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Abstract

We present the design and implementation of RICH
(Run-time Integer CHecking), a tool for efficiently detecting
integer-based attacks against C programs at run time. C
integer bugs, a popular avenue of attack and frequent pro-
gramming error [1–15], occur when a variable value goes
out of the range of the machine word used to materialize it,
e.g. when assigning a large 32-bitint to a 16-bitshort.
We show that safe and unsafe integer operations in C can
be captured by well-known sub-typing theory. The RICH
compiler extension compiles C programs to object code that
monitors its own execution to detect integer-based attacks.
We implemented RICH as an extension to the GCC compiler
and tested it on several network servers and UNIX utilities.
Despite the ubiquity of integer operations, the performance
overhead of RICH is very low, averaging about 5%. RICH
found two new integer bugs and caught all but one of the
previously known bugs we tested. These results show that
RICH is a useful and lightweight software testing tool and
run-time defense mechanism. RICH may generate false pos-
itives when programmers use integer overflows deliberately,
and it can miss some integer bugs because it does not model
certain C features.

1 Introduction

C integer bugs are an underestimated source of vulnera-
bilities [1–15]. We present an evaluation of C integer vul-
nerabilities and the first automatic tool for efficiently and
accurately detecting and preventing a large class of integer-
based attacks against C programs. We have developed a
static program transformation tool, called RICH, that takes
as input any C program and outputs object code that mon-
itors its own execution to detect integer overflows, under-
flows, and other bugs. Our experiments found that pro-
grams typically have hundreds to thousands of potential in-
teger safety violations where bits may be lost or misinter-
preted. Despite the ubiquity of integer operations, the run-
time performance penalty of RICH is very low, averaging
less than 5%. This result shows that it is practical to auto-
matically transform C programs so that they are hardened

against integer-based attacks.
Integer bugs appear because programmers do not antici-

pate the semantics of C operations. The C99 standard [16]
defines about a dozen rules governing how integer types can
be cast or promoted. The standard allows several common
cases, such as many types of down-casting, to be compiler-
implementation specific. In addition, the written rules are
not accompanied by an unambiguous set of formal rules,
making it difficult for a programmer to verify that he un-
derstands C99 correctly. Integer bugs are not exclusive to
C. Similar languages such as C++, and even type-safe lan-
guages such as Java and OCaml, do not raise exceptions on
some types of integer errors. However, for the rest of this
paper, we focus on C.

The first step is to formally define the semantics of in-
teger operations in C so that we may detect integer bugs
correctly. One choice is to write out formally exactly what
is specified by the C99 standard. This would lead to a for-
mal specification of what many programmers already do not
understand. In addition, it would leave gaping holes in im-
portant scenarios that the C99 standard defines as imple-
mentation specific.

Instead, our formal semantics of C integer operations
captures the underlying idea that smaller precision types
represent subsets of larger precision types with the same
sign. Sub-typing theory is a natural way to express this re-
lationship, e.g.,int8 t is a subtype ofint16 t, written
int8 t <: int16 t, because the values ofint8 t ⊆
int16 t. This approach mimics the approach in safer lan-
guages such as Ada, which allow users to create sub-types
that qualify primitive types [17].

With the formal semantics in hand, we statically type-
check the C program for safety. The purpose of static type
checking is to decide whether a program will be safe to ex-
ecute. At a high level, safety means that meaningful in-
teger bits will not be lost or misinterpreted. Static type-
checking is conservative, meaning that if a program fails
type-checking itpotentiallyuses an integer in a way that
may lead to data loss or misinterpreted during computation.

Since C is unsafe, it should be of no surprise that many C
programs do not type-check. At this point, there are several
options: a) deem the program invalid and wait for it to be
fixed, b) develop a more elaborate typing scheme that can
better distinguish potential from real problems, c) automat-



ically promote integers such that integer bugs are impos-
sible, or d) insert run-time checks that dynamically check
safety. We found a typical program will have thousands
of potential unsafe assignments, and if we count overflows,
one potential error per 23 lines of code. Thus option (a)
would require immense developer effort in order to fix all
potential problems. Option (b) is plausible, but often very
expensive since such analysis typically reasons about run-
time behavior. For example, dependent typing [18] (where
types can depend upon values) is one way of implementing
(b), but is typically more expensive to check, and would
seem to require the programmer to manually supply in-
variants and/or would be undecidable. Option (c), auto-
promotion, is interesting since it eliminates most integer
bugs, and is the approach taken by several languages such
as SmallTalk and Scheme. Such an approach requires the
ability to perform arbitrary precision arithmetic. This is
not practical for C, since the run-time data layout assumes
fixed-size integers. Furthermore, our experiments show that
programmers rarely want arbitrary-precision integer seman-
tics, so it does not make sense to make that the language
default. Finally, arbitrary-precision integers may result in
unpredictable performance. That leaves us with option (d):
check all potentially unsafe operations at run-time.

Our choice to check all potential unsafe integer opera-
tions is a common way of back-porting type safety into an
otherwise unsafe language. For example, the typing rule for
arrays is unsafe in Java [19]. As a result, in Java each array
access is potentially checked at run-time. In our setting, we
check each potentially unsafe integer operation. The main
trick is to make integer checks efficient. Though difficult
to verify with language designers directly, it is commonly
posted on the web that the reason some otherwise type-safe
languages such as OCaml omit integer checks on base inte-
ger types is they believe them to be too expensive. We show
that despite the number of potentially unsafe operations, we
can implement checks such that they have very little over-
head for C programs.

We implement the checks in two phases. At compile
time, RICH instruments the target program with run-time
checks of all unsafe integer operations. The current proto-
type instruments any C operation that could trigger an in-
teger bug and our experiments show that the performance
overhead of this instrumentation is very low. At run time,
the inserted instrumentation checks each integer operation.
When a check detects an integer error, it generates a warn-
ing and optionally terminates the program.

Some deliberate integer operations look like integer
bugs, making it a challenge to perfectly detect integer-based
attacks at run time. For example, programmers may use
an integer overflow to perform a reduction modulo232 “for
free”. Like all overflows, the C source code contains no
indication from the programmer that this overflow is inten-
tional. Since the run-time detector cannot distinguish inten-
tional overflows from attacks, the current prototype imple-
mentation generates warnings instead of aborting the pro-
gram after detecting an integer error. Future versions of
RICH could support programmer annotations to indicate

intentional overflow sites in the program source code, en-
abling the run-time detector to abort the program or take
other preventative measures whenever it detects an integer-
based attack. Experiments applying RICH to real programs
show that intentional overflows are quite rare, so annotating
them would not be a burden on programmers.

We implemented RICH and measured its performance
on several UNIX servers and utilities. Compiling applica-
tions with RICH required no source modifications – just a
rebuild with our tool. For network servers like Apache and
Samba, the performance overhead of RICH is extremely
small, about 5%, even when the server is not I/O bound.
False positives from RICH-protected programs revealed 32
intentional overflow sites in the 5 programs we bench-
marked, demonstrating that intentional overflows are rare.
RICH found 2 previously unknown integer bugs in Samba
and ProFTPd, and detected 6 of the 7 previously known
integer vulnerabilities we tested, missing one vulnerabil-
ity because the program transformation models C pointers
unsoundly. These experiments show that RICH is a useful
and lightweight software testing tool and run-time defense
mechanism that is backwards-compatible, efficient, effec-
tive, and easy to deploy.

We have also performed a comprehensive study of
known integer bugs and exploits. Integer bugs fall into
four broad classes: overflows1, underflows, truncations, and
signedness errors. Integer bugs are usually exploited indi-
rectly, e.g., triggering an integer bug enables an attacker
to corrupt other areas of memory, gaining control of an
application. The survey results highlight the creativity of
system hackers, as the surveyed exploits contained over a
half-dozen different exploit strategies, all built upon minor-
looking integer bugs. Even though integer bugs are often
used to build a buffer overflow or other memory corruption
attack, integer bugs are not just a special case of memory
corruption bugs. If all programs were made memory safe,
attackers would still find ways to exploit integer bugs.

Contributions. This paper presents an automatic ap-
proach for efficiently protecting against a large class of inte-
ger bugs, including overflows/underflows, truncation bugs,
and sign conversion bugs in C programs. Specifically, we:

• Survey 195 known integer vulnerabilities and catego-
rize them as overflows, underflows, truncation bugs, or
sign conversion bugs.

• Provide formal semantics for safe C integer operations.
We derive formal typing rules similar to those found in
languages without integer bugs such as Ada. Our se-
mantics replace the cumbersome and un-intuitive C99
specifications with a few simple sub-typing rules. In
addition, since C is not type-safe, we also supply C-
specific rewrite rules that rewrite any violation of the
type-safety rules as a dynamic safety check.

• Implement a prototype called RICH (Run-time Integer
CHecks) to evaluate our approach and techniques.

1“Integer overflow” is commonly used to describe integer overflows
specifically and integer bugs in general.



• Demonstrate through experiments that potentially un-
safe integer operations are rampant in source code.

• Show how to implement our dynamic checks with low
overhead. In particular, although thousands of unsafe
operations may be found and require checking, the av-
erage performance overhead is less than 3.7%.

Outline. We first describe several real-world integer bugs
and outline exploits against these bugs in Section 2. In Sec-
tion 3, we precisely define the security goal of our trans-
formation and the theoretical foundations of our program
transformation. Section 4 describes our tool RICH and Sec-
tion 5 presents benchmark results. We discuss related work
in Section 6 and draw concluding lessons in Section 7.

2 Integer Vulnerabilities

In this section, we first describe the different types of
integer vulnerabilities in C programs. We also present a
study we performed of 195 Common Vulnerability and Ex-
ploit (CVE) [20] candidate integer vulnerabilities. This
study shows each type of integer vulnerability is common
in source code. We then describe how integer vulnerabili-
ties can be exploited to gain control of a program.

2.1 Integer Vulnerability Categories

Each integer type in C has a fixed minimum and max-
imum value that depends on the type’s machine represen-
tation (e.g., two’s complement vs. one’s complement),
whether the type is signed or unsigned (called “signed-
ness”), and the type’s width (e.g., 16-bits vs. 32-bits). At
a high level, integer vulnerabilities arise because the pro-
grammer does not take into account the maximum and mini-
mum values. Integer vulnerabilities can be divided into four
categories: overflows, underflows, truncations, and sign
conversion errors. Our study of 195 CVE known integer
vulnerabilities indicates vulnerabilities from all categories
are prevalent in source code.

Overflow. An integer overflow occurs at run-time when
the result of an integer expression exceeds the maximum
value for its respective type. For example, the product of
two unsigned 8-bit integers may require up to 16-bits to
represent, e.g.,28 − 1 ∗ 28 − 1 = 65025, which cannot be
accurately represented when assigned to an 8-bit type. Of-
ficially, the C99 standard specifies that a “computation in-
volving unsigned operands can never overflow” because the
result can be reduced modulo the result type’s width (page
34, [16]) (signedoverflow is considered undefined behav-
ior, thus implementation specific). However, overflows are
currently the most common integer vulnerability, account-
ing for 148 of the 207 CVE vulnerabilities in our survey,
indicating many programmers certainly do not understand
or anticipate the C99 semantics.

Figure 1(i) shows a typical overflow vulnerability in
GOCR [1], an optical character recognition program for
processing images. An attacker can exploit the program

by providing large integer values to theinpam.width and
inpam.height fields. The product of these values used in
the call tomallocwill overflow, resulting in an erroneously
small allocation. The small allocation allows the exploit to
write out-of-bounds throughp→p, shown on the last high-
lighted line.

Underflow. An integer underflow occurs at run-time
when the result of an integer expression is smaller than its
minimum value, thus “wrapping” to the maximum integer
for the type. For example, subtracting0 − 1 and storing
the result in an unsigned 16-bit integer will result in a value
of 216 − 1, not−1. Since underflows normally occur only
with subtraction, they are rarer than overflows, with only
10 occurrences in our survey. Figure 1(ii) shows a typical
underflow vulnerability which occurs in Netscape versions
3.0-4.73 [3]. An attacker can specify thelen field as 1, re-
sulting in underflow in the expressionlen-2, thus assign-
ing a large value tosize. The following call tomalloc
would allocate0 bytes (due to overflow in the expression
size+1), allowing the attacker to overwrite memory on the
subsequentmemcpy.

Signedness Error. A signedness error occurs when a
signed integer is interpreted as unsigned, or vice-versa. In
twos-complement representation, such conversions cause
the sign bit to be interpreted as the most significant bit
(MSB) or conversely, hence -1 and232 − 1 are misinter-
preted to each other on 32-bit machines. 44 of the 195 CVE
vulnerabilities in our survey are signedness errors. Fig-
ure 1 (iii) shows a signedness error from the XDR (eXternal
Data Representation, used by Sun RPC and NFS) routines
in Linux kernel 2.4.21[2] in which the signedint size is
initialized directly from unsigned, attacker-controlledXDR
data,*p. A negativesize value bypasses the signed up-
per bound check but is interpreted as a very large positive
number by thememcpy function, whose size argument is
unsigned, resulting in an instant kernel panic.

Truncation. Assigning an integer with a larger width
to a smaller width results in integer truncation. For exam-
ple, casting anint to a short discards the leading bits
of the int value, resulting in potential information loss.
Figure 1(iv) shows a truncation vulnerability from the SSH
CRC-32 Compensation Attack Detector [4]. The local vari-
ablen is only 16-bits long, so the assignmentn = l can
cause a truncation. By sending a very large SSH protocol
packet, an attacker can force this truncation to occur, caus-
ing thexmalloc call on the next line to allocate too little
space. The code that initializes the allocated space a few
lines later will corrupt SSH’s memory, leading to an attack.

2.2 Exploiting Integer Bugs

Integer bugs differ from other classes of exploits be-
cause they are usually exploited indirectly. Typical exploits
include 1) Arbitrary code execution such as when an in-
teger vulnerability results in insufficient memory alloca-
tion, which is subsequently exploited by buffer overflows,
heap overflows, overwrite attacks, etc; 2) Denial of Service
(DoS) attacks where the exploit causes excessive memory



     

 

 

 } 

       /* read pgm */...

       p−>y=inpam.height;

             F1("Error at malloc");
       for(i=0; i<inpam.height; i++){
             pnm_readpamrow(&inpam, tuplerow);
             for(j = 0; j<inpam.width; j++)

      }  

                   p−>p[i*inpam.width+j]=sample;

       if(!(p−>p=(char *)malloc(p−>x*p−>y)))

(i)

       p−>x=inpam.width;

void readpgm(char *name, pix * p) {

typedef struct pixmap pix;
 };

       int y;               /* ysize */
       int bpp;            

       int x;               /* xsize */
       unsigned char *p; 
struct pixmap {

......

       pnm_readpaminit(fp, &inpam);

        fhp−>fh_handle.fh_size = size;
        return p + XDR_QUADLEN(size);
}

        memcpy(&fhp−>fh_handle.fh_base,
                        p,size);

        int size;
        fh_init(fhp, NFS3_FHSIZE);
        size = ntohl(*p++);
        if (size > NFS3_FHSIZE)
                return NULL;

decode_fh(u32 *p, struct svc_fh *fhp) {
static inline u32 *

(iii)

void getComm(unsigned int len, char *src){
     unsigned int size;
     size = len − 2;
     char *comm = (char *)malloc(size + 1);
     memcpy(comm, src, size);
     return;
}

 (ii)
        register word32 i, j;

        static word16  *h = (word16 *) NULL;

        word32 l;
        ...

        for(l=n; l<HASH_FACTOR(len/BSIZE); l=l<<2);

                n = l;

        if (h == NULL) {

        } else
        for (c=buf, j=0; c<(buf+len); c+=BSIZE, j++){
                for (i = HASH(c) & (n − 1); h[i] != UNUSED;

int detect_attack(u_char *buf, int len, u_char *IV){

                      i = (i + 1) & (n − 1)) ...;
                h[i] = j;

        }

                debug("Install crc attack detector.");

                h = (word16 *) xmalloc(n*sizeof(word16));

}

        static word16   n = HASH_MIN_ENTRIES;

(iv)

Figure 1. (i) GOCR PNM image size integer overflow vulnerability. (ii)Netscape JPEG comment length integer underflow vulnerability. (iii) Linux
kernel XDR integer signedness errors. (iv) SSH CRC-32 Compensation Attack Detector integer truncation vulnerability. In each figure, the integer bug is
highlighted with a pink background; the resulting exploit is highlighted in blue.

allocation or infinite loops; 3) Array index attacks where
a vulnerable integer is used as an array index, so that at-
tackers can accurately overwrite arbitrary byte in memory;
4) Bypassing sanitization attacks, such as bypassing an up-
per bounds check that does not take into account unexpected
negative integer values; and 5) Logic errors, for example as
in NetBSD where an integer vulnerability allowed an at-
tacker to manipulate a reference counter, causing the refer-
enced object to be freed prematurely.

The security costs of integer bugs is severe: 125 of the
207 entries may lead to arbitrary code execution, 70 can
cause denial of service attacks, 10 lead to privilege escala-
tion, and 14 result in invalid memory accesses or memory
exhaustion. 63 of the integer exploits are followed by buffer
overflows; in 14 cases, they pollute the size arguments of
memory allocation/manipulation functions; and in another
3 instances, they are exploited in conjunction with format
string vulnerabilities.

Note solving buffer overflows, malloc errors, and format
string bugs would still leave many integer vulnerabilities
exploitable. Many vulnerabilities in our study can be ex-
ploited in more than one way, e.g., an integer vulnerability
that can be abused to cause a buffer overflow or a denial of
service attack. This indicates it is insufficient to fix a partic-
ular way of exploiting an integer vulnerability, as there may
be alternate ways the vulnerability can be exploited to take
control of the program. In addition, several of the vulnera-
bilities in our survey exploited application-specific logic er-
rors, thus there are no likely application-independent quick-
fixes. Previous vulnerability prevention mechanism such as
StackGuard [21], CCured [22], etc. can prevent some at-
tacks, but they areinsufficientto combat integer vulnerabil-
ities.

3 Safe Integer Semantics

In this section, we present our approach for protecting
against integer vulnerabilities. Our approach is motivated
by type-safe languages that do not have integer vulnerabil-
ities. We define type-safety rules for C integer operations
and apply them to programs. When we find a violation of
our typing rules, we insert a dynamic check which decides
at run-time whether the (static) safety violation results in an
integer violation.

In the following presentation, we assume that all implicit
conversions and casts have been made explicit before these
typing and rewrite rules are applied. We also assume that
implicit arithmetic, such as the address computation in an
array referencea[i], has been made explicit.

3.1 Sub-typing Rules for Safe Integer Operations

Our approach adds type-safety to C integers by apply-
ing sub-typing theory to integer types. Table 1 summarizes
our four typing rules T-UNSIGNED, T-SIGNED, T-US (un-
signed to signed), and T-UPCAST. Due to space, we pro-
vide in Appendix A the full set of rules, and a more de-
tailed exposition in our companion technical report [23].
Our integer sub-typing rules are similar to those found in
type-safe languages [19], such as Ada [17]. The intuition in
our scenario is to read the sub-typing relationship “<:” as
“⊆”, i.e., if integer typeinta t <: intb t, then the val-
ues ofinta t ⊆ intb t. For instance, T-US specifies
that if n < m, thenuintn t <: intm t because any
n-bit unsignedinteger can be represented as ann+1-bit (or
greater)signedinteger. Similarly, T-UPCAST specifies up-
casts are always safe since a larger-width type can always
represent a smaller-width type. Pointer arithmetic is treated
as unsigned integer arithmetic, so basic pointer operations
are also handled by our typing rules.



uint8 t <: uint16 t <: uint32 t <: uint64 t <: Z
T-UNSIGNED

int8 t <: int16 t <: int32 t <: int64 t <: Z
T-SIGNED

n < m

uintn t <: intm t
T-US

Γ ⊢ e : σ σ <: τ

Γ ⊢ (τ)e : τ
(T-UPCAST)

Γ ⊢ e : σ (τ)e σ 6<: τ σ, τ <: Z e e′

(τ)e (τ)let x : σ = e′ in if τmin ≤ x ≤ τmax thenx else error
R-UNSAFE

Γ ⊢ (e1�e2) : τ

e1�e2  (τ)let x : Z = (Z)e1�(Z)e2 in CHECKτ(Z)(x)
R-BINOPZ

Table 1. Our rules for type safety (T-UNSIGNED, T-SIGNED, T-US, and T-UPCAST), and for rewriting potentially unsafe integer operations(R-UNSAFE
and R-BINOPZ)

In our semantics, an integer expression is always safe iff
it is well typed. For example, codeuint8 t b; uint16 t
a = (uint16 t) b; is safe because it is well-typed, as
given by the typing derivation:

Γ ⊢ b : uint8 t uint8 t <: uint16 t
T-UNSIGNED

Γ ⊢ (uint16 t)b : uint16 t
T-UPCAST

3.2 Rewriting Potentially Unsafe Truncations and
Sign Conversions

Truncations (down-casts) and sign conversions are not
within the type system because they can lead to data loss,
and are therefore potentially unsafe. Thus, we add new
rules that cover potentially unsafe operations. We rewrite
potentially unsafe casts as run-time safety checks on the
operands, as shown by rule R-UNSAFE in Table 1. Note
these rewriting rules are not found in (static) type-safe lan-
guages. Statically typed languages respect a phase distinc-
tion between compile-time and run-time processing. Our
rewriting rules introduce run-time checks that ensure type
safety, i.e., they make C integer operations dynamically type
safe.

R-UNSAFE states that a potentially unsafe cast(τ)e : σ,
wheree has been rewritten to some other expressione′, is
rewritten statically to another cast wheree′ is evaluated to
a valuex. The valuex is checked at run-time for data loss
(i.e., if τmin ≤ x ≤ τmax is false); if so, anerror is raised.
In our implementation,error can be defined to abort the
program, or simply raise a warning.

For example, consider the potentially unsafe down-cast:
uint32 t b; uint16 t a =(uint16 t) b; Hereσ =
uint32 t and τ = uint16 t. Since uint32 t 6<:
uint16 t, the rewriting ruleR-UNSAFE applies. Figure 2
shows howR-UNSAFE is instantiated in this example.

Thus, the rewritten C statement is:

i f ( b > 216 − 1 | | b < −216 ) t hen e r r o r ( ) ;
a = b ;

3.3 Rewriting Potential Overflow and Underflow
Operations

In C, addition, subtraction, multiplication, negation, and
division may all result in overflow or underflow. The first
three are self-explanatory, while negation and division over-
flow in a subtle way. Signed integer types with twos-
complement representation have asymmetric ranges,i.e.
[−2n−1, 2n−1 − 1]. When−2n−1 is negated or divided by
-1, the result overflows and wraps back to−2n−1 itself.

We rewrite via R-BINOPZ any arithmetic that may re-
sult in overflow/underflow to be performed in a virtual type
Z which has infinite width.2 Arithmetic in Z cannot over-
flow/underflow. SinceZ is not a sub-type of any other type,
we apply R-UNSAFE to the result. If there would have been
an underflow/overflow without the rewrite, R-UNSAFEwill
raise a warning, i.e., the result requires more bits to repre-
sent than we have in specified type.

In practice, we do not implement arbitrary precision
arithmetic forZ. Instead, we simply up-cast arithmetic to
an appropriate type large enough to represent the result.3

If the architecture does not support a large enough type, the
arithmetic is performed in software. For x86 with normal
C types, casts to software are quite rare and usually only
happen with 64-bit integers. Thus, we avoid the problem of
always upcasting to arbitrary precision by only upcasting to
the next higher precision, and only potentially using soft-
ware for 64-bit integers. This is different than SmallTalk
and Scheme as there is no arbitrary precision type.

For example, our approach rewritesint8 t a, b,
res; res= a+b; as:

i n t 8 t a , b , r e s ; i n t 1 6 t t16 ;
t16 = ( i n t 1 6 t ) a + b ;
i f ( t 16 > 27 − 1 | | t 16 < −27 ) e r r o r ( ) ;
r e s = ( i n t 8 t ) t 16 ;

Note we only check C operations that may result in over-
flow/underflow. For example, bit-wise and logical ands, ors,

2For brevity, we omit the corresponding unary rule.
3Theoretically in some cases we may not need up-casting at allby em-

ploying various mathematical tricks for the check.



Γ ⊢ b : uint32 t uint32 t 6<: uint16 t b b′

(uint16 t)b (uint16 t) let x : uint32 t = b in if −216 ≤ x ≤ 216 − 1 thenx else error
R-UNSAFE

Figure 2. An instance ofR-UNSAFEfor the programuint32 t b; uint16 t a =(uint16 t) b;

and negations do not correspond to any arithmetic operation
on integers, thus are not checked. If a programmer performs
arithmetic using these operations we do not check the result.
Adding such checks is straight-forward, but would likely
break many programs. Thus, we do not implement this fea-
ture, as it would only be useful in a limited number of cases.

3.4 Limitations

Since C specifically allows potentially unsafe behavior,
it is impossible to ensure safety in a way backward com-
patible with all programs. As a result, there are two main
limitations to our approach: we do not handle certain un-
safe pointer aliasing relationships, and programs that specif-
ically rely on certain potentially unsafe C99 features may
break.

Potentially Unsafe Pointer Aliasing. We currently
do not check potentially unsafe pointer aliasing relation-
ships when two pointers of different types alias the same
memory cell. For example, if data is written to memory
through auint16 t * pointer, a subsequent read through
anuint8 t * pointer will go unchecked. Checking this
sort of potential error would require maintaining run-time
meta-data,a la CCured[22]. Alternatively, we could use
an alias analysis to find all the pointers that may alias each
other, and require that writes through those pointers can be
safely read by all other pointers in the alias set. This would
essentially require the writes to fall within the smallest com-
mon type of the aliased pointers. Our survey also shows that
integer vulnerabilities through pointer aliasing is very rare.

Unions create a similar aliasing situation as pointers. For
similar reasons, we ignore this aliasing, effectively treating
unions like structures.

Deliberate Use of Potentially Unsafe C99 Features.
Since C is not type-safe, type-safe semantics in general do
not directly correspond to C99 semantics. In fact, C99’s
semantics are much more complicated than our type-safety
approach: C99 requires about a dozen rules to specify in-
teger coercions, while we require only 2 rules.4 How-
ever, some programs are deliberately written to take advan-
tage of potentially unsafe C features. For example, a pro-
gram may be written to take advantage of C99’s rule where
overflow is reduced modulo the destination register size,
e.g., (int32 t)a + (int32 b) b; is written as short-
hand for((int32 t)a + (int32 b) b) mod2

32;. Our
approach will raise anerrorwhen such statements are ex-
ecuted.

Our experiments indicate a typical program may have
thousandsof potentially unsafe operations, while only a

4We believe the simplicity alone is a strong reason to supportour ap-
proach: complicated systems are usually the most error prone.

few of those operations rely on otherwise unsafe features.
Overall, we take the approach that it is better to check the
thousands of potentially unsafe vulnerabilities and have the
programmer annotate or rewrite the few seemingly unsafe
operations. Our study of 195 CVE vulnerabilities suggests
this course is the prudent choice. Thus, RICH strikes a bal-
ance between automatic protection, backwards compatibil-
ity, and common programming practices. Our experiments
indicate this balance seems appropriate for most programs.

False Positives and False Negatives.At a high level,
because of the above two limitations, our transformations
may result in false positives and false negatives. A false
positive occurs when we raiseerror when the program-
mer deliberately uses potentially unsafe features of C. A
false negative occurs when we do not raise an error due to
pointer aliasing.

4 Implementation

We implemented a prototype of our strong integer typing
approach in a tool called RICH. RICH has two implementa-
tions: 1) as a platform-specific compiler extension to GCC
3.4.1, and 2) as a source-to-source transformation. The
former approach demonstrates platform-specific optimiza-
tions, while the latter is platform independent.

Our GCC 3.4.1 version of RICH checks the GCC inter-
mediate representation (IR) of the source code during the
code-generation phase, and instruments any potentially un-
safe integer operations. By working directly in the com-
piler, we can take advantage of architecture-specific instruc-
tions to implement R-UNSAFE and R-BINOPZ. Specifi-
cally, we use the IA-32jo, jc, js, instructions, which
jump to a given target if the last arithmetic operation re-
sulted in an overflow, carry in the high-bit, or result with
the sign-bit set. Figure 3 shows example checks in our GCC
implementation for several common arithmetic operations.

The downside of our GCC implementation is that the
checks may apply to compiler-generated, harmless over-
flows. For example, the compiler’s constant propagation
pass may negate unsigned constants. If the GCC module
inserts checks for these operations, the program will fail.
We solve this problem by disabling optimizations that can
introduce benign overflows. With further work, we could
likely work around this problem.

We have also implemented RICH as a platform-
independent source-to-source transformation that works
with any compiler [23]. The source-to-source transforma-
tion is written as a CIL plug-in [24,25], a C analysis frame-
work written in OCaml. CIL reads in the source code,
performs several semantic-preserving simplifications, and
then produces a typed intermediate representation (IR). Our



add’〈32,s〉 ← 〈32,s〉×〈32,s〉 op1, op2
:= add op1, op2

jo VH
add’〈32,u〉 ← 〈32,u〉×〈32,u〉 op1, op2

:= add op1, op2
jc VH

sub’〈32,s〉 ← 〈32,u〉×〈32,u〉 op1, op2
:= sub op1, op2

jc .L1
js VH
.L1
jns VH

lo
′
〈16,s〉 ← 〈32,u〉 source, dest
:= mov source, %eax

shrl %eax, 15
and %eax, %eax
jne VH
lo source, dest

cv
′
〈32,v̄〉 ← 〈32,v〉 operand
:= mov operand, %eax

and %eax, %eax
js VH
cv operand

div’〈32,s〉 ← 〈32,s〉×〈32,s〉 top, bottom
:= xor %ebx, %ebx

mov top, %eax
xor 0x8000000,%eax
je .L1
mov bottom, %eax
xor 0xfffffff, %eax
je .L1
mov 1, %ebx
L1:
cmp 0, %ebx
jne VH
div dividend, divisor

Figure 3. Instrumented operators and algorithm for de-reference type casts. The instructionsjo, jc, andjs jump to the specified target if the last
arithmetic operation yielded an overflow, a carry off the high bit, or result with MSB 1, respectively. Thejno, jnc, andjns instructions negate these
tests. The overflow handler is calledVH. Thecv operation converts between signed and unsigned, andlo takes the low-order bits of its operand.

CIL implementation then performs the transformation de-
scribed in the previous section on the IR, which is then
“unparsed” by CIL and written to a file. The resulting file
is C source code containing the necessary checks, which
can then be compiled with any standard C compiler. The
primary advantage of this approach is that the compiler
can perform all its optimizations. The disadvantage is that
the source-to-source translation cannot directly take advan-
tage of architecture-specific optimizations such as using the
CPU status bits to perform efficient overflow checks.

Note our CIL-based solution does not implement over-
flow/underflow checks (R-BINOPZ), only signedness and
truncation checks (R-UNSAFE). For that reason, the bench-
mark results given in Section 5 all use the GCC implemen-
tation of RICH. Experiments with the CIL implementation
show similar overheads.

5 Evaluation

We evaluated RICH with several server and utility appli-
cations, several of which contain real vulnerabilities. Over-
all, we found programmers typically do not write safe code.
However, the overhead of protecting against exploits in the
unsafe code is quite low, averaging less than 3.7%.

The evaluation was performed on an Intel Pentium M
1.6MHz machine with 512MB memory and Linux 2.6.9
kernel. In our experiments, we definederror to log each
violation of our dynamic checks. Our benchmark suite in-
cludes Apache 2.2.0, Samba 2.2.7a, ProFTPD 1.2.10, and
gzip 1.2.4.

5.1 Check Density

We first measured how many checks our approach inserts
into our test-suite programs. Table 2 shows, for each bench-
mark program, the number of lines of code in that program

and the number of checks inserted by the RICH compiler
extension. The numbers also give a rough idea how many
potentially unsafe integer operations exist in code, though
since our analysis is conservative it is definitely an over-
count.

Unsafe operations can generally be divided into two cat-
egories: potential runtime errors due to overflow/underflow,
and static casting/truncation errors. We found hundreds
to thousands of static type errors, indicating programmers
ignore safety issues. While many of these errors are not
exploitable, they are dangerous enough that type-safe lan-
guages would generally reject a program containing even
one error. Adding in overflow/underflow raises the number
to about one potential problem every 23 lines of code.

This shows that programmers use potentially-
overflowing or otherwise buggy operations all the time, so
the chance that at least one of them is a real, exploitable
bug is significant. This highlights the need for a defense
mechanism like RICH.

5.2 Performance Overhead

Although the number of inserted checks can be quite
high, our experiments indicate the overhead is quite low,
averaging less than 3.7%. Table 3 shows the performance
overhead of RICH-enabled applications relative to the un-
instrumented versions (both compiled with the same flags).
The Apache web server was tested with the web bench-
mark ab, distributed with Apache, configured to generate
20,000 requests to a local Apache server and to use a con-
currency level of 100 requests. For ProFTPD, we used
an open source FTP benchmark tool,dkftpbench, that runs
a 10-second simulation of 10 users repeatedly logging in,
transferring a file, and logging out. For Samba 2.2.7a, we
first used Bonnie++, a standard benchmark for hard drive
and file system assessment. Since the Bonnie++ benchmark



Program Size(KLOC) Signed OF/UF Unsigned OF/UF Trunc. SignConv. All
Apache Httpd 2.2.0 101 3958 2454 2279 642 9315
ProFTPD 1.2.10 48 938 483 478 269 2168
Samba 2.2.7a 189 7399 7597 4603 2195 21794
gzip 1.2.4 7 572 195 421 138 1326

Table 2. Number of checks inserted.

is largely I/O bound, and our checks are CPU bound, we
wrote a script that performed several simple file-system op-
erations on a small set of files that could be cached in main
memory. We primed the cache with 5 runs of the script and
then timed it on 645 subsequent iterations.

To stress test RICH with a CPU-bound application, we
measured the performance overhead forgzip, a compres-
sion utility. At first, gzip showed over a 300% slowdown
while decompressing the archivelinux-2.6.15.tar.gz.
A closer examination revealed that the integer error handler
was being triggered repeatedly by two deliberate integer vi-
olations in an inner loop of the gzip inflation code. Both
violations intentionally make use of overflow to perform re-
duction modulo232. If the prototype implementation sup-
ported annotations, a programmer could annotate these two
intentional overflows to eliminate both the check for over-
flow and the consequenterror call, eliminating the over-
head. To estimate the speedup this would yield, we recom-
piled gzip with the RICH checks in place but witherror
defined as a no-op . This cut the overhead to only 1.77%.

Comparison with GCC’s built-in protection. We also
compared the performance of RICH with GCC’s-ftrapv
option, as shown in the last column of Table 3. The
-ftrapv option only checks for signed overflows in ex-
plicit arithmetic operations, so it is much less comprehen-
sive than RICH and, as our experiments show, has much
higher overhead. Furthermore,-ftrapv does not allow
a programmer to specify an action when overflow is de-
tected; it always aborts. Thus, we could not measure the
-ftrapv overhead for Samba and Apache since they con-
tain overflows. For ProFTPD,-ftrapv slightly outper-
formed RICH, but keep in mind that the protection it pro-
vides is much weaker. However, even for computation
intensive programs like gzip, RICH greatly outperformed
-ftrapv. This is because-ftrapv is implemented as a
function call to a checking routine, while RICH takes ad-
vantage of IA32 instructions likejo to check for integer
errors. Overall, although RICH protects against more than
-ftrapv, it still achieves better performance by making
those checks extremely efficient.

Analysis of Dynamic Check Overhead. The perfor-
mance overhead in Table 3 is somewhat surprising, given
the number of checks inserted. There are several reasons
the overhead is so low. In RICH, the majority of integer
checks are implemented as a single instruction, and do not
require any extra loads or stores. Thus, the instructions can
be pipe-lined, and given the excellent branch prediction in

modern CPU’s, executed essentially for free. On the other
hand, GCC’s signed overflow check is a function call, thus
quite expensive. Overall, although we could perform addi-
tional optimizations to remove unnecessary checks (e.g., re-
dundant check elimination), we found the current overhead
so low there was no need.

5.3 False Positives and False Negatives

5.3.1 Analysis of False Positives

We measured the number of deliberate uses of unsafe C fea-
tures, as discussed in Section 3.4. Table 4 shows our results.
We measured 32 total deliberate uses, which we then broke
down into the following categories:

Pseudo-random number generation.Pseudo-random
number generators often use potentially unsafe C operations
as short-cuts. Examples can be found in hash functions in
Samba, Apache, and Pine, as well as in ProFTPD’s memory
scrubbing function.

Message encoding and decoding.Data-structures in
network applications sometimes need to be serialized to
messages to exchange status between client and server. Dur-
ing marshaling and de-marshaling, types are often cast from
one type to another incompatible type, e.g., encoding a se-
ries ofuint16 t’s as an unsigned character byte stream.

Integer as ID.When an integer is used as an ID, only the
bit sequence matters. Signedness conversion errors which
do not affect bit values are thus benign.

Mixed usage of signed and unsignedchar. There
are many instances of assignments between signed and un-
signedchar in Samba and Pine, which are essentially in-
nocent as long as they are not interpreted incorrectly (note
even benign cases can often result in portability bugs [26]).

Explicit casts. Programmers can use explicit casts for
several reasons, including to reduce an integer modulo a
power of two and to access subsets of an integer’s bits as
a bit-vector.

Table 5 shows a break-down for how many false posi-
tives each programming pattern caused in our test suite.

5.3.2 Analysis of False Negatives

We tested RICH on several vulnerabilities in real programs
to verify that it can effectively prevent integer-based attacks.
Some vulnerabilities actually consist of two integer bugs,
like the Pine and Apache modauth radius vulnerabilities.
Table 6 shows the results of these experiments.

Integer exploits are fragile, so our instrumentation could
potentially perturb the program layout sufficiently to ren-



Program Benchmark Overhead(RICH) Overhead(-ftrapv)
Apache Httpd 2.2.0 ab 8.18% N/A
ProFTPD 1.2.10 dkftpbench 3.59% 0.84%
Samba 2.2.7a Bonnie++ 1.21% N/A
Samba 2.2.7a script 3.59% N/A
gzip 1.2.4 decompress linux-2.6.15.tar.gz 1.77% 48.46%

Table 3. Performance overhead of instrumented applications.

Program Total No. Overflow / Underflow Sign. conversion Truncation Real Bug
Samba 2.2 7a 15 3 1 10 1
gzip 1.2.4 3 2 0 1 0
Apache 2.2.0 7 4 2 1 0
ProFTPD 1.2.10 3 0 0 2 1
Pine 4.55 6 2 2 2 0

Table 4. Technical break down of false positives.

der a known exploit inoperative. To get around this prob-
lem, we extracted the vulnerable code in each benchmark
into a small, standalone program and then called that code
with error-inducing input. As Table 6 shows, RICH caught
all but one of the exploitable integer bugs. The only false
negative occurs because the current RICH prototype does
not support pointer alias analysis and therefore cannot catch
implicit casting when a variable is accessed through point-
ers of different types. Table 6 also shows that despite its
much higher run-time overhead, the GCC-ftrapv op-
tion is much less effective at catching integer exploits than
RICH.

5.4 New Bugs

RICH uncovered two new integer vulnerabilities in the
benchmark programs used in the performance tests. Samba
2.2 7a passes a pointer difference,name-(*start), as the
length argument tostrncpy at statcache.c:206, but
this value was negative in one of the performance bench-
mark runs, resulting in a signedness error when it is con-
verted to anunsigned int. This causesstrncpy’s size
argument to become unusually large, leading to a possible
buffer overflow. This bug was fixed in CVS as part of a
general rewrite ofstatcache.c in March, 2003, but we
could find no evidence in mailing lists or CVS logs that the
developers were specifically trying to fix this bug with that
rewrite.

ProFTPd 1.2.10 translates the fields of the UNIX
/etc/shadow file into internal data-structures. One step
of this conversion translates the password age fields of
/etc/shadow, which are expressed in days, into seconds
by multiplying by86400. This multiplication overflowed in
some of the benchmark runs. An attacker could potentially
use this overflow to log in using an expired password. This
bug still exists in current versions of ProFTPd.

6 Related Work

C/C++. Several authors have proposed replacing some or
all integers in a program with safe integers implemented by
a shared library that, like RICH, checks for integer errors at
run time. The GCC run-time library provides functions that
trap on signed arithmetic overflows, such asaddvsi3.
However, the library only considers signed addition, sub-
traction, and multiplication, so it is not a comprehensive
solution.

The Microsoft Visual C++ compiler and GCC con-
sider different, but incomplete, aspects of integer security.
The Visual C++ .NET 2003 compiler provides a compiler
switch, RTCc, that generates run-time checks for truncation
with data loss. The Visual C++ .NET 2005 compiler is able
to catch overflows in the::new operator, when calculating
the byte size of a non-character array. GNU GCC compil-
ers since version 3.4 have provided the-ftrapv command-
line flag that causes GCC to generate assembly code using
its safe integer functions mentioned above. The protection
is confined to signed arithmetic and does not include sensi-
tive address calculations in array and component references.
The Big Loop Integer Protection (BLIP) [27] compiler ex-
tension transforms programs to detect overly large counters.
BLIP uses a fixed threshold, resulting in many false nega-
tives and false positives.

David LeBlanc’s SafeInt C++ template class [28] over-
rides almost all relevant operators, including division, nega-
tion, assignment and comparison. Michael Howard pro-
vides a small in-line assembly library [29] that checks for
arithmetic overflows and underflows using exactly the over-
flow detecting instructions (jo, jc, etc.) as RICH. Howard
has also released IntSafe [30], a safe integer arithmetic li-
brary of unsigned math functions and conversion routines
optimized for performance and reportedly used in Windows
Vista.

Arbitrary precision arithmetic packages, like the GNU
Multiple Precision Arithmetic Library (GMP), can also help
circumvent integer security problems. They support arbi-



Program Total PRNGs I/O Marshaling MixedChars Integer ID Explicit casts
Samba 2.2 7a 14 4 3 7 0 6
gzip 1.2.4 3 0 0 1 0 0
Apache 2.2.0 7 2 0 0 3 1
ProFTPD 1.2.10 2 2 0 0 0 0
Pine 4.55 6 2 1 2 1 3

Table 5. Breakdown of programming patterns which cause false positives.

Program Vulnerability Kind(s) Caught(RICH) Caught(-ftrapv)
Samba 2.2.7a statcache.c:206 Sign err Yes No
Samba 2.2.7a replay nttrans() bug[7] OF Yes No
Samba 2.2.7a Directory ACL bug[12] OF Yes No
ProFTPD 1.2.10 mod auth unix.c:434 OF Yes Yes
Pine 4.55 Header parsing bug[8] UF, OF Yes, Yes Yes, No
Mailutil-0.6 Imap4d fet io() bug[13] OF Yes No
PuTTY 0.53b SFTP Client bug[11] Sign Err Yes No
mod auth radius 1.5.7 RADIUS reply bug[10] UF, Sign err Yes, Yes No, No
GNU Radius 1.2 SNMP DoS[9] Sign Err No No

Table 6. Results of testing RICH with real application vulnerabilities. UF stands for underflow while OF for overflow. Sign Err is signedness conversion
error

trarily large integers, making overflows and underflows im-
possible. As observed above, most programmers do not
intend computations to overflow, so providing support for
very large integers that should not arise in practice may be
overkill in many scenarios.

Other Languages. We target C specifically. Some lan-
guages are safe with respect to integer operations, such as
Lisp and Ada. In typical safe languages, the type-checking
rules prevent down-casts. We use a sub-typing semantics,
which is similar that found in Ada [17], as the basis for our
type-checking rules. Overflow/underflow is generally han-
dled in safe languages by either inserting run-time checks
which raise exceptions, or automatically promoting integers
to arbitrary-precision arithmetic, as discussed in Section 1.
Interestingly, we say many type-safe languages, not all, be-
cause some otherwise type-safe languages do not protect
against overflows, e.g., Java and OCaml. As a result, pro-
grams written in these languages may contain errors. Our
analysis indicates that such checks can be implemented ef-
ficiently, and thus such languages should consider adopting
run-time checks for overflow/underflow.

Our approach will raise a warning or throw an error when
an unsafe downcast or overflow occurs at runtime. Run-
time warnings/exceptions may pose a denial-of-service risk.
There has been significant previous work in proving that a
program will never have an unhandled error that may help
address this problem. For example, SPARK/Ada can guar-
antee programs written in their framework are free of run-
time errors such as overflows [31, 32]. Model checking
the C program is another approach which could be used to
prove runtime errors cannot happen, e.g., [35–38].

Our primary goal is to cheaply make existing C pro-
grams safe from exploits such as buffer overflows. Stati-
cally checking that the inserted run-time checks do not in-

troduce a new denial-of-service attack is beyond the scope
of this work.

There is work on safe variants of C, such as CCured [33]
and Cyclone [34]. Our work differs from theirs as we are
fixing a single problem in C without requiring any user in-
tervention. CCured and Cyclone offer greater protection,
but often require manual effort to convert a C program to
the safe language variant.

Other techniques. ASTREE is a sound but incomplete
static analyzer which can prove the absence of integer er-
rors on a limited subset of C (without recursion or dynamic
memory allocation) [39]. Another unsound and incomplete
approach is extended static checking [40, 41]. However, at
the end of the day, unsound or incomplete techniques offer
no guarantees.

We could reduce the number of checks through addi-
tional analysis. Dataflow analysis [42, 43] could be used
to reason about possible ranges of values and thus allow
us to remove unneeded or duplicate checks. Some of the
techniques developed by Redwine and Ramsey for port-
ing applications to architectures with wider integer word
sizes [44] could also be applied to optimize away unneces-
sary RICH checks. Initially, we expected that we may adopt
some of these techniques to prune out unnecessary checks,
but our performance numbers indicate this is unneeded.

Other more expressive type systems could be brought to
bear [18, 45, 46]. Dependent types allow types to depend
on values [18], and could be used to express integer safety.
Dependent types are more powerful, but can also be more
expensive to check. In particular, it seemed difficult to come
up with a type system that was decidable yet more useful
than our simple sub-typing system.

Since integer violations usually work in tandem with
other attacks, techniques for preventing buffer overflows



and enforcing input sanitization help alleviate the damage
of integer violations[22, 47, 48]. However, these can only
be auxiliary solutions and cannot solve the integer security
problem in general.

7 Conclusion

This paper surveys integer-based attacks and provides a
theoretical framework to formally define and reason about
integer errors soundly. The RICH compiler extension is, to
the best of our knowledge, the first comprehensive, auto-
matic integer error prevention tool for C. Experiments with
real servers and UNIX utilities show that RICH is backward
compatible, easy to use, efficient, and effective.
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A Full Subtyping Rules

Table 7 shows the full sub-typing rules we use in RICH.
Each rule is read as an implication: when the preconditions
on the top of the bar are satisfied, the formula on the bottom
of the bar is true. A safe expression has a valid type, i.e., a
type that can be derived via the rules. Here,Γ is the typing
store that maps a variable name or expression to a type. The
types inΓ are built via the declared C types.T-SUB intro-
duces the sub-typing semantics, and says if our typing store
Γ says variablet is of typeσ, andσ is a subtype ofτ , then
t is also of typeτ . We also add the standard reflexive (T-
REFL) and transitive (T-TRANS) rules. T-FIELD just states
that, when the programmer references a structure field, the
expression uses the declared type for that field.



Γ ⊢ t : σ σ <: τ

Γ ⊢ t : τ
T-SUB

σ <: σ T-REFL
σ <: υ υ <: τ

σ <: τ
T-TRANS

Γ ⊢ s.i : σ σ <: τ

Γ ⊢ s.i : τ
T-FIELD

Γ ⊢ t : τ

Γ ⊢ &t : ref τ
T-REF

Γ ⊢ t : ref τ
Γ ⊢ ∗t : τ

T-DEREF

unsigned<: uint8 t <: uint16 t <: uint32 t <: uint64 t
T-UNSIGNED

signed<: int8 t <: int16 t <: int32 t <: int64 t
T-SIGNED

Γ ⊢ e : σ σ <: τ

Γ ⊢ (τ)e : τ
(T-UPCAST)

Table 7. Typing rules for statically-safe integer operations.

Γ ⊢ e : σ (τ)e σ <: τ e e′

(τ)e (τ)e′
R-SAFE

Γ ⊢ e : σ (τ)e σ 6<: τ σ, τ <: Z e e′

(τ)e (τ)let x : σ = e′ in CHECK(τ)σ(x)
R-UNSAFE

σ 6<: τ

CHECKτ,σ(x) ≡ if τmin ≤ x ≤ τmax thenx else error
D-CHECK

Table 8. R-UNSAFErewrites unsafe casts by inserting dynamic checks:U-S-CHECK for unsigned to signed casts,S-U-CHECK for signed to unsigned casts,
andD-CHECK for down-casts.R-SAFE is added for completeness: it leaves safe expressions as-is.


