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Abstract

For most elections, receipt-freeness is important – voters
are unable to prove to others on how they voted, in order to
prevent vote-buying. Many existing receipt-free electronic
voting systems are not practical enough as they require vot-
ers to participate in the tallying phase (i.e. do not satisfy
the vote-and-go requirement), or have no mechanism for
the voters to verify whether their votes have been counted
(i.e. do not satisfy universal verifiability).
We propose a new way of constructing vote-and-go elec-

tion system without tamper-resistant hardware, or anony-
mous channel. Receipt-freeness is guaranteed even if there
is only one voting authority (in a distributed setting) be-
ing honest. Regarding the correctness, voter alone has no
chance to tamper with the validity of the final tally, while
any misbehaving authority can be detected (and proven
to the public) by the tallying center. Robustness can be
achieved by fixing the corrupted vote in a verifiable man-
ner. Ballot secrecy cannot be compromised even if all tally-
ing authorities collude.
Keywords: electronic voting, receipt-freeness, universal
verifiability, robustness, ballot secrecy, homomorphic en-
cryption, escrowed linkable ring signatures

1. Introduction

Electronic voting (e-voting) generally means the col-
lection and dissemination of people’s opinions with the
help of some electronic means (e.g. ballots processing
and automated verification, etc). This paper studies the
cryptographic design of e-voting system. Cryptographers
have been proposing constructions for e-voting since the
1980s [12, 18]. After all these years of research effort, we
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see some real systems being used over the world; examples
can be found in the cryptographic literature such as [4, 37].
Numerous functional and security requirements for e-

voting system have been formalized. For example, in [26],
seven requirements are listed: completeness, soundness (or
robustness), privacy (or ballot secrecy), non-reusability (or
double voting detection), eligibility, fairness and verifia-
bility. Recent research has proposed some more desirable
properties. One is receipt-freeness [10, 33], which prevents
a voter from proving to others that s/he has voted for a par-
ticular candidate. Such a feature is essential in order to pre-
vent voters from selling their votes.

1.1. Major Approaches

Over years, many different approaches have been pro-
posed for constructing e-voting systems. We review some
of the major ones.

1. Blind signatures [13, 26, 50, 49]: Schemes based on
blind signatures are simple and efficient, which may be
suitable for large scale voting. However, voters are re-
quired to obtain some tokens before each voting event,
which means that a registration phase is necessary. At
the same time, universal verifiability may not be possi-
ble since the registrar can just add more ballots to bias
the tally. An anonymous channel [12, 31, 51] between
the voter and the tallying official is also required to
keep the identity of the voter confidential at ballot cast-
ing. This requirement may be inhibiting and mix-net
[12] may be used to realize it.

2. Mix-nets [51, 57, 2, 34, 35, 3, 33, 27, 47, 28, 30, 40,
4, 54]: Mix-net is a network of servers (mix-center)
which takes a set of ciphertexts as input, and outputs
the corresponding plaintexts according to a secret per-
mutation. Schemes based on mix-nets require the bal-
lots to be permuted at some point between leaving the
voters and arriving at the tallying officials. They are
generally not efficient since computational effort is re-
quired for multiple mixers to prove the correctness.
In addition, the anonymity protection comes from the



mix-net, the function of which may possibly be per-
formed by the tallying center in a real world scenario.
Thus, the tallying center must be trusted. This problem
can be partially solved by distributing it over many
machines so that trust is placed only on a threshold
number of them.

3. Homomorphic encryption [9, 56, 20, 21, 33, 32, 42,
22, 41, 53, 39, 4]: Voting schemes using homomorphic
encryption are efficient in general. Extensive research
using this approach had been done, but only a few of
them (such as [33, 32]) can achieve receipt-freeness.

4. Ring signatures [44]: Roughly speaking, a ring sig-
nature is a signer-ambiguous signature. Each voter
signs on her/his vote by a ring signature to confirm
her/his voting. The ambiguity in the real identity of
the signer protects the voter-vote relationship from be-
ing known. However, some special mechanism is re-
quired to detect double voting. This also motivates
the introduction of the linkability in the ring signature
paradigm [44], so two ring signatures produced by the
same signer can be linked.

The suitability of each of these four types varies with the
conditions under which it is to be applied.

1.2. Receipt-Freeness

Generally speaking, receipt-freeness means a voter can-
not prove to a third party that he has voted for a particu-
lar candidate. In other words, vote-buying is not possible.
In an ordinary mix-net or homomorphic encryption based
scheme, an adversary can simply furnish the voter with a
ciphertext on a particular candidate, and then verify that the
voter has posted a ballot containing that ciphertext. The
blind signature based schemes suffer from similar vulner-
abilities. For ring signature based schemes, a voter can
simply reveal the randomness of the ring signature he has
posted to show that he is the actual signer. Since the ran-
domness is the source of signer-anonymity, doing so can
claim the authorship of a particular ballot.
The first scheme claimed to be receipt-free was proposed

by Benaloh and Tuinstra [10], although it was later shown to
be not [33]. Okamoto [50] proposed a scheme with receipt-
freeness that makes use of blind signatures. It assumes the
existence of an anonymous untappable channel and requires
three times of voter and system interaction in the course of
an election. That is, they require every voter to participate
even in the tallying phase. Sako and Kilian [57] proposed
an e-voting scheme with multi-authority using mix-net and
homomorphic encryption, which is postulated to be receipt-
free. Even though its receipt-freeness cannot be guaranteed

under the commonly used assumption that only one mix-
center is honest, it served as a basis for the later work of
Hirt and Sako [33] and a more efficient approach in [8].
Receipt-freeness comes with some assumptions. All of

the above but [50] have the receipt available if the ad-
versary can corrupt even one of the tallying authorities in
a distributed setting. As noted in [37], systems in [33]
and [8] still retain receipt-freeness when such a corrup-
tion takes place, but only under a stronger assumption that
the voter knows which tallying authorities have been cor-
rupted. Juels, Catalano and Jakobsson [37] proposed a
receipt-free voting scheme, which is one of the most effi-
cient and practical schemes to date. It only requires one of
the tallying authorities to be honest for providing receipt-
freeness while the ballot secrecy depends on the anony-
mous channel and the honesty of at least one among the
group of the registrars (entities responsible for registra-
tion) and tallying authorities. In addition, it can even pro-
vide a stronger form of receipt-freeness, called as coercion-
resistance, which defends against randomization, forced-
abstention and simulation attacks (details can be found in
[37]). However, coercion-resistance does not allow the vot-
ers to verify whether their votes have been counted (i.e., no
universal verifiability).
Besides the above schemes, most of the other schemes

such as [42, 38, 41, 31, 40, 45] require either tamper-
resistant hardware or a randomizer to provide receipt-
freeness.

1.3. Our Contribution

In this paper, we make use of the escrowed linkable ring
signature [17] to get the robustness and the receipt-freeness
simultaneously. The unforgeability (in an appropriate sense
in the context of escrowed linkable ring signature) gives the
robustness, so the misbehavior in preparing an invalid ballot
can later be attributed to some one (either a voting center
or a voter) in a non-repudiable manner. Receipt-freeness
comes from the signer-ambiguity and the private linkability
of the ring signature.
Even though it has been previously suggested that link-

able ring signature can be used to construct e-voting system
[44], we believe that our study provides a better and more
comprehensive solution. We advocate using identity-based
linkable ring signatures to address the problem of requir-
ing all potential voters to get their public keys. We provide
more than the double voting detection mechanism brought
by plain linkable ring signatures. Indeed, our application
of escrowed linkable ring signatures is fundamentally dif-
ferent from the use of linkable ring signatures or linkable
credentials in previous simple e-voting systems [44, 45].
Our proposal enjoys the following major properties:

• RECEIPT-FREENESS: Our scheme provides receipt-



freeness without using any randomizer or tamper-
resistant device. We only make the basic assumption
that at least one of arbitrary voting authorities remains
honest. In our scheme, the honest authority can be un-
known to the voters. All they need to believe is at least
one of them (no matter which) is honest, in contrast
with the schemes in [33, 8].

• UNIVERSAL VERIFIABILITY AND CORRECTNESS:
Our scheme provides universal verifiability in contrast
with Juels et al.’s scheme [37] which is not universal
verifiable. Moreover, their scheme relies on the
assumption that the adversary can only corrupt a
minority of tallying authorities. We observe that
corrupting all of them means the encrypted credential
posted by voters in the bulletin board can be decrypted.
With such a credential, an adversary can pretend to
be a voter to cast a vote and affect the result. (This
observation does not contradict to the security result
claimed in [37].)

Regarding the correctness of our scheme, voter alone
has no chance to tamper with the validity of the fi-
nal tally. Any misbehaving party who introduces cor-
rupted votes can be detected by tallying authorities. At
the same time, tallying authorities can prove to the
public about this. Our scheme is also robust in the
sense that the corrupted votes can be fixed, again in
a publicly verifiable manner.

• BALLOT SECRECY: In our scheme, voter contributes
to the randomness introduced in the encryption of
choice, which means even the collusion of all voting
authorities cannot reveal a particular ballot. Since a
threshold number of tallying authorities can come to-
gether and open any encrypted ballot, the voter-vote
relationship is under protection if the majority of tally-
ing authorities or all voting authorities are honest.

• NO REGISTRATION/AUTHORIZATION STAGE: Un-
like many other schemes, especially those using
anonymous channel (such as [50, 37]), our scheme
does not require any registration stage. In these
schemes, the voter is assumed to have a private/public
key pair (more generally, a credential and its public
representation [37]) for proving eligibility to the reg-
istrar in the registration stage. In other words, by say-
ing registration-free we do not mean the voters are free
from getting a public key certificate from a public key
infrastructure (PKI).

Our scheme employs linkable ring signatures to re-
move the registration stage. Nevertheless, the gener-
ation of such signatures involves the public keys of all
legitimate voters. This requirement can be removed

if identity-based (ID-based) infrastructure (in particu-
lar, ID-based linkable ring signature scheme [6, 17])
is used instead, such that those who want to vote will
not be affected by those who do not bother to get the
private key of their identities. Of course, just like the
commonly used trust assumption that the certificate
authority of PKI would not launch an active imperson-
ate attack, we make a similar assumption for our ID-
based case. Advantages of ID-based ring signatures
over traditional PKI based one are discussed in [16].

• VOTE-AND-GO: Once the voter has cast her/his vote,
our system requires no further action from the voter to
get the final voting result, which is a nice feature since
voters may find additional duties tedious. For example,
the voter is required to open the trapdoor commitment
in [50], or the “encrypted” ballot cannot be opened.
On the other hand, our scheme is publicly verifiable,
so a voter who wants to verify the correctness of the
result can participate in a public audit after the final
tallying phase, which may make the voters feel that
their participation is important or dutiful.

In addition, our scheme supports double voting detec-
tion, and more than two candidates (i.e. not restricted to a
yes/no vote).
Table 1 summarizes the comparison of different receipt-

free voting schemes without using any tamper-resistance
device or randomizer.
Organization. In Section 2, we describe the framework of
an e-voting system. In Section 3, we describe the primitives
from which our scheme is built, before the description of
our e-voting scheme in Section 4. Finally, some concluding
remarks are made at the end of the paper.

2. Voting Model

2.1. Entities

There are three types of entities in the system.
Voters: Voters are the people who are authorized to vote.

In the rest of the paper, we use U to denote a partic-
ular voter who is about to vote. Let (xU , yU ) be the
private/public key pair of U .

Voting Center/Voting Authorities: We use the term vot-
ing center to refer to the logical entity responsible for
organizing the voting. Its task may be separated into
NV > 1 voting authorities V1, . . . , VNV

.

Tallying Center/Tallying Authorities: Tallying center is
responsible for tallying and publishing voting results.
Let (xT , yT ) be the private/public key pair of the cen-
ter. Again, the task of a tallying center can be dis-
tributed to NT authorities, denoted by T1, . . . , TNT

.



Receipt-free Universal Without Ballot secrecy Without Vote-
Schemes (only one tallying Verifiable Anonymous (all tallying Registration and-Go

authority is honest) Channel authorities collude) Stage
Okamoto [50] ✓ ✓ ✘ ✓ ✘ ✘

Sako-Kilian [57] ✘ ✓ ✘ ✓ ✓ ✓

Hirt-Sako [33] ✓ ✓ ✓ ✘ ✓ ✓

Baudron et al. [8] ✓ ✓ ✓ ✘ ✓ ✓

Juels et al. [37] ✓ ✘ ✘ ✓ ✘ ✓

Our scheme ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Properties of different receipt-free voting schemes

Besides the entities above, we also assume the existence
of the following object.

Bulletin Board: It can be considered as a broadcast chan-
nel with memory, such that (1) all entities can read the
content of the board; (2) any entity can append infor-
mation onto the board; and (3) no one can remove any
information that has already been written to the board.
It is commonly used for achieving universal verifiabil-
ity, e.g. [21].

The bulletin board can be modeled formally by a state-
ful oracle with two queries post and get. The query
post takes a message m ∈ {0, 1}∗ and stores m in its
state BB, without giving any return value. The query
get takes no input and returns BB.

2.2. Functions

Suppose there are n election candidates (choices) and
they are indexed from 1 to n. Let L be the list of public
keys of all the voters. Our voting protocol proposed in the
subsequent section is composed of the following functions.

Setup: param ← Setup(1k) is a randomized algorithm
that takes a security parameter k and outputs the sys-
tem parameter that will be used by all the other algo-
rithms. In particular, param includes a unique event
identifier eID, the cryptographic security parameter k
and the description of all cryptographic algorithms to
be used. For brevity, we will omit the inclusion of sys-
tem parameter as part of the input.

Key Generation: (x, y) ← Gen() is a randomized algo-
rithm that outputs a private key x and the correspond-
ing public key y. For simplicity of the discussion, we
omit the details of master key generation and the user
secret key generation in the ID-based case.

Voting: ballotU (β) ← Vote(xU , yT , L,β) is a random-
ized algorithm that takes U ’s private key xU , the pub-
lic key of the tallying center yT , the list of public

keys of all legitimate voters L and a candidate se-
lection β ∈ {1, · · · , n}; outputs some binary string
ballotU (β) to be posted on the bullet board BB.
The above description captures the essential character-
istics of the voting phase of any election system. In
our scheme, voting is done via an interactive protocol
between the voter and the voting center, where the vot-
ing center uses its private key as its secret input, and
the voter also takes the public key of the voting center
as the public input.

Tallying: (X , P ) ← Tallying(xT , L,BB) is a determinis-
tic algorithm, which takes the private key of the tal-
lying center xT , a list of public keys of all legitimate
voters L and the full contents of the bulletin board BB;
outputs a vote tally X , along with a non-interactive
proof P that the tally was correctly computed.

Verification: 0/1 ← TallyVerify(yT , L,BB,X , P ) is a de-
terministic algorithm which takes the public key of the
tallying center yT , a list of public keys of all legitimate
voters L, the full contents of the bulletin board BB, the
vote tallyX and the associated non-interactive proof P
for correct tallying. Its output is either 0 or 1, mean-
ing invalid or valid respectively. In our scheme, the
public key of the voting center is also involved.

2.3. Real World Deployment Assumptions

We assume that, once the communication between the
voter and the voting center starts, a vote-buyer (or any third
party) is not allowed to communicate with the voter. That
is, we assume that the voting center is really communicating
with the purported voter, not a vote-buyer or other adver-
sary. We also assume that the vote-buyer is not allowed to
view or video record the whole process of the voting phase
(for example, he stands behind the voter and watches what
he has typed in the computer). Similar to [33], we assume
untappable channels between the voters and the voting au-
thorities, which is also related to a recent result [14] that
one cannot get universal verifiability and receipt-freeness



simultaneously unless the voting process involves interac-
tions between voters and possibly the voting authority.

3. Cryptographic Primitives

Our scheme uses the following cryptographic primitives.

3.1. Proof of Knowledge

A Σ-protocol for an NP-relation R is a two-party three-
round protocol, such that for every input (x, y) ∈ R to a
prover P and y to a verifier V , P firstly sends a commit-
ment message a, V replies with a random challenge c and P
concludes with a response message z. At the end V outputs
a 0/1 value locally, depending on y and the communication
transcript (a, c, z) only; a transcript is valid if the output of
V is 1. In addition, a Σ-protocol must satisfy the following
two properties.

(Special Soundness.) There exists a probabilistic polyno-
mial time (PPT) extractor takes an input y and two
valid transcripts with the same commitment (a, c, z)
and (a, c, z′), outputs x such that (x, y) ∈ R.

(Special Honest-Verifier Zero-Knowledge.) There exists a
PPT simulator which takes input y and any challenge
c, output a pair (a, z) such that (a, c, z) is a valid tran-
script and is distributed according to the probability
distribution of one returned by the interaction of P and
V via P(x, y) ↔ V(y) , for any y where (x, y) ∈ R.

AΣ-protocol can be generalized to an 1-out-of-nwitness
indistinguishable proof [19] as illustrated in the Appendix
A. Moreover, it can be made non-interactive. By the Fiat-
Shamir heuristics [25], every three rounds proof of knowl-
edge protocols that is honest-verifier zero-knowledge can
be turned into a non-interactive proof-of-knowledge proto-
col by setting the challenge to the hash value of the com-
mitment a together with other auxiliary data involved.

3.2. Designated Verifier Proof of Knowledge

Using the Fiat-Shamir technique to make the proof-of-
knowledge non-interactive makes the resulting “transcript”
in itself a transferable proof, the correctness of which can
be verified by anyone. This universal verifiability may not
be desirable in some occasions.
Jakobsson et al. [36] constructed a non-interactive des-

ignated verifier proof. The designated verifier can always
use his trapdoor to simulate a transcript for any statement.
Any other party cannot distinguish a valid proof of a true
statement from a simulated proof.
Designated verifier proof is also used in some existing

e-voting system (e.g. [33]).

3.3. (Escrowed) Linkable Ring Signatures

The idea of ring signatures was formalized by Rivest et
al. [55]. Ring signature schemes enable one to sign on a
message in a way that anyone can ensure the signature is
generated by some one from a group of signers which in-
cludes the real signer, but do not know exactly who. The
diversion group of signers is formed spontaneously, which
means ones may be totally unaware that they are involved in
a ring signature. Several ring signature schemes have been
proposed [23, 11, 15]. Many of them enjoy unconditional
anonymity– no one can later reveal the actual signer, other
than the actual signer herself/himself.
Note that a two-party ring signature can be used as a des-

ignated verifier signature, i.e. only the designated verifier
gets convinced that the signature is valid, but cannot prove
to anyone else.
Traditional ring signature schemes support unlinkability:

it is not possible to decide whether two signatures have been
produced by the same group member. The notion of linka-
bility in ring signature schemes was first introduced by Liu,
Wei and Wong [44]. In addition to the 1-out-of-n signer-
anonymity, it also allows anyone to determine whether two
signatures have been produced by the same signer. The link-
ability is determined by a linkability tag that must present
in a valid ring signature. Given an event identifier and the
user’s private signing key, the linkability tag is uniquely de-
termined. In this way, ring signatures for the same event
from the same user can be linked.
The first scheme in [44] uses a single type of public key

while the scheme in [60] allows different types to be used
together. Schemes in ID-based [17, 6] and certificate-based
[7] settings are proposed later on. Schemes in [44, 60]
have signature size linear in the size of the diversion group.
Examples of constant-size linkable scheme include the ID-
based scheme in [17, 6] and the PKI-based scheme in [5].
Chow, Susilo and Yuen made a further refinement of the

anonymity of ring signatures [17] such that the linkability
can be escrowed, i.e. the linking can only be done by a
linking authority. While the linkability tag is still a deter-
ministic one as in [17], it is encrypted by a probabilistic
encryption algorithm, and it is computationally impossible
to prove the non-authorship of someone else’s signature.
Our construction uses the escrowed linkable ring signa-

tures to realize the designated verifier signatures, so only
the voter can verify and only the linking authority (in which
the function can be performed by the tallying center in our
system) can later reveal who is the actual signer, which help
providing the receipt-freeness and the verifiability.
Looking ahead, linkable ring signatures will help in dou-

ble voting detection, and escrowed linkable ring signatures
ensure the detection of misbehaving voting authority and
the robustness (by signing the re-randomization introduced



in an “untransferable” manner, i.e. the signature is only con-
vincing to the designated verifier but no one else).

3.4. Functions Notation for Signatures

We define a set of signature primitive functions here.

• σ ← SignV (m) takes an input of a message m and
the private key of the voting center V , returns a normal
signature σ signed by V .

• 0/1 ← SigVerifyV (m,σ) takes an input of mes-
sage/signature pair (m,σ), and the public key of V ,
returns 1 if the message/signature pair is valid and 0
otherwise.

• σ∗ ← LRingSignL,eID(m) takes an input of a mes-
sage m, the public keys of all members in a group L,
a unique event identifier eID, and a private key of one
of the members in the group L, returns a linkable ring
signature σ∗.

• 0/1 ← LRingVerifyL,eID(m,σ∗) takes an input of
message/signature pair (m,σ∗), the public keys of all
members in the groupL, a unique event identifier eID,
returns 1 if σ∗ is a signature on m signed by someone
in the group L for the event eID, and 0 otherwise.

• σ∗ ← ELRingSignL,eID(m, pk!a) takes an input of a
messagem, the public keys of all members in a group
L, a unique event identifier eID, a private key of one
of the members in the group L, and the public key of
the linking authority pk!a, returns an escrowed link-
able ring signature σ∗.

• 0/1 ← ELRingVerifyL,eID(m,σ∗, pk!a) takes an in-
put of message/signature pair (m,σ∗), the public key
of the linking authority pk!a, the public keys of all
members in the group L, and a unique event identi-
fier eID, returns 1 if σ∗ is a signature on m signed
by someone in the group L and the linkability tag is
verifiably encrypted to #a, 0 otherwise.

• 0/1 ← LinkeID(σ0,σ1[, sk!a]) takes an input of two
valid signatures (σ0,σ1), a unique event identifier
eID, and possibly the secret key of the linking author-
ity sk!a, returns 1 if both signatures are issued by the
same signer for the same event eID, 0 otherwise.

3.5. Homomorphic Encryption

For the ease of understanding, we use ElGamal encryp-
tion in our scheme, which is reviewed in Appendix B. We
remark there are other homomorphic encryption schemes
like Paillier encryption [22].

3.6. Encoding of Candidates

Recall |L| is the number of legitimate voters, suppose
candidate i gets ci votes from these |L| voters, let γ ∈ G be
a generator chosen randomly and # be another integer such
that ∀i ∈ {1, · · · , n} : ci < # (e.g. # = |L| + 1); we use
an idea from [20] to encode a choice of candidate as γ!i−1 .
For examples, candidate 1 is encoded as γ, while candidate
n is encoded as γ!n−1 .
Since we encode the choices in the exponent and we

are going to aggregate the ciphertexts by the homomor-
phic property, it is crucial that parameters are chosen so that
#n < q, where q is the order of the group G, to ensure the
final tally is uniquely represented in Zq.

4. Proposed Construction

4.1. Initial Attempts

We first discuss how naı̈ve attempts of combining cryp-
tographic schemes (even each of them has some nice prop-
erties) would not work.
Homomorphic encryption makes the final decryption by

tallying center efficient since only one decryption of the
“combined” encrypted vote is needed. Unfortunately, any
stateless encryption scheme with semantic security (infor-
mally, it means the ciphertexts encrypting two known mes-
sages respectively are indistinguishable) involves random-
ness in the encryption. The random factor introduced in
the encryption process makes the encryption of a particular
message reproducible, and hence it can be used by the voter
as a piece of evidence that a certain vote has been cast.
To provide receipt-freeness, the encryption can be done

in the other way round, i.e. a voting center encrypts on
the voter’s behalf. Instead of revealing the randomness, the
center can produce a proof of knowledge that the encrypted
vote is a valid one for the voter’s choice. It is also possible
to strengthen the security by introducing more voting au-
thorities to perform re-randomization. However, the ballot
secrecy is lost.
For the voter to hide the voting choice, a natural solution

is to ask for the ciphertext of all candidates, and submit-
ting only one of them finally, which is clearly inefficient.
Moreover, the collusion of all voting authorities can reveal
the voter’s choice by a comparison between the submitted
vote and the re-encryption transcript, even this voter uses an
anonymous channel to obtain those ciphertexts.
One may suggest requiring both the voter and the voting

center jointly contribute the randomness in the encryption
process. Nevertheless, not to forget universal verifiability
and correctness. For a correct combined decryption of the
final result, each ciphertext must be well-formed. This re-
quires the voting center to prove to the voter that its con-



tribution of the ciphertext is well-formed, without revealing
the randomness. Zero-knowledge challenge-response pro-
tocol seems to be useful here, but it is entirely possible that
the voter has brought the challenge furnished by the vote-
buyer to participate in the protocol. In other words, the abil-
ity for anyone to audit such a process may enable a voter to
convince the vote-buyer that a certain vote has been cast.

4.2. High Level Idea

Now we describe the main idea to solve all the afore-
mentioned problems. Our e-voting scheme combines the
useful properties from homomorphic encryptions, (witness-
indistinguishable) zero-knowledge proof (of equality of
discrete logarithm), designated verifier signature and (es-
crowed) linkable ring signatures as follows.
A voting center first prepares an encryption of a mul-

tiplicative identity message (i.e. m = 1), denoted as
CD, sends to the voters and uses the zero-knowledge proof
(ZKP) protocol to convince the voter that it is a valid one.
The voter, now encrypts her/his choice and multiplies the
resulting ciphertext with CD to get CE . As CD is an en-
cryption of a multiplicative identity, CE is just an encryp-
tion of the voter’s choice. Clearly, the voting center cannot
decrypt since it does not know the randomness introduced
by the voter (nor the private key of the tallying center). The
validity of the ciphertext can be checked by the center using
a witness-indistinguishable ZKP that division of CE by CD

is a valid encrypted vote of a certain candidate.
Informally, the receipt-freeness is achieved from the fol-

lowing facts.

1. The voter does not know the randomness introduced
by the voting center.

2. In the single voting authority version, the voting au-
thority never signs on CD.

3. In the multiple voting authorities version, the authori-
ties only sign on CD using an escrowed linkable ring
signature, which means the voter can come up with the
same signature.

4. Thus, the voter can always make the correspond-
ing CD to claim that CE is a valid encrypted vote
of a certain candidate, even it is not the case (also
from the properties of the designated verifier proof-of-
knowledge protocol).

With only one voting center, a temporary break-in (leak-
ing the secret random factor) makes receipt available. We
can increase the security level by introducing a series of
voting authorities to perform the voting center’s function.
To ensure all authorities have been involved in the re-
randomization, they communicate among themselves in

such a way that one authority only signs on the partial ci-
phertext of the voter if a valid signature from a previous au-
thority is presented. The final encrypted vote is considered
to be invalid if a valid signature from the last authority is ab-
sent. This gives a proof for the occurrences of interactions
with all voting authorities, but this cannot give us robust-
ness, since the signatures never go to the voter’s hands.
To give the voter some piece of evidence in case a vot-

ing authority produced an invalid encrypted vote, the vot-
ing authorities must give some forms of signature to the
voter. However, care must be taken on how to sign. Signing
CD makes receipt available since vote-buyer would know
CD is not constructed by the voter but the authority. On
the other hand, using a designated verifier signature to sign
CD, with the voter designated as the verifier, makes it im-
possible to identify whether the voting authority or the voter
misbehaved (whenCD corresponds to some inconsistent re-
randomization, there is equal chance that the authority or
the voter gives such a signature). That is why something in
between, i.e. a linkable ring signature, should be used.
An escrowed linkable ring signature should be used in-

stead of a plain linkable ring signature; otherwise, the voter
can just produce another linkable ring signature and con-
vince the vote-buyer that the voting center must have signed
(given there are only two possible signing entities) since the
public linkability gives evidence that these two signatures
are produced by two different signers. As discussed before,
even it is still possible to show the authorship of a newly-
created escrowed linkable ring signature, one cannot prove
to other the non-authorship of one produced by someone
else. So the voter has no way to show the vote-buyer who is
the real signer of the one presented by a voting authority.
Now a valid receipt-free encrypted vote is finally ob-

tained, the voter can declare it is her/his choice by using
linkable ring signature. This is also the idea suggested in
[44] that how a linkable ring signature helps in a simple
e-voting system. No one knows who the real vote issuer is,
but one can still get convinced that there is no double voting
by the public linkability checking.

4.3. Single Voting Authority Version

4.3.1 Voting Phase

1. The voter U randomly chooses r ∈ Zq, and sendsR =
gr to V .

2. The voting authority V encrypts an identity message
as follows.

(a) Randomly chooses s ∈ Zq.
(b) Computes (a, b) = (gs, yT

s).

(Note: yT is the public key of the Tallying Authority.



3. V proves to U , using non-interactive designated ver-
ifier proof-of-knowledge, that (a, b) is indeed an en-
cryption of 1, by proving the discrete logarithm of a to
the base g is the same as the discrete logarithm of b to
the base yT .

4. After verifying the proof, U encrypts her/his choice
of candidate k, and multiplies the resultant ciphertext
with the ciphertext (a, b) s/he just obtained, as

(AU , BU ) = (a · gr, b · mk · yT
r)

wheremk represents the encoding of the choice of can-
didate k.

5. U and V engages in a witness indistinguishable proof
to show that U performs the steps faithfully, by prov-
ing the discrete logarithm of R = AU/a to the base
g is the same as the discrete logarithm of BU/b/mk

to the base yT for an valid encoding mk. (We remark
that the proof is carried out in a zero knowledge sense
that V learns nothing about the value of BU/b/mk, or
mk. Details of the construction of this protocol can be
found in the Appendix. )

6. If V accepts U ’s proof, V gives a signature σV =
Sign(AU , BU ) to U .

7. If the signature σ is valid, U generates a linkable ring
signature σ∗

U = LRingSignL,eID((AU , BU )), and
posts (AU , BU ), σV and σ∗

U to the bulletin board.

Note that some messages of two proof-of-knowledge
protocols can be piggy-backed – the challenge of U and the
ciphertext generated by U can be sent together, and the re-
sponse of V for the first proof and the challenge of V for
the second proof can also be sent in a single message.

4.3.2 Vote Tallying Phase

The tallying center (i.e. each of the tallying authorities
T1, . . . , TNT

) verifies each ballot, computes the tally and
publishes the result as follows. Note that all verifications
below can also be done by the public.

1. Each vote ((AU , BU ),σV ,σ∗
U ) is firstly verified by

LRingVerifyL,eID((AU , BU ),σ∗
U ). The votes are dis-

carded if the corresponding linkable ring signatures are
invalid or linked (i.e. voted twice). For scheme using
a deterministic linkability tag (uniquely determined by
the actual signer’s private key and an event identifier),
such a checking can be done using the linkability tag
as a key to a hash table and collision detection.

2. For those votes passed the previous checks, the tallying
center verifies σV is a valid signature on (AU , BU ),
and discard any invalid votes.

3. Anyone among the tallying authorities multiplies all
valid ciphertexts to obtain (A,B) = (

∏

AU ,
∏

BU ).

4. Each tallying authority Ti (with share xi) publishes
wi = Axi and proves its correctness in zero-
knowledge. Let Λ denote some set of t tallying author-
ities. The tally can be computed as v = B/

∏

j∈Λ w
λj

j ,
where λj is the Lagrange coefficient polynomials (as
defined in equation (1) in Appendix B), and this re-
sult v is publicly verifiable since anyone can access
{wj}1≤j≤NT

and recover v. For details, please refer
to Appendix B.

5. The tallying authorities get the result R = c1 + c2# +
c3#2 + · · · + cn#n−1 by computing the discrete log-
arithm of v to the base γ and publish R. The most
straightforward way to do this is to try every possible
R to see if it is the correct one, which takes O(#n) op-
erations. We can speed up this process to O(

√
#n) by

using Shank’s baby step/giant step algorithm (please
refer to Appendix B.2). After we getR, we can regard
it as a number to the radix # and obtain c1, c2, . . . , cn.

We remark that if Paillier encryption [22] is used instead,
computation of discrete logarithm is easy and Shank’s algo-
rithm is not needed. For a comparison of using ElGamal and
Paillier in homomorphic encryption based e-voting system,
one may consult [53].

4.4. Full Security Version

The scheme above assumes the voting center will not
collude with the voter. If such collusion occurs, the receipt-
freeness is gone since all random factors are known. The
correctness of the tally can be easily broken even if only one
vote is invalid. Such collusion also breaks the correctness
since all the proof of knowledge is only done between them
and no proof is given to the tallying center or the public.
Below gives a strengthened version with NV voting au-

thorities performing the voting center function. A self-
regulating mechanism is used – verification will be done
by an authority for checking the participation of another au-
thority, to counter the above attacks.
Note the notation of σ to denote normal signatures and

the ∗ superscript in σ∗ to denote ring signatures which the
real signer is hidden.

4.4.1 Voting Phase

1. The voter U randomly chooses r ∈ Zq, sends a0 = gr

and a pseudonym PU to V1.

2. U also computes b0 = yT
rmk where mk is her/his

choice of candidate.

For i = 1 to |NV | Do:



3. A voting authority Vi randomly chooses si ∈ Zq and
computes (ai, bi) = (gsi , yT

si).

4. Vi generates an escrowed linkable ring signature
σ∗

Vi
= ELRingSign(Vi,U),eID((ai, bi, PU ), yT ) and

gives (ai, bi) together with signature σ∗
Vi
to the voter

and the tallying center. This provides evidence that
how Vi has participated in the re-randomization.

5. U verifies the escrowed linkable ring signature pro-
vided by Vi is valid. Then Vi proves to U by a non-
interactive designated verifier proof that (ai, bi) is in-
deed an encryption of 1.

6. If the proof is invalid, Vi reports to the tallying center
by signing σ∗

U = ELRingSign(Vi,U),e(“report”, yT )
and presenting both σ∗

U and σ∗
Vi
.

(The tallying center then gets the linkability tags by
using its secret key, and checks if they are different.)

7. If i = 1, U and V1 engages in a witness indistinguish-
able proof for showing the voter has prepared a valid
vote, by proving the discrete logarithm of a0 to the
base g is the same as the discrete logarithm of b0/mk

to the base yT for a valid encoding mk representing
the choice of the candidate k.

If i > 1, Vi receives (Ai−1 = gr
∏

j<i aj , Bi−1 =
yT

rmk
∏

j<i bj), and the signatures {σVj
, j < i}

from Vi−1, where mk is the choice made by the voter.
Vi proceeds only if verifications pass. Otherwise, re-
request for signatures or report to the tallying center.

8. If verification goes through (either checking U for i =
1 or checking Vi−1 for i > 1), Vi computes (Ai =
ai · Ai−1, Bi = bi · Bi−1) and sends to U .

9. If i < NV , Vi generates a signature σVi
=

SignVi
((Ai, Bi, PU )), and sends (Ai, Bi) with the

signatures {σVj
, j ≤ i} to Vi+1 via a secure channel.

If i = NV , VNV
gives a signature σVNV

=
SignVNV

((ANV
, BNV

, PU )) to U .

This step is for the “transition of trust”. For efficiency
of the next authority’s verification, this signature can
be replaced by a message authentication code (MAC)
with secret key shared between all authorities.

10. U verifies that Ai = ai · Ai−1 and Bi = bi · Bi−1.

End of For Loop

11. U postsmU = (ANV
, BNV

)||σVNV
||PU together with

the linkable ring signature σ∗
U = LRingSignL(mU ) to

the bulletin board.

Note that even the number of voting authorities has in-
creased, the voter only needs to involve in the proof-of-
knowledge protocol (as a prover) once (with V1). Only a
mild computational burden is incurred.
This also means that if the first voting authority V1 col-

ludes with the voter, no proof has been made about the well-
formness of the encrypted vote. However, note that V1 has
signed on the encrypted vote, the corrupted part is “marked”
and we can always cancel it and frame V1 later.

4.4.2 Vote Tallying Phase

Vote tallying proceeds as in the basic version.

4.5. Security Analysis

Receipt-freeness. Since the protocol starts by requiring the
voter to “commit” firstly to the random factor to be
used in the ciphertext, this random factor cannot be
chosen in a way depending on the other random fac-
tors to be introduced by the voting authorities. The
final ciphertext posted on the bulletin board is (A =
gr+

P

j sj , B = yT
r+

P

j sj mk) wheremk is the choice
of the candidate. When an arbitrary voting authority
(e.g. V!) is honest, U does not know the randomness
R = r +

∑

j sj since s! is unknown. The best s/he
can do is to show the knowledge r′ = R − s! such
that logyT

(B/B′/mk) = r′, where B′ is supposed to
be yT

r′ that “cancel” all the components that s/he does
not know the corresponding exponent.

However, the validity of B′ cannot be shown with de-
cisional Diffie-Hellman assumption. For any mk, one
can just randomly selects r′ ∈ Zp and computes B′

satisfying the equation (B/B′/mk) = yr′ . Such a
property makes “extraction” of receipt is impossible.

As discussed before, if the authority Vi signs (ai =
gsi , bi = yT

si) receipt can be made. This is where
escrowed linkable ring signature comes to play. By
generating a ring signature with the signer group being
the voter and the authority, both the voter and the au-
thority can generate such a signature. The voter cannot
convince any other about the “validity” of B′.

With the real world deployment assumptions we have
made, physical recording and masquerade are not
possible. The designated-verifier proof-of-knowledge
protocols are executed in an interactive manner, which
convinces no one else about the validity of the state-
ments to be proven.

Two more points to note. The signature on the
pseudonym provides no clue about the candidate
choice. Knowledge of any randomness involved in the



linkable ring signature cannot prove a vote on a partic-
ular candidate is cast.

Completeness and Universal Verifiability. In the voting
phase, the voter proves to each authority that the en-
cryption s/he produces, after canceling the factors con-
tributed by the authorities, is indeed the encryption of
a valid encoding of one of the candidates.

For the part contributed by the authorities, note that
each authority Vi uses escrowed linkable ring signature
to sign (ai, bi, PUk

) for each voter Uk. The tallying
center can easily check whether Vi has cheated in any
re-randomization process by checking if

∏

{ai}xT =
∏

{bi}.

Either the voting authority or the voter has generated
this signature. In case of the dispute, the concerned
voter issues an escrowed linkable ring signature as
well. The tallying center can confirm who the cheater
is by the linkability. Any cheating behavior can be
shown to the public by a non-interactive proof.

Given the data on the bulletin board, it is possible for
anyone to verify which encrypted votes are valid: those
that are signed by the voting authorities (as shown by
a valid signature by the last voting authority) which
means the re-randomization processes have been taken
place, and with a linkable ring signature produced by
a voter who has not signed any other votes.

Note the voter should post the diversion signer group
of the signature if the voter decided not to include all
the legitimate voters in the signers group by any rea-
son. This is necessary since the verification algorithm
also takes the signers group as an input.

Given all the encrypted votes, anyone can aggregate
them and compute the final encrypted tally. Using
the tally center’s private key, the tally center is able
to produce a non-interactive proof that the result it
publishes is the correct decryption of the encrypted
tally.

Robustness. Locating invalid re-randomization can be
done by a binary search [46]. For the correction of
the tally, the corrupted vote is firstly located by using
the pseudonym as the index of the vote. Then, the
problematic ai and bi can be removed from A and
B respectively. If it is the user who contributed a
corrupted vote (possibly by a collusion with some
voting authority), that vote is simply discard.

Ballot Secrecy. With the use of linkable ring signature, no
one can reveal the actual identity of the signer. Voter

contributes to the randomness introduced in the en-
cryption of choice, which means even the collusion of
all voting authorities cannot reveal a particular ballot.
However, we remark that under a strong attack which
compromises both the tallying center and a voting
authority can reveal the voter-choice relationship.

Fairness. Every vote and any partial tally, is encrypted
using the public key of the tallying center. No voter is
able to learn about the outcome of the election before
the final result is published.

Double Voting Detection. Any double voting can be
detected using the linkability tags of the linkable
ring signatures. Anonymity would not be affected if
the same key is used in multiple elections since the
linking can only be done with respect to the same
voting event. The signatures from the same signer for
different events remain unlinkable. Finally, even if the
voter fails to include some of the legitimate voters in
the signers group of the signature for whatever reason,
double voting detection is still possible since linking is
based on the event identifier but not the signers group.

4.6. Efficiency Analysis

Each vote on the bulletin board contains the following
signatures and the corresponding messages: one normal sig-
nature signing a constant-size ciphertext, and one constant-
size linkable ring signature signing a constant-size cipher-
text, The size of the whole bulletin board is thus linear in
the number of voters |L|. Note that the O(|L|× NV ) num-
bers of escrowed linkable ring signatures are not necessary
to be posted. They are just used to locate corrupted votes.

5. Concluding Remarks

We apply escrowed linkable ring signature [17] in e-
voting system to get the robustness and the receipt-freeness
simultaneously. Our application is fundamentally different
from the previously suggested use of linkable ring signature
in simple e-voting systems, and brings a new tool to the set
of cryptographic techniques enabling e-voting systems.
We use an identity-based solution [17] such that the pub-

lic keys for those who are not interested in voting are im-
plicitly defined, and thus other voters are free to vote even if
there exist some legitimate voters who do not bother to get a
key at all. It may be interesting to see if other identity-based
primitives with privacy concerns can help better e-voting
systems. For examples, one may study if the blind key
extraction protocol in [29] can be used to issue an anony-
mous credential for e-voting, and the relationship between



the receiver-anonymity of some identity-based encryption
schemes [1] and the realization of anonymous channels.
Our work aims to achieve receipt-freeness but not a

stronger notion of coercion-resistance [37]. In particular,
it may be interesting to devise some “fake-key” generation
algorithm corresponding to some identity-based schemes to
fight against simulation attacks, in which an attacker co-
erces a voter to divulge the private key. It is also interesting
to study if the techniques here and those from [37] can be
combined to achieve a nice set of security properties simul-
taneously.
Finally, we acknowledge that many issues still need to be

addressed; for examples, development issues such as secure
implementation and testing; and even more deployment is-
sues like legislation policy, education and training, voter-
eligibility checks, physical security, network and computer
security issues like maintaining backup and availability. We
hope to offer a comprehensive solution of using ring signa-
tures in e-voting, and alternatives choices of cryptosystems
that may be useful for a real-world full-blown system.
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A. Proof-of-Knowledge Protocols

A.1. (Witness-Indistinguishable) Proof

Let G be a cyclic group of prime order p, g1 and
g2 be two generators of G. Below gives a protocol
for proving the equality of the discrete logarithm of two
pairs of number, which refers to the relation R such that
(x, (g1, g2, u1, u2)) ∈ R ⇐⇒ x = logg1

u1 = logg2
u2.

1. P chooses r ∈ Zp at random and sends a = (t1 =
gr1

1 , t2 = gr2

2 ) to V .

2. V selects c ∈ Zp and returns it to P as a random chal-
lenge.

3. P responses to V with z = r + cx with private input
x = logg1

u1 = logg2
u2.



4. V accepts the proof iff gz
1 = t1uc

1 and gz
2 = t2uc

2.

Now P wants to prove that he knows the witness of two
purported relations, but does not want to reveal which. Sup-
pose Σ1 is the protocol for proving the first relation and Σ2

is the second one, and let (ai, ci, zi) be the transcript of Σi

for i ∈ {1, 2}. Without loss of generality, assume P knows
the witness for Σ1. The protocol proceeds as follows.

1. P uses the simulator S for Σ2 to generate a transcript
(a2, c2, s2).

2. P sends (a1 = gr1

1 , a2) to V .

3. V selects c ∈ Zp and returns it to P as a random chal-
lenge.

4. P computes c1 = c ⊕ c2.

5. P generates (c1, z1) with private input x, and sends
(c1, c2, z1, z2) to V .

6. V accepts the proof iff both (a1, c ⊕ c2, z1) and
(a2, c2, z2) are valid transcripts.

By using 1-out-of-n secret sharing (e.g. [58]) instead of
XOR operator, the above protocol can be generalized to an
1-out-of-n witness indistinguishable proof [19].

A.2. (Non-Interactive) Designated-Verifier Proof

We use the modification from Lipmaa et al. [43], which
fixed the original scheme by Jakobsson et al. [36].
Suppose the prover wants to prove the above relation R

to only the verifier but no one else, who has a private key
xB ∈ Zp and public key yB = gxB

1 . Let H : {0, 1} →
Zp be a hash function. A non-interactive designed verifier
proof is as follow:
Proving: Randomly selects w, r, t ∈ Zp, calculates

c = gw
1 yr

B , G = gt
1, M = gt

2

h = H(c,G,M, u1, u2, yB)

d = t + xA(h + w) mod p

and sends (w, r,G,M, d) to the verifier.
Verification: A designed verifier can verify a proof by cal-
culating c = gw

1 yr
B , h = H(c,G,M, u1, u2, yB) and veri-

fying that Guh+w
1 = gd

1 andMuh+w
2 = gd

2 .
Transcript simulation: A designated verifier simulates by
randomly picking d,α,β ∈ Zp and computing

c = gα1 , G = gd
1u−β

1 , M = gd
2u β

2

h = H(c,G,M, u1, u2, yB)

w = β − h mod p, r = (α− w)x−1
B mod p

B. Homomorphic Encryption

B.1. ElGamal Encryption [24]

Let G be a multiplicative group of prime order q with
generator g. The private key xT is chosen at random from
Zq and the corresponding public key is yT = gxT . Given a
message m ∈ G, the encryption of m is given by (a, b) =
(gr,m · yT

r) for a randomly chosen r ∈ Zq. To decrypt the
ciphertext (a, b), compute the plaintextm = b · a−xT using
private key xT .
Homomorphic Properties: For ciphertexts (a1, b1) =

(gr1 , yT
r1m1) and (a2, b2) = (gr2 , yT

r2m2), anyone can
easily obtain an encryption of m1 · m2 by (a1 · a2 =
gr1+r2 , b1 · b2 = yT

r1+r2(m1 · m2)).
Threshold Version: Suppose the key generation proto-

col of Pedersen [52] is used to share xT among those NT

servers. After the protocol is carried out successfully, each
tallying authority Ti (1 ≤ i ≤ NT ) will get a share xi ∈ Zq

of the secret xT , and has a commitment of its share com-
puted as hi = gxi which is broadcast to other servers. The
(group) public key is yT = gxT . The secret xT can be com-
puted from any set Λ of size t as below:

xT =
∑

j∈Λ

xjλj , λj =
∏

l∈Λ\{j}

l

l − j
(1)

This is a Shamir (t,NT )-threshold secret sharing [58], any
set of less than t servers cannot recover the secret xT . To
decrypt a ciphertext (a, b) = (gr, yT

rm), they do not need
to remove the private key xT first. Instead, the following
steps are carried out by any t servers:

1. Each server Ti broadcasts wi = axi to other t− 1
servers and proves its correctness through a proof of
knowledge of equality of discrete logs: (logg hi =
loga wi) [21].

2. From equation (1), the messagem can be recovered by
m = b/

∏

j∈Λ w
λj

j .

B.2. Baby/Giant Step Algorithm [59, page 271]

Let v and γ be two elements of G. We want to com-
pute the discrete logarithm of v to the base of γ in G,
i.e. the smallest positive integer R such that γR = v.
This can be done by Shank’s baby step/giant step algo-
rithm. Let u = .

√
#n/. Compute 1, γ, . . . , γu−1, and

set γ1 = γ−u. Write R in the form R = au + r with
0 ≤ r < u, by the choice of u we must also have a ≤ u.
For a = 1, . . . , u, we compute v · γa

1 and check whether it
is in the list of (1, γ, . . . , γu−1). If it is, we have γau+r = v
and R = au + r. This takes O(

√
#n) group operations and

is better than brute-force attacks.



C. Escrowed Linkable Ring Signature

Now we review the construction of an ID-based linkable
ring signature scheme by Chow et al. [17]. Their scheme
uses the pairing accumulator in [48] to accumulate the
public keys into the ring and produces a witness proving
that the signer’s public key is included in the accumulator.
Signatures are linked based on “event identity”, e.g. “Best
Singer on 09/12/2007”; so that the signatures by the same
signer for voting in a different day or other events held in
the same day cannot be linked.

Setup: This algorithm is executed by the trusted key gener-
ation center (KGC). Let (G1, G2) be bilinear groups of the
same prime order p. Select a pairing ê : G1 × G2 → GT .
Let g1 be a generator of G1, g2 be a generator of G2 and
ψ(g2) = g1. Randomly pick s, u ∈ Z∗

p and compute
gs
2, g

s2

2 , . . . , gsq

2 , where q is the maximum number of mem-
bers in a ring signature. The auxiliary information s can
be safely deleted. Randomly pick g3, g4 ∈ G1. Set hash
function H : G3

1 × G2 × GT × G2
1 × G3

T × {0, 1}∗ → Zp

and H0 : ({0, 1}∗)2 → G2. Identities of users are
in the group Zp. The public parameters param are
(ê,ψ, g1, g2, gs

2, . . . , g
sq

2 , g3, g4, u,H,H0). For efficiency
reason, ρ = ê(g1, g2) and ρ′ = ê(g1, gs

2) can be included in
the public parameters.

KGCGen: The KGC randomly picks x, x′ ∈ Z∗
p

as the master key, the corresponding public key is
(y = gx

2 , y′ = gx′

2 ). For efficiency reason, ω = ê(g1, y) can
be pre-computed.

UGen: On input an identity id, the KGC computes the
private key Sid = g1/(id+x)

1 . The user can verify the private
key by checking if ê(Sid, gid

2 y) = ê(g1, g2).

LAGen: On input of the identity of the linking au-
thority (LA) #a, the KGC computes the private key
S!a = H1(#a)x′ ∈ G1.

ELRingSign: The user with identity id1 with private
key Sid1

who wants to sign a ring signature for mes-
sage M with users id2, . . . , idN firstly computes W =

gu(id2+s)···(idN+s)
1 , V = gu(id1+s)(id2+s)···(idN+s)

1 (W and
V can be computed efficiently like the way described in the
pairing accumulator [48]). Let h = H0(param, eID)where
eID is the event identity. s/he then computes the signature
as a proof of knowledge of:

{(ID1, SID1
,W, d) : (ê(V, g2) = ê(W, gID1+s

2 )

∧ ê(SID1
, gID1

2 y) = ê(g1, g2)

∧ ỹ = ê(SID1
, h)ê(H1(#a), y′)d ∧ U = gd

2}

We now explain the above notation. (ID1, SID1
,W, d)

are the secret witness. The first equality ê(V, g2) =
ê(W, gID1+s

2 ) refers that the signing key of ID1 is accu-
mulated in the list of identities V . The validity of the pri-
vate key of ID1 is ensured by ê(SID1

, gID1

2 y) = ê(g1, g2);
while the last two equalities ensure that the linkability tag
ê(SID1

, h) is encrypted such that the linking authority #a
can decrypt and perform the linkability check later for the
event identified by h. Detailed steps are as follows:

1. Randomly pick t1, t2, t3, d ∈ Z∗
p and compute:

T1 = Sid1
gt1
1 , T2 = Wgt2

1 , T3 = gt1
3 gt2

4 gt3
1 ,

ỹ = ê(Sid1
, h)ê(H1(#a), y′)d, U = gd

2

2. Randomly pick r1, r2, . . . , r8 ∈ Z∗
p and compute:

R1 = gr2

3 gr4

4 gr6

1 , R2 = gr3

3 gr5

4 gr7

1 T−r1

3 ,

R3 = ê(T1, g2)
r1 ê(g1, g2)

−r3ω−r2 ,

R4 = ê(T2, g2)
r1 ê(g1, g2)

−r5 ê(g1, g
s
2)

−r4 ,

R5 = ê(H1(#a), y′)r8 ê(g1, h)−r2 , R6 = gr8

2

3. Compute c = H(T1, T2, T3, h, ỹ, U,R1, . . . , R6,M)

4. Compute s1 = r1 + cid1, s2 = r2 + ct1, s3 = r3 +
ct1id1, s4 = r4 + ct2, s5 = r5 + ct2id1, s6 = r6 +
ct3, s7 = r7 + ct3id1, s8 = r8 + cd.

5. Output σ = (T1, T2, T3, e, ỹ, c, s1, . . . , s8, U) as the
signature, with the group public key V or the set of
identity {id1, id2, . . . , idN}.

ELRingVerify: Given a signature σ, the group
public key V and a message M , parse σ as
(T1, T2, T3, e, ỹ, c, s1, . . . , s8, U), the verification checks:

1. Compute h = H0(param, e) and:

R1 = gs2

3 gs4

4 gs6

1 T−c
3 , R2 = gs3

3 gs5

4 gs7

1 T−s1

3 ,

R3 = ê(T1, g2)
s1ρ−s3ω−s2

(

ê(T1, y)/ê(g1, g2)
)c

R4 = ê(T2, g2)
s1ρ−s5ρ′−s4(ê(T2, g

s
2)/ê(V, g2))

c,

R5 = ê(H1(#a), y′)s8 ê(g1, h)−s2(ê(T1, h)/ỹ)c,

R6 = gs8

2 U−c

2. Accept if c = H(T1, T2, T3, h, ỹ, U,R1, . . . , R6,M).

Link: On input signatures σb for b ∈ {0, 1}, output ⊥
if they do not pass ELRingVerify. Else compute yb =
ỹ/ê(S!a, Ub). Output 1 if y0 = y1 and they correspond
to the same event identifier, 0 otherwise. Note that the cor-
rectness of ê(S!a, Ub) can be easily proven, the linking au-
thority can thus convince any other parties about the linkage
between the signatures.


