDec, Π) be an
bidirectional El Gamal encryption scheme. E ′ is CPA se-
cure against (1) the proxy P, (2) the user F, and (3) all users
U, where the adversary’s success is defined in table 8.

Proof

1. Let’s assume that P can break the bidirectional
El Gamal encryption scheme. This means that
|SuccP,E(1k)−1/2| is not negligible. Based on P, we
will build an algorithm B that can break the standard
El Gamal encryption. For this, B simulates the condi-
tions required by P. Initially, B knows the public key
of U (EKU = gx1). B pick a random number π and
forwards it to P, together with EKU. From EKU = gx1

and π, B calculates gx2 = gx1gπ and forwards gx2

to P as the secret key of F. P chooses two mes-
sages (m0, m1) to challenge the security of the bidi-
rectional El Gamal and forwards them to B. B con-
siders the same two messages to challenge the stan-
dard El Gamal and receives the challenge Encx1

(mb),
where mb ∈ (m0, m1). B forwards the challenge
Encx1

(mb) = BiEncx1
(mb) to P. We considered that

P can break the bidirectional El Gamal with probabil-
ity of success SuccP,E(1k) greater than 1/2. Thus, B
is able to break the standard El Gamal with probability
of success greater than 1/2.

2. Let’s assume that F can break E ′. This means that
|SuccF,E(1k) − 1/2| is not negligible. The proof is
similar to the previous one. The only difference is that
B chooses at random x2 and computes gx2 for F.

3. Let’s assume that E is not CPA secure. This
means that there exists an adversary A such that
|SuccA,E(1k) − 1/2| is not negligible. The proof is
similar to the previous one. The only difference is
that B chooses at random DKA = y and computes
EKA = gy forA.

D Bidirectional Signature Scheme

D.1 Bidirectional Generic Signature Scheme

Theorem 9 Let’s consider a standard signature scheme
S = (Sig-Gen, Sig, Ver). Based on S, we build an bidi-
rectional signature scheme S ′ = (BiGen, BiSig, BiVer, Π).
If S is UF than S ′ is UF against (1) the proxy P, (2) the
user F, and (3) all users U, where the adversary’s success
is defined in table 9.

Proof

1. Let’s assume that S ′ is not UF against P. This means
that |SuccP,S(1k)| is not negligible. Based on P, we
build a forger B able to break the original signature
S. B tries to generate a valid signature Sig1(m) for a
message m. B receives VK1 as input. B generates two
random numbers (SK2, SK3) and sends them to P as
the bidirectional key π. The forger B starts P.

When proxy makes a query for a message m to the
hash oracle, B forwards the request to its own hash
oracle and returns the answer h(m) to P. When P

makes a query to the π signature oracle, B makes a
query to the Sig signature oracle for the same mes-
sage m. B receives Sig1(m), computes Sig3(m) and
sends to P BiSig(m) = Sig1(m)Sig3(m). At one mo-
ment, P generates a valid signature BiSig(m) for a
new message m, with non-negligible probability. B
takes BiSig(m) = Sig1(m)Sig3(m), ignores the sec-
ond part and outputs Sig1(m). We assumed that P can
break the bidirectional signature scheme S ′. Thus, B
can break the original signature scheme S.

2. Let’s assume that S ′ is not UF against F. This means
that |SuccF,S(1k)| is not negligible. Based on F, we
build a forger B able to break the original signature
S. B tries to generate a valid signature Sig2(m) for a
message m. B receives VK2 as input. B generates two
pairs of random numbers (VK1, SK1, VK3, SK3) and
sends to F as its keys. The forger B starts F. When



fbi makes a query for a message m to the hash or-
acle, B forwards the request to its own hash oracle
and returns the answer h(m) to F. When F makes
a query to the P signature oracle, B makes a query
to the Sig signature oracle for the same message m.
B receives Sig2(m), computes Sig1(m) and sends to
F BiSig(m) = Sig1(m)Sig2(m). At one moment, F

generates a valid signature BiSig(m) for

a new message m, with non-negligible probability. B
takes BiSig(m) = Sig1(m)Sig2(m), ignores the first
part and outputs Sig2(m). We assumed that F can
break the bidirectional signature scheme S ′. Thus, B
can break the original signature scheme S.

3. This part is implied by the two previous parts.


