
RB-Seeker: Auto-detection of Redirection Botnets∗

Xin Hu, Matthew Knysz, and Kang G. Shin

University of Michigan Ann Arbor

{huxin, mknysz, kgshin}@eecs.umich.edu

Abstract

A Redirection Botnet (RBnet) is a vast collection of

compromised computers (called bots) used as a redirec-

tion/proxy infrastructure and under the control of a botmas-

ter. We present the design, implementation and evaluation

of a system called Redirection Botnet Seeker (RB-Seeker)

for automatic detection of RBnets by utilizing three cooper-

ating subsystems. Two of the subsystems are used to gen-

erate a database of domains participating in redirection:

one detects redirection bots by following links embedded

in spam emails, and the other detects redirection behavior

based on network traces at a large university edge router

using sequential hypothesis testing. The database of redi-

rection domains generated by these two subsystems is fed

into the final subsystem, which then performs DNS query

probing on the domains over time. Based on certain behav-

ioral attributes extracted from the DNS queries, the final

subsystem makes use of a 2-tier detection strategy utiliz-

ing hyperplane decision functions. This allows it to quickly

identify aggressive RBnets with a low false-positive rate (<

0.008%), while also accurately detecting stealthy RBnets

(i.e., those mimicking valid DNS behavior, such as CDNs)

by monitoring their behavior over time. Using DNS behav-

ior as a means of detecting RBnets, RB-Seeker is impervious

to the botmaster’s choice of Command-and-Control (C&C)

channel (i.e., how the botmaster communicates and controls

the bots) or use of encryption.

1 Introduction

Recently, botnets—a vast collection of compromised

computers called bots under a common Command-and-

Control (C&C) infrastructure—have have become one of

the biggest threats to the Internet community, due to their

financial appeal and the widespread world-wide adoption

of broadband Internet connections. The critical difference

between botnets and other known malware is the use of In-

ternet Relay Chat (IRC), or other protocols, as a flexible

∗The work reported in this paper was supported in part by NSF under

Grant CNS-0523932.

and extensible method for a Command and Control (C&C)

channel, enabling the coordination of thousands of individ-

ual bots to launch larger-scale and more powerful attacks.

Moreover, bot malware is becoming more modular in nature

and nearly all current bots support binary updates, allowing

a botmaster (i.e., a botnet’s controller) to increase function-

ality and evade various detection strategies. The use of up-

datable malware combined with a C&C channel affords the

botmasters a great deal of control over the compromised

computers (i.e., bots), providing a wide range of nefarious

services and activities which are sold for profits. For exam-

ple, a single botnet could be used to send spam emails, steal

confidential information, and mount Distributed Denial of

Service (DDoS) attacks, depending on the current needs of

the botmaster or his/her employers. Often, due to the ease of

acquiring a modest botnet at a low cost, control of the entire

botnet is sold rather than just the services it can provide.

While the criminal uses of botnets are numerous,

the more popular/profitable ones include: redirection to

malicious content (such as fraudulent websites used in

spam/phishing campaigns), confidential information theft,

sending spam/phishing emails, and DDoS attacks against

servers or even the Internet infrastructure of a country [23].

A significant amount of work has already been done on

the subject of detecting and mitigating spam emails and

DDoS attacks. In this paper, we focus on detecting bots

(or other compromised systems) used in redirection/proxy

scams. We term these bots Redirection Bots (RBs) and

call the botnets they compose Redirection Botnets (RBnets).

Since botnets are the primary source of such redirection en-

deavors, detecting computers partaking in suspicious redi-

rection can provide us a critical means of detecting these

botnets. Furthermore, a botnet’s versatility allows it to pro-

vide multiple criminal services, and hence, by detecting and

mitigating RBnets, we can help deter the other malicious

activities they may invoke.

Botnets are essentially an abundant source of disposable

redirection servers/proxies, which serve as the front-end to

malicious content hosted elsewhere—on anything from a

powerful central server to another bot. Used as a misdirec-

tion mechanism for evading detection, RBnets are used in



tandem with other criminal scams, constituting only a por-

tion of the overall operation. For example, spam/phishing

campaigns often utilize a RBnet for misdirection. They be-

gin by using some spamming mechanism (e.g., a hijacked

mail server and/or a botnet) to send seemingly interest-

ing phishing emails. Within the phishing emails are in-

nocuously disguised embedded links pointing to a RBnet.

Once victims click the embedded links, they connect to

the bots which then redirect them to—or serve as prox-

ies for—the actual host of the nefarious content. While

this single layer of redirection is the simplest case, it is

common for criminals to employ multiple layers of redi-

rection between the victim and the malicious content host.

Botnets are an attractive redirection mechanism, because if

one is discovered and blocked, there is an ample supply of

other bots to take its place; and the blocked bot can still

be used for other villainous purposes. The use of RBnets

for spam/phishing campaigns is so successful at protecting

the malicious-content hosts, that criminals are beginning to

centralize their operations. Numerous bots act as forward-

ing servers for the same phishing/scam campaigns, redirect-

ing users to the same final-destination servers (called moth-

erships) which host the illegal content. This strategy grants

criminals a high level of anonymity via redirection while

enabling easy centralized management.

While the RBnets can be used to deliver malicious con-

tent to victims via either redirection or proxy, redirection

offers several financial and performance advantages over

proxy in terms of content availability, resource utilization,

and ease of management. Because botnets are composed

primarily of compromised home computers with unreliable

connectivity, it is common for them to unexpectedly go of-

fline. If a botmaster is using bots as proxies to deliver mali-

cious content to victims, the bots must remain online during

the entire session. When a proxy bot unexpectedly goes of-

fline, the connection between the victim and the source of

the malicious content is severed. Using bots for redirec-

tion, on the other hand, is more resilient to connection fail-

ure because individual bots within the RBnet need to main-

tain connectivity only long enough to redirect the victim.

As a result, the use of redirection will be more effective in

terms of content availability. Moreover, individual bots ex-

perience more resource strain when used as proxies. Each

bot must maintain connections with victims while serving

as a proxy to the actual content host. Since bots are of-

ten less powerful compromised home computers, this limits

the number of victims that can be serviced by an individual

bot. A botmaster can achieve better utilization of the bot-

net’s resources by using redirection; it is considerably less

taxing on the compromised home computers composing the

botnet. This greatly improves the financial gain achievable

with the botnet, making it possible for botmasters to rent

out a single RBnet for multiple criminal redirection infras-

tructures. Finally, as a side effect of proxy bots’ poor uti-

lization of resources, botmasters must be more diligent in

management. They must ensure that enough bots are on-

line and that they are intelligently dispersed across multiple

DNS servers, such that the number of victims connecting to

an individual bot is within its ability to function as a proxy.

For the above reasons, we propose a system called Redi-

rection Botnet Seeker, or RB-Seeker, that detects RBnets

based on their intrinsic network behavior patterns. Our

contributions are three-folded. First, the system make

uses of comprehensive and abundant data sources, includ-

ing approximately two month’s worth of: NetFlow records

dumped from a core router of the campus network, spam

emails from online and local spam archives, and DNS logs

from two major local DNS servers. These rich, real-world

data sources complement each other and provide the RB-

seeker with comprehensive views from multiple vantage

points, resulting in better a detection rate of RBnets. Sec-

ond, we design and develop several effective algorithms to

exploit each unique features of RBnets, such as their con-

nection patterns, flow characteristics, DNS record behav-

ior and typical involvement in the spam/phishing attacks.

As a practical implementation for enterprise networks, the

RB-Seeker comprises multiple network-monitoring subsys-

tems, collaborating to identify malicious redirection infras-

tructures. The first subsystem takes advantage of the fact

that redirection is often used for phishing/advertising. It

analyzes embedded HTTP links in spam emails acquired

from various sources using traditional spam detection sys-

tems and looks for links that redirect victims to different

domains. The second subsystem improves the redirection

detection capability by analyzing passive network traces at

a large (i.e., of 40,000 students and several thousand fac-

ulty and staff) university core router and exploiting the sta-

tistical difference between the connection patterns of redi-

rection and normal browsing. Together, these two subsys-

tems compile a database of redirection domains, which is

used by the third subsystem that actively polls and moni-

tors the DNS query results for suspicious behavior. Third,

we developed a 2-tier detection system that can detect both

typical/aggressive and stealthy RBnets (i.e., those mimick-

ing valid DNS behavior, such as CDNs), which are likely

participating in multiple botnet activities. In addition, as a

behavior-based approach, the RB-Seeker doesn’t rely on the

malware signatures and is thus more immune to traditional

evasion techniques that are often and successfully employed

by botmasters (e.g., polymorphism or malware packer).

The remainder of the paper is organized as follows. We

review the related literature in Section 2. Section 3 presents

an overview of system design and architecture. Sections 4–

6 describe three closely interacting subsystems of the RB-

Seeker that cooperatively achieve accurate identification of

RBnets based on their unique network and DNS behavior.



Section 8 evaluates the effectiveness of the RB-Seeker and

the paper concludes with Section 9.

2 Related Work

Botnets have now become one of the biggest threats to

the Internet community. Most of the previous research fo-

cused on analyzing and understanding the operations and

threats of botnets [23]. Cook et al. [14] studied the structure

of botnets and highlighted the potential threats of peer-to-

peer (P2P) botnets. They also showed that detecting botnets

based solely on the C&C channel is not effective. Rajab et

al. [28] constructed a distributed measurement infrastruc-

ture to measure the Internet Relay Chat (IRC) botnet ac-

tivities and showed that botnets contribute the majority of

unwanted traffic in the Internet. The botnet’s diurnal prop-

erties are studied in [15] and used to model the propaga-

tion of botnets. More recently, P2P botnets appeared in the

wild that use the P2P infrastructure as the C&C channel and,

therefore, are more robust against node failures and difficult

to be taken down. Grizzard et al. [18] analyzed the archi-

tecture and communication protocol of a most recent P2P

botnet, Peacom (a.k.a. storm worm) [10]. A model for ad-

vanced hybrid P2P botnets has also been proposed in [31]

which provides robust connectivity, control traffic disper-

sion, encryption, easy recovery and many other techniques

that significantly improve the capability of P2P botnets in

surviving the node failure and shutdown of C&C channels.

While there are numerous strategies to mitigate the ef-

fects of malware, most of them are ill-suited for combating

botnets. Due to the modular nature of bots and the popular-

ity of bot-development toolkits, it becomes fairly easy for

even moderately skilled hackers to acquire botnets of their

own, churning out numerous bot variants before up-to-date

signatures can be generated for a signature-based anti-virus

or intrusion detection system. In addition, sandboxes, hon-

eypots, and honeynets [34], while useful for capturing and

analyzing malicious binaries, incur much too long of a time

delay (often involving human intervention) to be practical

for botnet mitigation. To address these limitations, several

botnet detection approaches have recently been proposed,

trying to discover bonets based on the network or host be-

havior typical of most bots. Since the IRC protocol [24] is

currently the most popular C&C protocol used by botnets,

most approaches to date focus on using some aspects of

the IRC protocol, such as traffic monitoring and identifying

IRC C&C servers, for botnet identification. For example,

Rishi [17] passively monitors IRC traffic for suspicious IRC

nicknames, IRC servers, and uncommon server ports to de-

tect bot-infected machines. Binkley and Singh [9] proposed

detection of IRC-based botnets via TCP anomaly detec-

tion and IRC message statistics. More recently, BotHunter

[19] uses IDS-driven dialog correlation based on IRC C&C

communication and other common actions taken during the

life cycle of a bot for detection. Meanwhile, Karasaridis

et al. [26] proposed a wide-scale detection technique that

looks for typical network-flow patterns between bots and

their controllers to track and analyze botnets in a large tier-1

ISP. BotSniffer [20] identifies HTTP- and IRC-based C&C

channels by capturing the coordinated and synchronized

communication patterns in the C&C traffic. Unfortunately,

because of the reliance on IRC- or HTTP-based C&C pro-

tocols for identifying botnets, these detection schemes can

potentially be subverted using encrypted channels or cus-

tomized C&C protocols (e.g., P2P, FTP, etc.).

In this paper, we propose a novel detection technique for

discovering the botnets involved in redirection infrastruc-

tures. Our approach differs from previous work in that, in-

stead of identifying the C&C channels which can be evaded

by botnets utilizing modified or customized C&C protocols,

we focus on the intrinsic behavior of RBnets. The behav-

ior can be collected in real time from a variety of network-

level traces, such as NetFlow, spam emails and DNS logs,

regardless of the C&C protocols used by botnets. Similar

network-level traffic analysis has also been widely used in

both research projects and commercial products to combat

malicious attacks such as DDoS and spams. For instance,

the Internet Motion Sensor (IMS) [8] is a global moni-

tor system that utilizes many distributed sensors to moni-

tor traffic to the dark spaces and capture scanning traffic of

worm propagation. The major purpose of IMS is to detect

random-scanning worms and prevent scanning traffic from

reaching the victims. Hence, it is not efficient for detect-

ing botnets, because not all scanning traffic originates from

botnets and botnets often propagate through other channels,

such as email attachments (e.g., Peacomm bot), social engi-

neering, browser vulnerabilities, etc. Cisco’s Ironport [12]

and P-cube [13] products investigate network (in particular

SMTP) traffic as it passes through the systems. They use

blacklist- or content-based filtering to detect spam emails

and stop them before reaching the mail server. Because of

the growing involvement of RBnets in spam/phishing cam-

paigns [7], our approach can be easily integrated into these

systems for practical deployment. The success of Ironport

and p-cube in detecting incoming spam emails at the con-

nection level will enable our approach to proactively detect

RBnets and protect unsuspecting customers.

Different redirection techniques have mostly been used

on redirection web spams, where attackers try to boost their

rank in the search engine by presenting false content to a

crawler for indexing and automatically redirect the users’

browser to a different web page. Wu and Davision [33]

studied the distribution of different redirection techniques.

Chellapilla and Maykov [11] researched the prevalence of

JavaScript redirection on the web and gave a detailed tax-

onomy of different JavaScript-based redirection techniques.

They concluded that this type of redirection is most notori-



ous and hard to detect due to the versatility of JavaScript,

which allows a number of obfuscation and dynamic-script-

injection techniques. Wang et al. [32] built a system

called “Strider Honeymonkey” to visit each page with a web

browser and analyze the redirection behavior of malicious

web servers. Their results showed that most malicious web

sites use front-end servers to automatically redirect browser

traffic to a back-end exploit server, specializing in exploit-

ing client computers. Along the same line, Spamscatter [7]

mines the URL links in the spam email and follows any

redirection to reach the destination scam websites. They

found that over 68% of scams adopt certain redirection tech-

niques to protect the true destination servers. Because of the

large-scale disposable nature of botnets, bots become ideal

platforms for hosting redirection services. This is exem-

plified by the recent emergence of fast-flux service network

(FFSNs) [27], which achieve high availability by rapidly

changing the IP addresses associated with the fast-flux do-

mains. In FFSNs, most of the nodes are bots whose purpose

is to redirect the unsuspecting users to the destination web

site hosting the phishing/scam contents or exploit codes.

Holz et al. [22] studied the characteristics of FFSNs and de-

veloped detection algorithms that first extract URL links in

the spam emails and then identify FFSNs based on the num-

ber of unique IP addresses in DNS queries and the number

of unique AS numbers of those IP addresses. This is very ef-

ficient in capturing FFSNs whose behavior is drastically dif-

ferent from the normal cases. RB-Seeker differs from these

in several ways. First, RB-Seeker detects RBnets by utiliz-

ing more comprehensive data sources, including NetFlow,

DNS query logs and URLs in spam emails. This approach

effectively alleviates the shortcomings of the spam-only ap-

proach. For instance, the URLs embedded a spam email

could be heavily obfuscated or included inside a PDF or im-

age. Furthermore, inspecting the content of all the emails is

not always possible given privacy concerns. Second, RB-

Seeker monitors multiple features of suspicious domains’

DNS behavior over an extended period of time, utilizing an

effective 2-tier detection strategy; this enables RB-Seeker

to accurately detect RBnets with both aggressive and slow-

changing (stealthy) DNS characteristics.

3 System Architecture

We have developed and prototyped a system aimed at

the automatic identification of suspicious redirection behav-

ior and bot-infected computers involved in RBnets. Fig. 1

shows the architecture of the proof-of-concept RB-Seeker,

which consists of three cooperative subsystems, monitoring

three primary input sources: spam emails (acquired from

various sources using existing spam detectors), NetFlow

data, and DNS server logs.

The first subsystem, called the Spam Source Subsystem

(SSS), consists of two components: content analysis com-

ponent and URL probing engine. The former accrues a

vast collection of spam emails using traditional spam de-

tection techniques: personal spam mailboxes, online spam

archives, and a spam relay server setup on a residential

network. It analyzes the spam and extracts the embed-

ded links into the spam URL database. The URL prob-

ing engine follows the embedded links stored in the spam

URL database and compiles a list of domains participating

in redirection, which are added to the redirection domain

database. The second component, the NetFlow Analysis

Subsystem (NAS), also generates a list of redirection do-

mains. However, unlike the SSS, the NAS monitors net-

work flows on a large university core router and uses se-

quential hypothesis testing to detect IPs participating in

redirection based on flow characteristics. These IPs are

fed into the correlation engine, which uses DNS query logs

to extract the associated domains, adding them to the redi-

rection domain database. The redirection domain database

compiled by the SSS and the NAS is used by our third—and

final—subsystem, the active DNS Anomaly Detection Sub-

system (a-DADS), which comprises two components. The

first component, the DNS probing engine, continuously per-

forms DNS digs on the domains in the redirection domain

database, logging the results to the DNS query database.

The other component of the a-DADS, the RBnet classifi-

cation engine, extracts various attributes for each domain

from the DNS query database and uses a hyperplane deci-

sion function to classify the domains as valid (i.e., benign)

or malicious (i.e., belonging to a RBnet). If a domain is

determined to be valid, it is removed from the redirection

domain database and whitelisted to prevent the SSS or the

NAS from reading it. When a RBnet domain is detected, it

generates an alert report, containing the detailed DNS query

logs for the domain (stored in the DNS query database), al-

lowing for further manual analysis on the RBnet’s DNS be-

havior if needed.

4 Spam Source Subsystem

Because spammers are driven by the incentive of profits,

most spam emails contain embedded phishing or scam links

and allure unsuspecting individuals to phishing/scam web-

sites or web pages containing malicious exploit code. In

most cases, to protect the destination servers, users are redi-

rected through one-or-more redirection servers, which are

likely to be compromised computers serving as RBs. Tak-

ing advantage of this close connection between RBs and

spam/phishing emails, the SSS uses the embedded URLs

in the spam message bodies as the starting point to trace

out and detect machines participating in the redirection in-

frastructure. The SSS starts with the real-time collection of

spam emails from multiple sources, including a spam relay



Figure 1: Architecture of the proof-of-concept RB-Seeker

trap1 set up at a residential network, spam emails from the

department mail server and several personal junk mailboxes

at large email service providers. The SSS also downloads

the latest spam emails from an online spam archive [21],

which publishes more than 50,000 spam emails monthly.

Upon collecting a new spam email, content analysis is per-

formed on the message body to extract embedded URLs.

After eliminating legitimate URLs using a precomposed

whitelist, the SSS timestamps the remaining suspicious

links and puts them into the spam URL database. The prob-

ing engine periodically retrieves URLs from the database

and probes them to detect redirection behaviors.

According to [11], modern browsers can be redi-

rected in three ways: HTTP-status-code redirection (e.g.,

301 moved permanently, 302 temporary redirect, etc.),

HTTP-meta-refresh-header redirection, and client-side

script redirection. The SSS handles HTTP-status-code

redirection by using wget [3] to fetch the webpage of

a URL link. By default, wget detects the redirection

status code and follows the URL specified in the loca-

tion header entry of the HTTP response. By parsing

the wget log file, the SSS can identify all intermediate

redirection servers using HTTP-status-code redirection.

Unfortunately, wget does not handle the other two types

of redirection. To solve the problem, the SSS analyzes

each downloaded webpage and searches for HTTP refresh

tags and redirection scripts. More specifically, to capture

HTTP-meta-refresh-header redirection (where the web

1A spam relay trap works like a spam honeypot. It appears to be an

open SMTP server that allows anyone on the Internet to send email through

it (we block the outgoing traffic, so no spam emails are sent). Because

spammers extensively scan and exploit open relays to re-route their spam

emails, our open relay trap is able to collect a large amount of spam every

day (on average 7,900 spam emails/day).

pages use a META tag to redirect users), the SSS searches

for the specific META tag with http-equiv attribute set to

“refresh” and extracts the destination URL from the content

attribute. For example, a typical use of META refresh

header is as follows: <meta http-equiv="refresh"

content="0;url=http://www.destination.com">.

For script-based redirection, which is known to be most

notorious and difficult to capture, the SSS focuses on

detecting the most common JavaScript-based redirection

techniques by scanning the web page for JavaScript code

that changes a location property (e.g., “window.location,”

“location.replace,” “document.location,” “location.href,”

etc.) to the redirection destination URL. However, this type

of static analysis can be evaded by sophisticated redirection

techniques such as obfuscation, dynamic code injection and

self-modifying JavaScript code [11]. We leave the dynamic

analysis of web pages to identify redirection as our future

work. However, a possible solution is to use a client-side

honeypot (such as Capture-HPC [1]) that drives a real

browser (with JavaScript enabled) to visit each suspicious

URL and monitor the transition between web pages. After

extracting the destination URL from either META head

or JavaScript code, the SSS invokes the probing engine

again on these links to identify further redirection attempts.

This procedure is repeated until no further redirection is

identified in the final destination web page or a predefined

threshold is reached (to prevent an infinite loop). The

numbers of observed web pages that use each redirection

technique are: 61280 (54.1%) Status Code , 6639 (5.9%)

Refresh Tag and 45285 (40.0%) JavaScript.

5 NetFlow Analysis Subsystem

This section describes the design of the second sub-

system, the NetFlow Analysis Subsystem (NAS). Although



quite useful, spam emails as a data source provide only a

single vantage point with its own limitations. For example,

spammers send image- or PDF-based spam emails to evade

content-based filtering, so URL links might not appear as

plain text in the spam body. Also, a user could be directed

to a RB by clicking a link on a malicious web page, an IM

message or many other ways. In addition, inspecting each

email body is not always possible because of privacy con-

cerns/laws. To complement the SSS and improve the de-

tectability of RBnets, the NAS takes advantage of NetFlow

records, identifying redirection servers without the need for

packet content analysis.

5.1 Redirection behavior characterization

Currently, the NAS operates on the NetFlow records col-

lected from a core router of a very large university (the Uni-

versity of Michigan) network and looks for suspicious redi-

rection attempts of web traffic. NetFlow is a network pro-

tocol developed by Cisco for summarizing IP traffic infor-

mation [5]. Although capturing and analyzing packet-level

data can provide the highest accuracy, the associated cost is

prohibitively high even for a medium-size network. As a re-

sult, NetFlow, as a light-weight alternative, has become the

most widely-used technique for network monitoring, traffic

accounting, etc. A flow is defined as a sequence of packets

between a source and a destination within a single session

or connection. A NetFlow record contains a variety of flow-

level information such as IP protocol, source/destination IP

and port, start and finish timestamps, and flow size. How-

ever, packet contents are not available, making it impossible

to examine packet payloads and detect redirection behav-

ior via HTTP status code or refresh headers. To address

this limitation, we developed several redirection identifica-

tion heuristics based only on the transport-layer information

available in NetFlow data and the correlation of the traffic

flow’s size and timing behavior. The intuition behind these

heuristics is that the behavior of visiting a redirection web

server exhibits unique characteristics in terms of flow size,

flow duration, and inter-flow duration, which are statisti-

cally different from normal, non-redirecting websites (see

Table 1 for a detailed comparison) and can thus be used

to capture redirection activities. In Table 1, to obtain the

“ground truth” of redirection behavior, we collected a set of

server IPs that have been determined by the SSS to perform

redirection activities; we then use use tcpdump to capture

all the packets between the SSS and those servers. In this

way, we can build a database of redirection behaviors from

the confirmed redirection server IPs and compute the values

for each feature. Similarly, the values for normal browsing

are computed using two days’ packet traces of a user’s nor-

mal web browsing activities after removing the packets of

identified redirection connections. Next, we will elaborate

on each feature and the intuition behind it.

Mean Median Std dev

Flow duration redirection 305.5 128.6 2159.2

(ms) normal 33042.3 10028.8 91912.5

Inter-flow redirection 392.7 154.4 872.4

duration (ms) normal 40132.9 1345.5 87281.0

Flow size redirection 2401 629 44530

(bytes) normal 51495 4852 192431

Table 1: Comparison of average flow characteristics be-

tween redirection and normal browsing

Short inter-flow duration Redirection often leads to

multiple, consecutive HTTP flows from the same source IP

address to different destination web servers within a short

time period. The inter-flow duration is defined as the differ-

ence between the start times of two consecutive flows orig-

inating from the same source IP and destined for distinct

destination IPs. Intuitively, the fast and automatic transition

caused by redirection from one web server to another is in

stark contrast to the considerably longer time taken for a

user to move between websites during normal web brows-

ing, e.g., by manually clicking the links. From Table 1, we

can see that normal browsing usually takes two orders-of-

magnitude longer than the redirection.

Small flow size The flow size of visiting a redirection

website is much smaller than that of visiting a normal web-

site. This is because the redirection server usually returns

only the redirection command data, such as HTTP status

code, so that it will not waste bandwidth and hence, can

be used for redirecting more clients. For example, in the

case of most HTTP-status-code redirections, the redirection

server returns only several tens of bytes, containing the sta-

tus code (e.g., 301, 302) and a new destination server loca-

tion. On the other hand, visiting a normal website usually

necessitates downloading its homepage (often with pictures,

longer texts, and embedded objects); thus, the flows of nor-

mal browsing are much larger in size (see Table 1).

Short flow duration Because of the small amount of data

returned by a redirection server, the communication time

(i.e., flow duration) between the user and the redirection

server is often much smaller than that for a valid web server.

Because the purpose of a RB is to forward a client to the

mothership hosting the nefarious contents, it is of no bene-

fit for a RB to maintain the connection with the client longer

than needed. In most cases, the RB terminates the connec-

tion as soon as the client is handed over to another web

server. By contrast, the connection time in a normal web

browsing is considerably longer, especially because the cur-

rent version of HTTP/1.1 introduces the keep-alive mecha-

nism, which allows long-lived, persistent connections. For

example, Internet Explorer (IE) times out a connection only

after 60 seconds of inactivity.



5.2 Sequential hypothesis testing

Based on the above characteristics, the NAS exploits the

temporal and size correlations among flows to identify redi-

rection behavior. The NAS first sorts flow records chrono-

logically and groups them by the source IP addresses.

Within each group, the NAS computes the values of each

feature—inter-flow duration, flow size and flow duration—

for each destination IP; this forms an observed sample for

each connection event between the source IP and a desti-

nation server. Our goal is then to classify whether the re-

mote server is performing “redirection” or “normal behav-

ior.” The simplest way is to set up a fixed threshold for all

three features and make decisions based on each individual

observation. However, as we will show later, the distribu-

tions of normal and redirection behaviors for all the fea-

tures are very heavy-tailed, indicating that a simple thresh-

old method may introduce significant classification errors.

Intuitively, this could be improved by utilizing multiple ob-

servations so that each decision is made with a high level

of confidence. To achieve this goal, we adopt the Sequen-

tial Probability Ratio Testing (SPRT) [30], a type of statis-

tical hypothesis testing where the number of observations

required by the test is not pre-determined, but is a random

variable determined by the underlying distribution. In other

words, a decision is made only after enough evidence has

been accumulated to support the acceptance or rejection of

the hypothesis. SPRT thus achieves high accuracy and has

been widely used in many anomaly detection scenarios such

as detecting port scanners [25] and botnets [20].
To perform the Sequential Hypothesis Testing (SHT),

we consider two hypotheses: H0 (the remote server is a
normal server) and H1 (the remote server is a redirection
server). In order to demonstrate how SHT works, let’s
examine how the NAS uses it to arrive at a classifica-
tion decision for the inter-flow-duration feature (the pro-
cedure is identical for the other two features). Assum-
ing the hypothesis Hi holds, the inter-flow duration fol-
lows some distribution (how to model such a distribution
is discussed in the next subsection) whose density function
is denoted as fi(Tinter) = f (Tinter|Hi). Let T1,T2, . . . ,Tn be
a sequence of observed samples of the inter-flow duration
for the same destination IP. We can compute the likelihood

ratio as Λ(n) = f1(T2) f1(T2)··· f1(Tn)
f0(T2) f0(T2)··· f0(Tn) = ∏n

k=1
f1(Tk)
f0(Tk)

. Then, for

each stage k, or the k-th observation (k = 1,2, . . . ,n), the
test leads to one of three decisions based on the following
decision rules: (1) accept H1 if the likelihood ratio exceeds
the threshold η1; (2) accept H0 if the likelihood ratio is be-
low another threshold η0; and (3) otherwise, pend and wait
for another observation. More specifically, for the k-th ob-
servation of a new connection,

Output =







Accept H1 if Λ(n) ≥ η1

Accept H0 if Λ(n) ≤ η0

Pend otherwise.

One nice property of SHT is that the thresholds η0 and η1

can be set according to the target false-positive rate α (type-

1 error: reject H0 although it is true) and false-negative

rate β (type-2 error: accept H0 although it is false). Wald

[30] showed that, by setting the threshold to η0 = 1−β
α and

η1 = β
1−α , the true false-positive and false-negative rates

will deviate from α and β by only a small margin.

5.3 Flowbased redirection identification

Fig. 2 shows the flowchart of how the NAS combines

the three features and applies SHT to detect redirection

servers. When a new connection is observed from a source

IP (assuming the new connection is the n-th observation),

the inter-flow duration Tn (defined as time difference be-

tween the current flow and the immediately preceding flow

from the same IP) is compared against a loose threshold;

this threshold value is chosen so that any inter-flow dura-

tion larger than this threshold is very unlikely to have been

caused by redirection.2 Then, if the inter-flow duration is

below the threshold, the hypothesis testing history Λ(n−1)
is retrieved from the database, and the new likelihood ratio

is computed as Λ(n) = Λ(n−1)∗ f1(Tn)
f0(Tn) . Depending on the

likelihood ratio, the NAS outputs one of three decisions:

accept H0, reject H0 (i.e., accept H1), or pend. If the out-

put is to accept H0, then the destination IP of the preceding

flow is considered a normal server, and the hypothesis test-

ing history for that IP is cleaned up. If the existing data

samples cannot provide enough confidence to reject or ac-

cept the hypothesis, the pending decision is chosen, and the

current likelihood ratio is stored in the hypothesis testing

database for future testing when additional observations be-

come available. Finally, if the output suggests that a poten-

tial redirection behavior has been observed (i.e., to accept

H1) according to the inter-flow duration, a second hypoth-

esis testing is performed on the flow size of the preceding

flow. The reason why the NAS relies on multiple metrics

to identify redirection behavior is that a single metric often

leads to false positives. Specifically, the inter-flow-based

hypothesis testing cannot distinguish concurrent flows from

redirection flows. Concurrent flows occur when the destina-

tion web server references resources (e.g., pictures, videos)

from other servers. As a result, when the client browses

the web page, it requests several concurrent connections to

multiple destinations within a short time frame. This re-

sults in short inter-flow durations that are indistinguishable

from those caused by redirection behavior. Thus, we use

flow size as a second-line filter to eliminate the potential

false positives resulting from concurrent flows. Because the

purpose of concurrent flows is often to fetch the (multime-

dia) contents of a web page, the flow size is expected to be

much larger than is needed for redirection commands (e.g.,

status code). The hypothesis testing on flow size determines

2In our current experiment, we set this threshold to 30 seconds.



whether to accept the hypothesis or store the likelihood ra-

tio for future testing. If the result indicates a redirection

behavior, then a third, optional, hypothesis testing on flow

duration could be performed. The flow duration is optional

because our experimental measurements have shown that

some redirection servers do not terminate connections—

even after sending the redirection status code. The idle con-

nection is kept alive without any data transmission until the

client browser times out and closes the session. We con-

jecture this could be due to misconfiguration of the server.

Thus, if a more strict detection algorithm is desirable, the

optional flow-duration hypothesis testing can be performed

to reduce false positives at the cost of increasing the false-

negative rate (e.g., the NAS may fail to detect long-lived

redirection servers). In our current implementation of the

NAS, only the first two hypothesis tests are performed.

Figure 2: Flowchart of the algorithm for identification of

redirection behaviors

5.4 Modeling the distribution of flow features

One of the pre-requisites for a hypothesis test is to deter-

mine the density function of different features conditioned

on the hypothesis, i.e., fi(T ) and fi(S), where T is the inter-

flow duration, S is the flow size and i = 0 or 1. As men-

tioned before, to obtain the “ground truth” of redirection

behaviors, we collect packet traces of confirmed redirection

servers from the SSS and normal web-browsing activities

to build two (i.e., normal and redirection) datasets for each

feature. A simple examination of the histogram of these

data sets shows that all the features follow non-negative

heavy-tailed distributions, each with a single tail. Statisti-

cal distributions that satisfy these conditions include Pareto,

log-normal and Weibull distributions. We apply the maxi-

mum likelihood (ML) method to estimate parameters for

µ 95% C.I. of µ σ 95% C.I. of σ

Inter-R 5.270 [5.260, 5.281] 0.974 [0.966, 0. 9812]

Inter-N 7.982 [7.896, 8.067] 2.512 [2.454, 2.574]

Size-R 6.529 [6.517, 6.542] 0.956 [0.948, 0.965]

Size-N 8.423 [8.380, 8.466] 2.093 [2.063, 2.125]

Table 2: Maximum likelihood estimates of parameters for a

log-normal distribution (Inter-R means inter-flow duration

for redirection, and Inter-N means inter-flow duration for

normal browsing. Similarly, size-R(N) is defined.)

each distribution and compute Kolmogorov-Smirnov statis-

tics [4], a popular method to evaluate how well a distri-

bution fits the actual data. The result shows that the log-

normal distribution achieves the best fit between the empir-

ical data and analytical model. Its density function is given

in the form of: f (x;µ,σ) = 1

xσ
√

2π
e
− (lnx−µ)2

2σ2 . The log-normal

distribution is characterized by two parameters µ and σ. Ta-

ble 2 shows the ML estimates of these two parameters and

their 95% confidence interval for inter-flow and flow-size

features. Fig. 3 depicts the CDF of inter-flow durations in

both redirection and normal cases as well as the log-normal

distribution fitting the results of the ML estimation. The

flow-size result is similar to this, and hence omitted. Hav-

ing estimated µ and σ, the hypothesis tests on these features

can be done easily by calculating the likelihood ratio with

the density function of a log-normal distribution and param-

eter values in Table 2.

5.5 DNS log correlation

Using continuous monitoring of traffic flows, the NAS

performs SHT to detect potential redirection activities and

stores the IP addresses of suspected redirection servers

(Fig. 1). However, many redirection servers could be be-

nign, since redirection is also frequently used for legitimate

purposes (e.g., web site migration, the use of a short and

easily-remembered domain name to replace a long and con-

voluted one, redirection among alias domain names, etc.).

To pinpoint malicious RBnets, we need to validate the DNS

behavior of their domain names. However, NetFlow records

only store the flow IP addresses without their DNS names.

Note that the reverse DNS lookup is not useful in identi-

fying the domain names for RBs; the forward mapping be-

tween the phishing/scam domains and bots’ IPs are regis-

tered by the adversaries and are resolved by DNS servers

they possibly control. Attackers can thus associate an arbi-

trary domain name with the bot’s IP. On the other hand, a

reverse DNS lookup returns the actual domain name of the

RB as determined by the bot’s ISP; thus, it will not match

the malicious domain used in the scam. To address this

problem, the NAS correlates the redirection IPs it has de-

tected with domains found in the local DNS servers’ DNS

query logs. These identified redirection domains will first



10
0

10
2

10
4

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (milisecond)

C
D

F
CDF of inter−flow duration

 

 

normal

redirection

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Time (milisecond)

distributuion fit of redirection inter−flow time

 

 

histogram

log−normal density

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Time (milisecond)

distributuion fit of normal inter−flow time

 

 

histogram

log−normal density

Figure 3: Log-normal distribution fit for inter-flow durations

be filtered against a known whitelist to remove legitimate

redirection domains, such as popular content distribution

networks3 (e.g., Akamai, CoDeeN, LimeLight, etc.) and

known redirection service domains [2] (e.g., google, yahoo,

tinyurl, etc.). The remaining domains are placed into the

redirection domain database to be probed and verified by

the a-DADs, as we discuss next.

6 Active DNS Anomaly Detection Subsystem

The SSS and the NAS identify domains involved in redi-

rection, either deterministically (from spam emails) or prob-

abilistically (from NetFlow records), and store them in the

redirection domain database. However, since valid domains

commonly make use of redirection (e.g., to balance server

load), there is no guarantee that the redirection domains de-

tected belong to a RBnet. It is the purpose of the active

DNS Detection Subsystem (a-DADS) to determine if any of

the suspicious domains in the database actually belongs to

a RBnet.

6.1 Data collection and analysis

For each unique domain in the redirection domain

database, the a-DADS continuously performs and logs DNS

queries for the domain’s IPs (A records), name servers (NS

records), name servers’ IPs (NS-A records), the reverse

DNS lookup on any IPs returned (i.e., the A and NS-A

records), and the Autonomous System Number (ASN) to

which each IP belongs. To analyze RBnet behavior over

time, we continue to perform these digs until we have ob-

tained at least a week’s worth of valid queries: non-cached

queries that didn’t time out.

6.2 Characterization of RBnet behavior

RBnets, by their very nature, exhibit atypical DNS be-

havior. This is due to the way a RBnet is structured and the

function it serves. A criminal, utilizing a redirection infras-

tructure for misdirection, will register an arbitrary domain

3We also developed an effective heuristic to detect previously unseen

CDN domains and IPs, which will be discussed in Section 6.3.

name—perhaps a misspelling of a popular domain or an in-

nocuous name used for a phishing email—and then point it

to several bots in the RBnet. Thus, when the victim tries

to visit the malicious domain, the DNS server will respond

with one of the many bots’ IPs, redirecting the victim. In or-

der for this mechanism to provide reliable content delivery

for the malicious domain, the botmaster must make certain

the bots registered with DNS for the malicious domain are

online. Otherwise, the victim will not be able to connect to

the bot and be redirected to the nefarious content. Botnets

naturally suffer from unreliable connectivity, since they are

typically comprised of less secure home computers which

are not always online. Even with increased use of ‘always-

online’ broadband Internet, home desktops and laptops are

often turned off or suspended, making them unreliable. To

overcome this shortcoming, the botmaster must take certain

measures to ensure the domain resolves to one of the online

RBs, resulting in abnormal DNS query behavior. Based on

the mechanisms available to the botmaster through DNS,

we expect to observe behavioral abnormalities for the fol-

lowing attributes.

IP usage Botmasters incorporate several IP management

strategies when advertising their RBnets to the DNS. These

strategies cause the DNS query results for RBnet domains to

exhibit discernable variations from those of valid domains

using Content Distribution Networks (CDNs) or Round-

Robin DNS (RRDNS). First, we expect there to be more

unique IPs associated with a particular RBnet domain over

time. RBnets will accrue, over time, more unique IPs than

valid domains, since valid domains will have more stable

servers hosting the content. In addition to supplying more

IPs than valid domains over time, we expect many RBnets

to supply more unique IPs per individual valid query. By

supplying a larger set of IPs per query, the botmaster helps

ensure the malicious domain resolves to a valid IP. With a

larger pool of IPs, there is a higher probability one of them

belongs to an online bot, decreasing the level of vigilance

required in monitoring the RBnet’s connectivity. As a fur-

ther consequence of poor connectivity, botmasters will have



to replace the IPs registered to their malicious domain fre-

quently, requiring short TTL values. While CDNs also re-

place their IPs frequently, they will have a smaller pool of

unique IPs over time than RBnets.

Reverse DNS lookup This involves a reverse DNS

lookup on the IPs returned in the A records. While a reverse

DNS lookup doesn’t always return a result, when it does, it

can be used to help detect a RBnet. Specifically, RBnets

will often return names with “bad words” typical of home

computers, such as cable, broadband, comcast, charter, di-

alup, dynamic, etc. Therefore, for each domain, we rank the

occurrences of suspicious words. This is a reliable metric,

since the reverse DNS name returned by a DNS server can-

not easily be faked by a botmaster. For this reason, compro-

mised home computers will often return reverse DNS names

littered with suspicious words not present for valid domains

(both RRDNS and CDNs). We also filter out valid domains

containing “bad words” (e.g., comcast.net, charter.net), so

that these are not unfairly weighted.

AS count Because the compromised computers that make

up a botnet are scattered geographically, the IPs returned

for RBnet domains will belong to a more diverse set of Au-

tonomous Systems (ASes). Thus, we keep track of the num-

ber of unique ASes associated with a domain, as this should

be a helpful metric in identifying RBnets.

6.3 CDN Filter

Consisting of thousands of servers distributed around the

globe, CDNs must assume that any (and potentially many)

of their servers could experience downtime due to network,

software, or hardware failures. With this pragmatic view

in mind, CDNs have been developed to be resilient to such

failures, ensuring reliable content availability to their cus-

tomers [6]. Consequently, they utilize DNS-based solutions

similar to those currently being employed by botmasters.

For example, CDNs and RBnets both use very small TTL

values, allowing their networks to quickly respond to fail-

ure. Also, they both often advertise multiple IP addresses

for a given domain, hedging their bets should some IP ad-

dresses go offline. CDNs also make use of aggressive load

balancing, frequently changing the IPs advertised by DNS

to ensure the highest throughput for their customers. These

techniques often make the DNS behavior of CDNs appear

akin to that of a RBnet.

Because of this behavioral similarity among CDNs and

RBnets, we have developed a CDN Filter for the a-DADs to

remove—from the redirection domain database—those do-

mains that we can determine to be using legitimate CDNs.

The CDN Filter operates based on the following two obser-

vations: (1) RBnet domains do not return IPs for legitimate

CDNs in their DNS A records, and (2) each CDN server

(with a corresponding IP) will be used to service multiple

legitimate domains. As a result, the a-DADs CDN Filter

analyzes the reverse DNS lookup of the A-record IPs for

all the domains in the redirection domain database. When

an A-record IP displays a reverse DNS name matching that

of a legitimate CDN, we add the IPs seen for that domain

to the CDN-IP database. The CDN-IP database is then

cross-referenced against the IPs seen for other domains in

the redirection domain database. When a domain is dis-

covered to contain an IP from the CDN-IP database, it is

flagged as using a CDN, and its IPs are added to the CDN-IP

database. This process repeats, filtering out those domains

that are using valid CDNs. In this way, the a-DADs CDN

Filter removes those valid (non-RBnet) domains from the

redirection domain database that exhibit DNS patterns most

similar to those of RBnets.

6.4 RBnet classification

After filtering out the known CDNs with the CDN Fil-

ter, the a-DADS employs a 2-tier linear Support Vector

Machine (SVM) detection strategy on the remaining sus-

picious domains. The first-tier SVM (SVM-1) is designed

to quickly identify those RBnets exhibiting a strong devia-

tion from normal DNS behavior, which we term Aggressive

RBnets. Any domain not identified as a RBnet by SVM-1

is further analyzed. The a-DADS continues to perform digs

on the domain and applies the second-tier SVM (SVM-2)

to the results. While SVM-1 is designed to identify Aggres-

sive RBnets quickly from minimal valid queries, SVM-2

takes more time and is capable of detecting RBnets that try

to mimic the short-term DNS behavior of valid domains,

which we term Stealth RBnets.

Both SVM-1 and SVM-2 make use of a linear classifier
of the form:

F(x) =

{

wT x−b > 0 , if x is valid domain

wT x−b < 0 , if x is RB domain

where w is a weight vector, b is a bias term, and x is a

vector of behavioral attributes. These variables and vectors

are different for each tier, and will be discussed next.

6.4.1 SVM-1

Using the CDN Filter, we filtered out any known CDN do-

mains from the redirection domain database compiled by

the SSS and the NAS. After filtering, the remaining sus-

picious domains were predominantly RRDNS, with a few

CDN domains that escaped detection by our filter. We care-

fully selected a set of 124 valid domains that were repre-

sentative of the different types of valid DNS behavior we

observed. We also manually identified 18 Aggressive RB-

net domains, which were easy to identify by hand due to

their aggressive IP management tactics. These 142 domains

(124 valid domains and 18 Aggressive RBnet domains)



Figure 4: Domain attributes for the 142 domains in SVM-1

training set (two valid queries)

composed the training set for SVM-1. We then used 10-

fold cross-validation on the training set to determine which

behavioral characteristics best differentiated RBnets from

valid domains based on only two valid queries. We dis-

covered that three behavioral characteristics dominated the

SVM equation: the total number of unique IPs seen, the

total number of unique ASes seen, and the number of re-

turned DNS names with “bad words”. The other behav-

iorial characteristics we previously mentioned, while use-

ful when analyzing multiple queries, were not as significant

when observing only two valid queries. We chose to use

the linear SVM best suited for classification based on the

minimal number of valid queries, since the goal of SVM-1

is fast, accurate detection of Aggressive RBnets. The re-

sulting equation is used for SVM-1, with the value returned

being indicative of a domain’s suspicion level:

f (x) = wT x−b

= −1.257∗Nunique IPs −26.401∗NASes

−13.024∗NDNS bad words +162.851

where Nunique IPs is the number of unique IPs, NASes is the

number of ASes, and NDNS bad words is the number of DNS

“bad words” seen (should the reverse DNS lookup return a

result). Testing the SVM-1 equation by using 10-fold cross-

validation on the training set achieved 99.3% accuracy. We

further evaluated the accuracy of SVM-1 by running it on

the remaining domains in the redirection domain database

not used in the training set; the evaluation of these results

will be discussed Section 8.2.

A graph of the three attributes used in SVM-1 can be

seen in Fig. 4. Each attribute is represented as a fraction

of the largest value seen for that attribute among all the do-

mains in the training set, allowing us to show all their rela-

tionships on a scale from 0 to 1. From Fig. 4, it is clear that

Aggressive RBnets display a distinct behavioral difference

from valid domains for the monitored attributes (gaps in the

graph visually separate valid domains from Aggressive RB-

net domains). The spike at the end of the good domains for

the Total unique IPs is due to a CDN that managed to escape

our CDN Filter. While it contains a large number of IPs (on

par with Aggressive RBnets), there is a noticeable differ-

ence in its number of ASes and DNS “bad words”. This

difference allows SVM-1 to classify it as benign, causing

it to be further monitored by SVM-2. Should any RBnets

exhibit behavior similar to valid CDNs, they also will be

monitored by SVM-2, which takes advantage of long-term

DNS behavior to distinguish valid domains from RBnets.

6.4.2 SVM-2

One factor that will differentiate a Stealth RBnet from a

valid domain or a CDN is the number of unique IPs and

ASes it accrues over time. While DNS queries for valid do-

mains (such as some CDNs) may return many IPs spanning

multiple ASes (similar to RBnets), queries will continue to

return those same IPs after a significant period of time. That

is to say, the number of unique IPs and ASes returned by a

valid domain over a day will be nearly the same set of IPs

and ASes returned a few days later. This is because valid

domains have fairly stable servers. While hardware or soft-

ware failures may result in a server temporarily going of-

fline, causing a new IP to be introduced to the DNS, they

will not remain offline indefinitely. Ultimately, the prob-

lem will be fixed, the server brought back online, and its IP

reintroduced into the DNS. On the contrary, Stealth RBnets

are only able to appear like valid domains; they are still

composed of compromised computers. The compromised

computers may be more persistent than those in Aggres-

sive RBnets, but they will still be more unreliable than the

servers used in valid domains, such as CDNs. Additionally,

some Stealth RBnets may utilize a legitimate redirection in-

frastructure that has been compromised, allowing them to

mimic valid domains more easily. However, the servers in

the compromised redirection infrastructure will still be less

persistent than a valid CDN for the following reasons. First,

the system administrators of the legitimate redirection in-

frastructure might thwart the botmasters’ abuse of their sys-

tem, rendering some of the botmasters’ IPs useless. Second,

in an effort to remain undetected by the system administra-

tors, the botmaster will have to continuously change which

servers are being exploited for the Stealth RBnet. In either

case, the Stealth RBnet will slowly, over time, continue to

accrue more and more unique IPs that span more and more

ASes. This is in direct opposition to a valid domain or CDN,

which has a fairly stable pool of server IPs to advertise to

the DNS.

From our manual analysis of Stealth RBnets, we discov-

ered that they tend not to return reverse DNS names. This

could be because they are not composed of home comput-

ers (which tend to return reverse DNS names more often

than legitimate servers), or are utilizing legitimate redirec-

tion infrastructures that have been compromised. Addition-

ally, they tend to show very little variance in unique IPs

and ASes between valid queries. We discovered this is be-

cause they are utilizing very short TTL values of around one

second. This allows the botmaster to use a single IP (or a



small set of IPs) for multiple valid queries. The incredibly

small TTL provides the botmaster with a fine level of con-

trol, permitting the IP to be changed as soon as the bot goes

offline. In this way, the botmaster can keep both the unique

IP count and the number of ASes low across multiple, valid

queries, allowing the Stealth RBnet to go undetected by our

SVM-1 as well as traditional FFSN detectors. To counter

this strategy, our SVM-2 monitors the number of unique

IPs and ASes seen in a day. It then continues to monitor the

suspicious domain for up to a week, analyzing how many

unique IPs and ASes it has accrued after this time span.

For the SVM-2’s training set, we removed the 18 Ag-
gressive RBnet domains from the SVM-1’s training set and
replaced them with 10 Stealth RBnet domains, which we
identified manually. We then used 10-fold cross-validation
on the 134-domain training set (124 valid domains and
10 Stealth RBnet domains) to determine the behavioral at-
tributes best suited for differentiating Stealth RBnets from
valid domains, given an extended observational period.
As expected, the previously mentioned attributes based on
changes between valid queries became insignificant due to
the very short TTL value imposed by the botmaster. Ad-
ditionally, the reverse DNS names with “bad words” be-
came insignificant because none of the Stealth RBnets re-
turned reverse DNS names. Thus, we found that SVM-2
only needed to monitor the number of unique IPs and ASes
seen over time, for up to 1 week. We tested these met-
rics using 10-fold cross-validation on the training set and
achieved 96.7% accuracy. We further evaluated the accu-
racy of SVM-2 by running it on the remaining domains
in the redirection domain database not used in the training
set; the evaluation of these results will be discussed in Sec-
tion 8.2. The resulting linear equation is used for SVM-2,
with the result indicating a domain’s suspicion level:

f (x) = wT x−b

= 52.497∗NDAY unique IPs −63.109∗NWEEK unique IPs

−10.924∗ (NDAY ASes +NWEEK ASes)+227.985

where NDAY unique IPs is the number of unique IPs seen after

a day, NWEEK unique IPs is the number of unique IPs seen af-

ter a week, NDAY ASes is the number of ASes seen after a day,

NWEEK ASes is the number of ASes seen after a week. Fig. 5

shows a graph of these four attributes for a subset of SVM-2

training set. It is clear from the graph, that while some good

domains slightly increase their total unique IP count from a

day to a week, the increase is not nearly as drastic as with

Stealth RBnets. Furthermore, all of the good domains have

a constant number of ASes over the week, whereas most

of the Stealth RBnets display a slight increase. Also, from

Fig. 5, it is apparent that during the first day, the Stealth

RBnets and the good domains share similar behaviorial at-

tributes. It is only after monitoring for an extended period of

time that the Stealth RBnets show their true colors, demon-

strating the need for the more timely approach of SVM-2.

Figure 5: Domain attributes for subset of good and bad do-

mains in SVM-2 training set

7 Discussion

Thus far, we have described the architecture of the RB-

Seeker and its effectiveness in detecting current RBnets.

However, security solutions are in a constant arms race be-

tween defenders and attackers, and the RB-Seeker is no ex-

ception. In this section, we discuss several ways adversaries

may attempt to evade the RB-Seeker, providing potential

countermeasures against them.

An attacker or botmaster who has learned the RB-

Seeker’s detection schemes may try to evade or confuse

them by altering the RBnet’s behavior according to the fea-

tures used by the NAS, the SSS and the a-DADS. For in-

stance, adversaries may try to confuse the NAS by invalidat-

ing the basic assumption that the NAS has made for redirec-

tion activities. Specifically, RBs may attempt to mimic the

normal, non-redirection servers by waiting for an extended

period of time (e.g,. 30 seconds) before redirecting clients,

creating a longer inter-flow duration. They may also try

sending useless content in their packets in addition to redi-

rection commands, increasing the flow size. This may force

the NAS to delay the detection decisions in order to accu-

mulate enough observational samples. In the worst case, the

NAS may mis-classify the redirection activities as normal.

Like most behavior-based detection systems, the NAS is

vulnerable to mimicry attacks: where adversaries success-

fully disguise their behavior as normal activities. However,

because the characteristics of redirection are generally two

orders-of-magnitude smaller than those of normal browsing

(Table 1), in order to mimic the normal behavior, the at-

tacker has to use most of the bot’s already limited resources.

For example, the bot must keep connections alive and send

useless data, which will limit the number of victims that

can be served by each individual bot. Otherwise, their con-

sistent deviation from normal activities will still present a

good chance of being caught by the NAS after observing

enough samples. Second, to prevent the SSS from auto-

matically extracting HTTP links from the email body, at-

tackers may embed obfuscated/encoded URL links in spam

emails instead of using plaintext or HTML format. They

could also take advantage of sophisticated redirection tech-

niques (e.g., obfuscated JavaScript) to circumvent the redi-



rection detection engine in the SSS. Although our prototype

implementation only handles the most common and simple

URL formats and redirection techniques, the SSS can be

easily strengthened to counter such evasion tactics by in-

corporating existing methods for analyzing text embedded

in images [16] and detecting sophisticated redirection links

with client-side honeypots [1]. Finally, to circumvent the

a-DADS detection, a botmaster may attempt to mirror the

DNS behavior of popular CDNs by lowering the number

and diversity of IPs associated with the domain. However,

as discussed earlier, this not only limits the availability and

throughput achievable by the RBnets, but these Stealth RB-

nets can still be detected with the a-DADS’s improved CDN

filtering technique and 2-tier detection strategy. Therefore,

while there are several ways a botmaster could attempt to

evade detection, some of them are too expensive to pro-

vide enough incentives for botmasters. Furthermore, as is

demonstrated in the next section, the RB-seeker is still quite

effective in identifying many RBnets.

8 Implementation and Evaluation

In this section we describe the implementation of the

overall system and evaluate the overhead of its subcompo-

nents. We then evaluate the performance of the a-DADS

classification function, comparing it with the current state-

of-the-art. Lastly, we briefly describe some of the DNS be-

havior for the RBnets detected with the RB-Seeker.

8.1 Implementation and overhead evaluation

We implemented a proof-of-concept RB-Seeker for

Linux kernel 2.6.18 on an HP ServerBlade with 2 Dual-

Core AMD Opteron(tm) Processors (2.2 GHz, 2024 KB

cache), 4 GB of RAM, and 260 GB of disk space. The sub-

components were implemented in Perl and Python. They

were continuously run to extract redirection domains from

spam emails and NetFlow traces and perform DNS queries

on the suspect domains.

On average, the SSS analyzes approximately 10,000
spam emails everyday (80% from spam relay and 20% from
the spam archive and personal junk mail boxes) and extracts
9,000 unique URL links. Among them, the SSS applies
the techniques described in Section 4 and determines more
than 700 redirection domains everyday, adding them to the
redirection domain database. Meanwhile, the NAS receives
95,000,000 flows from the core router everyday, 6,974,015
of which are HTTP flows4 and are analyzed by the SHT al-
gorithm (described in Section 5) to identify redirection ac-
tivities. On average, the NAS identifies between 500 and
600 domains daily. We also test the processing speed of the
NAS: the results show that the NAS is capable of parsing

4We consider a flow an HTTP flow if its destination port is 80 or 8080.

Since no packet payload information is available, we are not able to detect

HTTP flows using non-standard ports.

one day’s HTTP flow data within 10 minutes, demonstrat-
ing its efficiency and suitability for online analysis. Another
important factor that influences the NAS’s speed in detect-
ing a redirection server is the number of flows (i.e., obser-
vational samples) needed for the SHT algorithm to make a
decision (i.e., accept or reject a hypothesis). Since the re-
quired number of observed samples in sequential testing is
a random variable, depending on both current and histori-
cal observations [30], the expected number of observations
(flows) for the NAS to determine if the destination IP is per-
forming redirection can be approximated by:

E[N|H1] =
β ln

β
1−α +(1−β) ln

1−β
α

E[ln
f1(x)
f0(x)

]
=

β ln
β

1−α +(1−β) ln
1−β

α

ln σ0

σ1
+

σ2
1+(µ1−µ0)2

2σ2
0

− 1
2

where µi and σi (i = 0,1) are parameters for a log-normal

distribution on the condition of normal browsing (H0) and

redirection (H1). The values of µi and σi can be found in

Table 2. As a result, the expected number of observations

depends only on the target false-positive rate (α) or false-

negative rate (β). Intuitively, if we want to reduce α and

β, the expected number of required flows will increase, be-

cause the NAS has to accumulate more observed samples

to reach the desired confidence level before making a de-

cision. Figs. 8 and 9 in the appendix depict E[N|H1] with

different values of α and β based on inter-flow duration and

flow size, i.e., the expected number of flows the NAS has

to observe in order to accept the hypothesis that the desti-

nation server performs redirection. One can see from the

figures that the NAS is able to detect redirection servers by

using only a small number of observed samples (normally

5 or 6) with low false-positive and false-negative rates.

In addition, because the a-DADS can be digging quite a

few redirection domains simultaneously, we split its func-

tionality into two parts to keep its overhead and memory

footprint small. The first part simply reads the most recent

domains in the redirection domain database (built by the

SSS and the NAS) and performs digs on the domains, log-

ging the results to the DNS query database. The second part

then runs the RBnet classifier on these DNS logs once two

valid queries have been obtained. If, based on these two

queries, the classifier cannot identify the domain as belong-

ing to a RBnet, it continues to gather DNS queries on the

domains until it has accumulated enough for SVM-2 to re-

attempt classification. This approach reduces the amount of

memory required by the a-DADS and maintains DNS query

logs (in the DNS query database) for the suspicious domains

should manual analysis be required later.

When calculating the suspicion level for a domain, the

classifier must read all the domain’s data from the DNS

query database, extract the relevant behavioral characteris-

tics from the data, and then use those characteristics in the

SVM equation (either SVM-1 or SVM-2). To determine the

overhead of the unoptimized, proof-of-concept RBnet clas-



sifier, we did run-time performance tests for 150 domains,5

consisting of 50 randomly-chosen domains from each of the

following sets: Aggressive RBnet domains, Stealth RBnet

domains, and valid (i.e., benign) domains. We measured

the total time it took for the RBnet classifier to classify each

domain; this includes such unoptimized operations as read-

ing the data, parsing the data, extracting the characteristics,

etc. Therefore, we also measured the amount of time it

took for SVM-1 and SVM-2 to calculate the suspicion lev-

els used for classification (after the relevant characteristics

have been extracted from the DNS query data). The im-

plementation of SVM-1 and SVM-2 leaves little room for

optimization, unlike the rest of the RBnet classifier. We

found that the RBnet classifier had an average run-time of

0.644 second per domain. Meanwhile, SVM-1 and SVM-2

had average run-times of 8 and 12 microseconds, respec-

tively, hence making them suitable for a real-time detec-

tion system. Even when unoptimized, the proof-of-concept

RBnet classifier takes (on average) less than a second per

domain—sufficient for fast detection.

8.2 Evaluation of RBnet classifier

The a-DADS’s RBnet classifier (described in Sec-

tion 6.4) continuously monitored the 91,600+ suspicious

domains in the redirection domain database detected by

the SSS and the NAS over a period of approximately two

months. Utilizing the CDN Filter, the a-DADS was able

to determine 4,164 CDN domains (4,506 IPs) based on

the reverse DNS name. Using the recursive iteration tech-

nique described in Section 6.3, this number was increased

to 5,005 CDN domains (5,185 IPs), for a 16.8% increase in

CDN domains (13.1% increase in IPs). The remaining do-

mains were further filtered for known valid domains, using

a technique similar to the CDN Filter. After filtering these

domains, the a-DADS continued to monitor the remaining

35,500+ domains, applying SVM-1 and SVM-2.

With just two valid queries, SVM-1 was able to detect

125 Aggressive RBnet domains comprising 3,541 bot IPs.

These Aggressive RBnet domains were then removed from

the redirection domain database. The a-DADS continued to

monitor the remaining domains in the redirection domain

database, pruning the list as new CDN Filter data became

available. After a week of monitoring, SVM-2 was able to

identify an additional 156 Stealth RBnet domains, which

comprised 249 IPs. Thus, the RB-Seeker managed to iso-

late a total of 3,790 bot IPs utilized by 281 unique domains

for nefarious purposes. Further analysis revealed that 64 of

the 125 Aggressive RBnet domains (51.2%) were used as

5All the domains in the test already had enough DNS query data in the

DNS query database for the classifier to arrive at a decision. Therefore,

these performance measurements don’t reflect the time needed to gather

the necessary DNS data, only the time taken to process it and calculate

suspicion levels.

Figure 6: Unique IPs (as represented by unique IP index)

seen for each detected Aggressive RBnet domain

proxies while the remaining 61 (48.8%) were used in a redi-

rection infrastructure. All of the observed Stealth RBnets

were involved in redirection infrastructures. SVM-1 expe-

rienced one false-positive (FP-rate < 0.008% for SVM-1),

which has been removed from the previously-reported re-

sults. The false positive arose from SVM-1 misclassifying

a valid mozilla.org domain used in a CDN for distributing

releases. This single false positive results in the a-DADS’s

RBnet classifier (SVM-1 and SVM-2) having the low FP-

rate of < 0.004%. This false positive can be avoided with

the addition of mozilla.org to the CDN Filter.

For comparison, we also implemented the FFSN detec-

tor described in [22] and ran it on all the domains de-

tected by the NAS and the SSS. The FFSN detector looks

at the number of IPs and ASes over two valid queries.

It succeeded in correctly identifying 124 of the 125 Ag-

gressive RBnet domains that the RB-Seeker detected. It

also incurred a false positive, incorrectly classifying the

mozilla.org domain. Because the FFSN detector only looks

at two valid queries, it is unable to distinguish the slower,

more stealthy Stealth RBnets from valid domains (such as

CDNs). The a-DADS’s SVM-1 suffers from this same limi-

tation. However, by utilizing the 2-tier system and monitor-

ing suspicious domains over a longer period of time, SVM-

2 is capable of detecting these Stealth RBnets.

8.3 Analysis of detected RBnets

Using the 125 Aggressive RBnet domains the RB-Seeker

detected, we generated the plot in Fig. 6, which shows the

unique 3,541 IPs (represented by a unique index) seen for

each Aggressive RBnet domain. The graph is divided into

two parts along the x-axis: the left half represents domains

using redirection while the right half contains domains us-

ing proxies. Likewise, Fig. 7 shows a plot of the 156 Stealth

RBnet domains and their corresponding 249 unique IPs

(also represented by a unique index). The Aggressive RB-

nets and Stealth RBnets are shown in separate plots because

they share no common IPs.

From the figures, it is apparent that while Stealth RBnets

have more unique domains than Aggressive RBnets, they



Figure 7: Unique IPs (as represented by unique IP index)

seen for each detected Stealth RBnet domain

utilize vastly fewer IPs. Because Stealth RBnets attempt to

mimic the DNS behavior of valid domains (such as CDNs),

they must use computers with more stable IPs than Aggres-

sive RBnets. If a Stealth RBnet attempted to use less per-

sistent computers and still keep its DNS behavior “below

the radar,” the availability of the nefarious content serviced

by the RBnet would suffer. It is the unreliable connectivity

of the constituent bots in an Aggressive RBnet that neces-

sitates the abundant advertising of IPs. Stealth RBnets, on

the other hand, consist of much more reliable redirection

servers—whether they are compromised machines or legit-

imate redirection infrastructures that are being exploited.

However, this doesn’t mean that Stealth RBnets are exactly

like valid CDNs. Recall from Fig. 5, that over time, Stealth

RBnets must continue to supply fresh IPs, either to avoid

detection or as a result of being detected. Thus, to differ-

entiate Stealth RBnets from valid CDNs, it is necessary to

perform long-term DNS monitoring.

One thing Stealth and Aggressive RBnets do seem to

have in common is their use of multiple domains resolv-

ing to a similar set of IPs. This can indicate (1) that a single

botnet is servicing multiple scams, (2) that a single scam

is utilizing multiple domains to evade detection, or (3) that

those computers serving as bots are highly susceptible to at-

tacks and have been incorporated into multiple botnets and

their scams. It is likely that each of these scenarios plays

a role in the observed behavior. However, from Fig. 7, it

seems that the Stealth RBnets have IPs that are more com-

partmentalized to various domains’ indices. This seems to

favor the scenario that those domains sharing a set of IPs are

aliases for the same scam, while those domains with differ-

ent sets of IPs are partaking in different scams. For exam-

ple, there are many domains that seem to share the same IPs

with IP indices around 125. These domains are all deriva-

tions of [XXX].bay.livefilestore.com, where [XXX] is some

random character string. Norton Safe Web identifies livefile-

store.com as a high risk for Trojan, viruses, worms, spybots,

identity theft, and phishing attacks [29], affirming that this

Stealth RBnet is involved in numerous malicious activities

and employing multiple domain aliases. Looking at Fig. 6,

we can see that roughly half the Aggressive RBnet domains

are using redirection (labeled redirection domains in the

graph) while the other half are using proxies (labeled proxy

domains in the graph). Interestingly, many of the same IPs

are shared among both redirection and proxy domains. This

lends credence to the scenario that the shared IPs belong

to computers which have been compromised by more than

one bot, so they are being used in multiple, separate botnet

campaigns (i.e., proxy vs. redirection campaigns). Also,

notice from Fig 6 that those Aggressive RBnet domains be-

low domain index 40 share only a small set of IPs with the

higher domain indices. They also seem to have a large sub-

set of IPs that they share only among themselves. While

we would expect a break like this to occur near the divi-

sion between redirection and proxy domains, this occurs in

the middle of the redirection domains. Those redirection

domains with a domain index greater than 40 tend to share

more IPs with the proxy domains. This seems to indicate

that many of these computers are servicing multiple botnet

campaigns. While this could be the result of multiple bots

compromising the same machines or a botmaster using a

single botnet for multiple scams, one thing is certain: by

discovering these bots and blocking their IPs, we can po-

tentially mitigate numerous botnet scams.

9 Conclusion

In this paper, we have designed and implemented a pro-

totype system called the RB-Seeker for detecting the RB-

nets, which are increasingly used by attackers to redirect

unsuspecting victim to web servers hosting nefarious con-

tent. The RB-Seeker achieves fast and automatic detection

of RBnets, irrespective of their C&C protocol or structure,

by employing several statistical correlation and classifica-

tion techniques to analyze network traffic and DNS behav-

ior. The system begins with two parallel subsystems, the

SSS and the NAS, as first-line filters, cooperatively detect-

ing redirection domains from multiple data sources. The

NAS explores unique temporal/spatial features (e.g., inter-

flow duration, flow size) of typical redirection activities so

that redirection domains can be identified without expen-

sive inspection of packet payload. The second-line detec-

tor, the a-DADS, exploits the atypical DNS query statistics

of RBnets to distinguish between malicious and legitimate

domains. Our evaluation of the RB-Seeker on real-world

traces shows its capable of detecting both Aggressive and

Stealthy RBnets with low false positives. Because of the

prevalent and major role botnets play in redirection infras-

tructures, fast and automatic detection of such RBnets can

not only protect users from phishing and scam websites, but

also potentially deter many other malicious activities com-

monly perpetrated by botnets. Furthermore, the RB-Seeker

is expected to be incrementally deployable and easily incor-

porated into existing security systems since its data sources

are readily available in most enterprise networks.



References

[1] Capture-hpc. https://projects.honeynet.org/capture-hpc/.

[2] Free url redirection services. http://www.emailaddr

esses.com/email url.htm.

[3] Gnu wget. http://www.gnu.org/software/wget/.

[4] Kolmogorov-smirnov test. http://www.physics.csbsju

.edu/stats/KS-test.html.

[5] Netflow. http://www.cisco.com/en/US/products/ps6601

/products ios protocol group home.html.

[6] M. Afergan, J. Wein, and A. LaMeyer. Experience with

some principles for building an internet-scale reliable sys-

tem. In WORLDS’05: Proceedings of the 2nd conference on

Real, Large Distributed Systems, pages 1–6, Berkeley, CA,

USA, 2005. USENIX Association.

[7] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker.

Spamscatter: characterizing internet scam hosting infras-

tructure. In SS’07: Proceedings of 16th USENIX Security

Symposium on USENIX Security Symposium, pages 1–14,

Berkeley, CA, USA, 2007. USENIX Association.

[8] M. Bailey, E. Cooke, F. Jahanian, and J. Nazario. The inter-

net motion sensor - a distributed blackhole monitoring sys-

tem. In NDSS, 2005.

[9] J. R. Binkley and S. Singh. An algorithm for anomaly-based

botnet detection. In SRUTI’06: Proceedings of the 2nd con-

ference on Steps to Reducing Unwanted Traffic on the Inter-

net, pages 7–7, Berkeley, CA, USA, 2006. USENIX Associ-

ation.

[10] F. Boldewint. Peacomm.c - cracking the nutshell.

http://www.reconstructer.org/, September 2007.

[11] K. Chellapilla and A. Maykov. A taxonomy of javascript

redirection spam. In AIRWeb ’07: Proceedings of the 3rd

international workshop on Adversarial information retrieval

on the web, pages 81–88, New York, NY, USA, 2007. ACM.

[12] Cisco System Inc. Ironport. http://www.ironport.com/ tech-

nology/ironport antispam.html, 2007.

[13] Cisco System Inc. P-cube. http://www.p-

cube.com/solutions/index.shtml, 2007.

[14] E. Cooke, F. Jahanian, and D. McPherson. The zombie

roundup: understanding, detecting, and disrupting botnets.

In SRUTI’05: Proceedings of the Steps to Reducing Un-

wanted Traffic on the Internet on Steps to Reducing Un-

wanted Traffic on the Internet Workshop, pages 6–6, Berke-

ley, CA, USA, 2005. USENIX Association.

[15] D. Dagon, C. Zou, and W. Lee. Modeling botnet propa-

gation using time zones. In Proceedings of the 13th An-

nual Network and Distributed System Security Symposium

(NDSS’06), February 2006.

[16] G. Fumera, I. Pillai, and F. Roli. Spam filtering based on the

analysis of text information embedded into images. J. Mach.

Learn. Res., 7:2699–2720, 2006.

[17] J. Goebel and T. Holz. Rishi: identify bot contaminated

hosts by irc nickname evaluation. In HotBots’07: Proceed-

ings of the first conference on First Workshop on Hot Topics

in Understanding Botnets, pages 8–8, Berkeley, CA, USA,

2007. USENIX Association.

[18] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and

D. Dagon. Peer-to-peer botnets: overview and case study.

In HotBots’07: Proceedings of the first conference on First

Workshop on Hot Topics in Understanding Botnets, pages

1–1, Berkeley, CA, USA, 2007. USENIX Association.

[19] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.

Bothunter: detecting malware infection through ids-driven

dialog correlation. In SS’07: Proceedings of 16th USENIX

Security Symposium on USENIX Security Symposium, pages

1–16, Berkeley, CA, USA, 2007. USENIX Association.

[20] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting botnet

command and control channels in network traffic. In Pro-

ceedings of the 15th Annual Network and Distributed System

Security Symposium (NDSS’08), February 2008.

[21] B. Guenter. Spam archive. http://untroubled.org/spam/.

[22] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring

and detectin fast-flux service networks. In In Proc. network

and Distributed System Security (NDSS) Symposium, 2008.

[23] Honeynet Project. Know you enemy: Tracking botnets.

http://www.honeynet.org/papers/bots, 2005.

[24] D. R. J. Oikarinen. Internet relay chat (irc) protocol. IETF,

Request for Comments (RFC) 1459, May 1993.

[25] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast

Portscan Detection Using Sequential Hypothesis Testing. In

IEEE Symposium on Security and Privacy 2004, Oakland,

CA, May 2004.

[26] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale bot-

net detection and characterization. In HotBots’07: Proceed-

ings of the first conference on First Workshop on Hot Topics

in Understanding Botnets, pages 7–7, Berkeley, CA, USA,

2007. USENIX Association.

[27] H. Project. Know you enemy: Fast-flux service networks.

http://www.honeynet.org/papers/ff/fast-flux.html, 2007.

[28] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multi-

faceted approach to understanding the botnet phenomenon.

In IMC ’06: Proceedings of the 6th ACM SIGCOMM con-

ference on Internet measurement, pages 41–52, New York,

NY, USA, 2006. ACM.

[29] Syamentec Corp. Norton safe web, report for live-

filestore.com. https://safeweb.norton.com/report/show

?name=livefilestore.com.

[30] A. Wald. Sequential tests of statistical hypotheses. The An-

nals of Mathematical Statistics, 16(2):117–186, June 1945.

[31] P. Wang, S. Sparks, and C. C. Zou. An advanced hybrid

peer-to-peer botnet. In HotBots’07: Proceedings of the first

conference on First Workshop on Hot Topics in Understand-

ing Botnets, pages 2–2, Berkeley, CA, USA, 2007. USENIX

Association.

[32] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,

S. Chen, and S. King. Automated web patrol with strider

honeymonkeys: Finding web sites that exploit browser vul-

nerabilities. In In Proc. network and Distributed System Se-

curity (NDSS) Symposium, 2006.

[33] B. Wu and B. Davison. Cloaking and redirection: A prelim-

inary study, 2005.

[34] V. Yegneswaran, P. Barford, and V. Paxon. Using honeynets

for internet situational awareness. In HOTNETS, 2005.



APPENDIX

0 0.05 0.1 0.15 0.2
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

False Positive Rate (α)

E
x
p
te

c
te

d
 N

u
m

b
e
r 

o
f 
O

b
s
e
rv

a
ti
o
n
 (

E
[N

|H
1
])

 

 

β=0.01

β=0.05

β=0.1

β=0.2

Figure 8: Expected number of flows required to determine

redirection servers based on inter-flow duration

0 0.05 0.1 0.15 0.2
1

2

3

4

5

6

7

False Positive Rate (α)

E
x
p
te

c
te

d
 N

u
m

b
e
r 

o
f 
O

b
s
e
rv

a
ti
o
n
 (

E
[N

|H
1
])

 

 

β=0.01

β=0.05

β=0.1

β=0.2

Figure 9: Expected number of flows required to determine

redirection servers based on flow size


