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Abstract

Mostorganizationsuseseveral securitypoliciesto con-
trol different systemsand data, comprisingin this way a
global complex policy. Thesesecuritypoliciesare often
scattered over different environments,each one with its
own securitymodeland domainof administration, mak-
ing themdifficult to administerand understand. More-
over, someapplications(e.g. workflow), often needto
crossseveral of thesesecuritydomainsand satisfyeach
oneof their policies,which is verydifficult to accomplish
whenthesepoliciesarescatteredovertheorganization,in
conflictwith each otherandfrequentlyexpressedin differ-
entmodels.

This work presentsa securitypolicy language that al-
lows organizationsto expressand keeptheir global se-
curity policiesin onesingledescription.Althoughflexible
enoughto expresssimultaneouslyseveral typesof complex
securitypolicies,this languagecanbeeasilyimplemented
byan eventmonitor.

Theproposedlanguagecanexpresstheconceptsof per-
mission and prohibition, and somerestricted forms of
obligation. We showhowto expressand implementobli-
gationusingthetransactionconcept,andhowto useobli-
gation to expressinformationflow policiestogetherwith
othercomplexsecuritypolicies.Wealsoaddresstheprob-
lem of conflicting policies and show how to efficiently
enforce the securitypolicies expressedby the language
with a securityeventmonitor, includinghistory-basedand
obligation-basedsecuritypolicies.

1. Intr oduction

Overtheyears,severalaccesscontrolpolicieshavebeen
proposedin the literature. Although thesepoliciescover
many different situationsand datatypes, they are often
consideredin isolation. This is not suitablefor organi-
zationswith complex structuresand several data types,
which requiresthe simultaneoususeof different access
control policies. Moreover, policies are scatteredover

different environments,which makesunderstandingand
managingglobalpoliciesof organizationsmuchmoredif-
ficult.

The cooperationbetweenMAC (Mandatory Access
Control) and DAC (DiscretionaryAccessControl) poli-
cies to achieve DAC flexibility and MAC resistanceto
Trojan Horseattacks,is oneof the earliestexamplesof
cooperationbetweenpolicies. However, therearemany
otheruseful forms of cooperationbetweenpolicieswith
differentobjectives.

For instance,anorganizationmaywish to give to each
employee the control over the documentsthey produce
but, for paymentorders, the organizationmay want to
deny theright to approve themto thosewho have written
thepaymentorders.This canbeaccomplishedby a DAC
policy combinedwith a simpleseparationof dutypolicy.

Anotherorganizationmaywishtohaveaveryloosepol-
icy onmostof its departments,in whichonly afew actions
areforbidden,but in oneof themhavea very strict policy
in which only a few actionsareallowed. This is a combi-
nationof anopenpolicy with a closedone.

Unfortunately, it is not possibleto predictwhich com-
binationsaregoingto beusefuloneverysituationor even
thepoliciesthataregoingto beneeded.

Lately therehasbeenaconsiderableinterestin environ-
mentsthat supportmultiple andcomplex accesscontrol
policies,[3, 4, 11, 12, 19, 22, 24, 27, 39]. Our work fol-
lowsthatpathandtriesto progressin termsof expressive-
nessandfunctionality.

Thispaperdefinesasecuritypolicy language(SPL)that
is flexible enoughto expresssimultaneouslyseveraltypes
of complex authorizationpolicies,andneverthelessiscon-
structedwith simple elementsthat can easily be imple-
mentedby a securityeventmonitor.

Oneof theproblemsof puttingtogetherseveralpolicies
on the sameenvironmentis the conflict that arisesfrom
contradictorydecisionsproducedby thedifferentpolicies.
SPL solves this problemby forcing securityadministra-
tors to take priority decisionson every policy composi-
tion.

Most multi-policy environmentssupportseveral forms



of discretionaryandmandatoryaccesscontrolpoliciessi-
multaneously. Somesupportrolesandhistory-basedpoli-
cieslike the Chinesewall policy andseveralotherforms
of separationof duty. However, to our knowledge,none
allows thecombinationof generalinformationflow poli-
cieswith otherpolicies. In this paper, we presentan in-
formationflow policy expressedin SPL, that cancoexist
with otherpoliciesandmakeuseof them.Thisis achieved
througha differenttypeof rule thatcomprisestheobliga-
tion concept.

Theobligationconceptis averypowerful conceptto ex-
presssecuritypolicies,however it is very difficult to en-
force within a securitymonitor. We show that by using
thetransactionconcept,anaccesscontrolservicebasedin
SPLmayenforcesomeformsof obligation.

Wealsoshow how to efficiently implementbothobliga-
tion andhistory-basedpolicies,by building anSPLcom-
piler ableto optimizetheinformationnecessaryto imple-
mentthosepolicies.

Theremainderof thepaperisorganizedasfollows.Sec-
tion 2 presentsSPLstructureandbasicblocks(rules,en-
tities, setsandpolicies). Section3 shows how to express
threespecialtypesof constraints:history, obligationand
invariantconstraints.Section4 showssomepolicy exam-
ples,includingan informationflow policy. Section5 dis-
cussesimplementationnotesandshows performancere-
sults.Section6 discussesrelatedwork. Finally, in section
7 we concludethepaper.

2. SPL Structure & BasicBlocks

SPL is a policy-orientedconstraint-basedlanguage.It
is composedof four basicblocks: entities,sets,rulesand
policies. The fundamentalblock of the languageis the
rule. Rulesexpressconstraintsin termsof relationsbe-
tweenentitiesandsets. Policiesarecomplex constraints
thatresultfrom thecompositionof rulesandsetsinto log-
ical units. Policiescanalsobecomposedinto morecom-
plex policiesuntil it formsaglobalandsinglepolicy.

Policies are a key conceptof SPL, they provide the
structureneededto build complex accesscontrol models
(e.g.RBAC,DAC,TRBAC). In fact,SPLgoesbeyondthe
simpleenumerationof rules. It allows for theassociation
of rulesandsetsinto policiescomprisingthelogical units
of the desiredmodel(seesection4.3). ThereforeSPL is
model-independentbut not model-less,it allows for the
definition of complex RBAC modelswith parameterized
roles[20, 26] andcomplex role constraints.It alsoallows
for the definition of several forms of multilevel security
[1] andrelaxedformsof informationflow security.

In this sectionwe presentin detail eachof the basic
blocks comprisingSPL and show how they are usedin
writing SPLsecuritypolicies.

2.1.Entities

SPLentitiesaretypedobjectswith anexplicit interface
by which their propertiescanbequeried.Entitiescanbe
internalor externalto thesecurityservice.Querieson the
interfaceof externalentitiesaretranslatedinto methodor
functioncallson theobjectsor servicesof thoseentities.
Ideally, thesequeriesshouldnot have secondaryeffects.
In practice,thiscanonly beassuredby thesecurityservice
if eachof thosemethodsandfunctionshasbeenverified
andannotatedasstateless.

Queryingexternalentitiesis notusuallyconsideredsafe
in securityservices,dueto the covert channelsthat may
result. For instance,an unclassifieduser can become
awareof classifieddataby executinganactionwhoseac-
ceptability dependson that dataandverifying if the ac-
tion fails or not. Nevertheless,this techniqueis essen-
tial to achievetheflexibility andexpressivenessnecessary
to somesystemsandapplications[16]. To minimize the
risk, anSPLpolicy shouldbeverifiedbeforebeingimple-
mented,to assurethatevery operationwhich dependson
propertiesof externalentitiesis allowedonly if thequery
of thosepropertiesisallowed.However, it shouldbenoted
thatthisdoesnotpreventimplicit flow [13], or timechan-
nels.

Someof the entitiesmanipulatedby SPL are internal
to SPL, like setsandpolicies,but mostareexternal,like
users,files,andevents.Thepropertiesof eachexternalen-
tity dependsheavily ontheplatformthatimplementsthose
entities.For example,a usermayhave just theproperties
nameandhome-host,or hecanhavethoseandaclearance
level, a signatureID andmany others. This meansthat
SPL doesnot restrict the propertiesof entitiesto a fixed
set,insteadit takesadvantageof every propertyavailable
to increasethepowerof policies.

On many SPLtargetplatforms,theSPLentity setmay
form apolymorphichierarchy, whereeachentity is aspe-
cializationof someotherentity. In Figure1, it is shown
theentity typehierarchyusedin theexamplesof thenext
sections.On theroot of this hierarchyis the“object” en-
tity type. The remainingentity typesaredefinedby spe-
cializationof this basetype.

2.2.Sets

Entitiescanbeclassifiedinto sets.Setsareessentialin
any policy consideringthatthey providethenecessaryab-
stractionto achievecompactness,generalizationandscal-
ability. Withoutsets,eachrulehadto berepeatedfor each
entity to which therule applies.

Sets, like any other entity, may be internal or exter-
nal. Someexternalsetsarevery useful to the definition
of policies. For instancethe setsof all usersandall ob-
jectsknown to thesystem(Figure2).



type object �
string name; // The name of the object
user owner; // The owner of the object
string type; // A string identifying the type
object set groups;// The sets containing the object
string homeHost; // The host where the user�

// is defined

type user extends object �
rule set userPolicy; // User private policies�

type operation extends object �
number ID; // operation Id�

type event extends object �
user author; // The author of the event
object target; // The target of the event
operation action; // The performed action
object set parameter;// The set of parameters
number time; // The time instant
object task; // The task to which the event�

// belongs to

Figure 1. Example of an entity type hierarchy
definition.

external string localhost; // An external entity
external user set AllUsers; // All the users

// in the system
external object set AllObjects; // All the objects
external operation set AllActions; // All the actions
external event set AllEvents; // All the events,

// past and future

Figure 2. Examples of external entities and
sets.

SPLsupportstwo typesof sets:categoriesandgroups.
Categoriesaresetsdefinedby classificationof entitiesac-
cording to their properties,e.g. all usersloggedin ma-
chineA, andgroupsaresetsdefinedby explicit insertion
andremoval of their elements.Insertionandremoval of
membersinto agroupcanonly bedoneby externalevents
sinceSPL shouldnot perform operationson externalor
internalentitiesthatresultin changesof state.Both cate-
goriesandgroupsaredeclaredassets,but areinstantiated
differently.

// Example of use of the restriction operator
// A category of all users that are defined locally
user set localUsers =

AllUsers@ � .homeHost = localhost
�
;

// A group defined as empty
user set ActiveGroup = � � ;

Figure3. Example of a category and a group.

Categories are definedby restricting the elementsof
othersetsto the oneswith particularproperties.This is
doneby the SPL restrictionoperator(myset@� logical-
expression � ), which is a polymorphicoperatorthat can
beusedon any typeof setor rule (Figure3)(seealsosec-

tion 2.3, for restrictionon rules).Therestrictionoperator
hastwo operands,one is the set that it wantsto restrict,
andtheotheris a logical expressionthatmustbesatisfied
by the elementsin the set in order to belongto the re-
strictedset. The logical expressionusespropertiesof the
elementsin thesetto definewhich membersareselected.
Thesepropertiesarewrittenwith adot beforethename.

SPLdefinesfive moresetoperators:theindex operator
( ���
	���
�� ��
��
� ), thatappliedto asetreturnsthenthelement
of the set; the membershipoperator(elementIN myset);
thecardinaloperator( ������	���
 ) thatreturnsthenumberof
elementsin a set; the join operator( ����	���
���������	���
�� );
andthemeetoperator( ����	���
��! "����	���
�� ).
2.3.Constraint rules

SPL is a constraint-basedlanguage. Constraintlan-
guagesarewidely usedto expresssystems,plans[38] or
accesscontrolpolicies[4].

The languageis composedof individual rules, which
arelogicalexpressionsthatcantakethreevalues:“allow”,
“deny”, and“notapply”. Theirgoalis to decideon theac-
ceptabilityof eachevent underthe control of the access
control servicethat implementsthe language. To make
this decision,ruleshave an implicit parameterthat repre-
sentstheeventuponwhich the rule is deciding.Because
thiseventis usuallythecurrentevent,it is referredas“ce”.

A rule can be simple or composed.A simple rule is
comprisedof two logicalbinaryexpressions,oneto estab-
lish the domainof applicabilityandanotherto decideon
theacceptabilityof theevent.

[label :] domain-expression :: decide-expression

Figure4. Syntax of a simple SPL rule.

The SPL syntaxfor a simple rule (Figure 4) hastwo
parts: an optional label and two logic expressionssepa-
ratedby a specialmarker (’::’), representingthedomain-
expressionandthedecide-expressionrespectively.

The domainanddecideexpressionsaresimplebinary
expressionswith the logic operators’ # ’, ’ $ ’ and ’ % ’,
respectively for the conjunction, disjunction and nega-
tion, theequality/inequalityoperators’ & ’, ’! & ’, ’ ' ’, ’ ( ’,
’ ()& ’, ’ &*' ’, andthespecialvalues“true” and“f alse”.

Thedomain-decideconstructionshouldnotbeconfused
with a simple binary implication. If a binary implica-
tion was used,every rule would be implicitly open,i.e.
it would allow every event not in the domain,which is
contraryto SPL designprinciple of beinga model inde-
pendentlanguage.

Figure5, shows two simplerules,labeled’OwnerRule’
and’DutySep’respectively. Thefirstonestatesthatevents



// Every event on an object owned by the
// author of the event is allowed
OwnerRule: ce.target.owner = ce.author :: true;

// Payment order approvals cannot be done
// by the owner of payment order
DutySep: ce.target.type = "paymentOrder" &

ce.action.name = "approve"
:: ce.author != ce.target.owner;

Figure5. Simple rule examples.

actingon a targetobjectownedby theauthorof theevent
(ce.target.owner = ce.author)is always allowed (decide-
expressionalwaystrue). Thesecondrule statesthatpay-
mentorderapprovalsareonly allowedif theauthoris not
theownerof thepaymentorder.

The domain-decidetype of construction described
above is simple,yet it is morepowerful thanthe permis-
sionandprohibitionconstruction[23], in which eachrule
is exclusively a permissionor a prohibition. A permis-
sion/prohibitionrule just identifiesthe eventsthat areal-
lowed/deniedfrom others. It cannotidentify simultane-
ously the eventsthat areallowed, the eventsthat arede-
nied, andthe eventsthat areneitherallowed nor denied.
Moreover, a permissionor a prohibitioncanbeexpressed
quitesimplywith thedomain-decideconstructionby mak-
ing the decide-expressiontrue or false,respectively, for
everyeventwherethedomain-expressionis true.

+ , + AND , + OR , NOT +
Allow Allow Allow Allow Deny
Deny Allow Deny Allow Allow

NotApply - - - NotApply
Allow Deny Deny Allow
Deny Deny Deny Deny
- NotApply - -

Table 1. Tri-value algebra operations definition:
AND, OR and NOT. . stands for a variable
which can assume any value.

A rule canbe composedof other rules througha spe-
cific tri-valuealgebrawith threelogic operators:conjunc-
tion (’AND’); disjunction(’OR’); andnegation(’NOT’).
Theseoperatorsbehave astheir binary homonyms if the
“notapply” valueis notused(with the“allow” and“deny”
beingequalto “true” and“f alse”, respectively). The pri-
mary characteristicof this logic is that the “notapply”
valueis theneutralelementof everyoperation(Table1).

This tri-valuelogic allows someinterestingconstructs
for accesscontrol expressiveness. For instance,a de-
fault valuecanbe expressedusingspecialrulesin which
the domain-expressionis always true and the decide-
expressionis trueor falsedependingon thedefault value

// Implicit deny rule.
deny: true :: false; // Implicit deny rule.
allow: true :: true; // Implicit allow rule.

// Simple rule conjunction, with default deny value
OwnerRule AND DutySep OR deny;
// Simple rule conjunction, with default allow value
OwnerRule AND DutySep AND allow;

// DutySep has a higher priority then OwnerRule
DutySep OR (DutySep AND OwnerRule);

Figure 6. Composing rules with a tri-value alge-
bra.

being “allow” or “deny” in conjunction/disjuntionsas
shown in Figure6. Anotherinterestingconstructionpre-
sentedin Figure 6, shows how to expresspriorities be-
tweenrules. The result of the compositionis the result
of the “DutySep” rule, except when this rule is not ap-
plicable,in which casethe result is equalto the resultof
“OwnerRule”.

// Universal quantifier syntax
FORALL var IN set � rule skeleton(var)

�
// Existential quantifier syntax
EXIST var IN set � rule skeleton(var)

�

Figure 7. Universal and existential quantifiers
syntax.

In orderto increasetheflexibility of composition,SPL
definesuniversal and existential quantifiersover rules.
Thesequantifiersaredefinedasthe tri-valueconjunction
or disjunctionof all the rulesresultingfrom the replace-
mentof theenumerationvariablein the rule skeleton,by
eachvaluein theset(Figure7).

// Apply all rules in the userPolicy set restricted
// to targets of the same owner
FORALL r IN u.userPolicy �
r @ � .target.owner = u

��

Figure 8. Example of the restriction operand
applied to rules.

Rulesdo not have to bewritten at thesametime by the
sameauthor, in fact they areusuallywritten dynamically
by severalauthors.Oftenit is necessaryto restrictthedo-
main of applicability of a rule previously written, by the
sameauthoror by a different one, without removing it
completely. For instance,a rule maystatethat theprivate
rulesof userscanonly apply to target objectsbelonging
to them.In SPLthis is achievedby applyingthepolymor-
phic restrictionoperator(presentedin section2.2)to rules



andpolicies,in orderto restrict their domainof applica-
bility (Figure8).

Therestrictionoperatorcanbeappliedto both rulesor
policies.It actsby restrictingtheeventsto which therules
or policies apply to thosesatisfying a specifiedlogical
expression,e.g. given a rule / definedby the expres-
sions“ 0�12��34����
�57686�9:1;��34����
�5 and a logical expression< 1;��3=����
�5 than the rule restriction“ /
> < may be repre-
sentedby “ 0�1;��3=����
�5�# < 1;��3=����
�5:6?6@9:1;��34����
�5 , where #
standsfor thelogical conjunction.

2.4. Policies

An SPLpolicy is agroupof rulesandsetsthatgoverna
particulardomainof events.Eachpolicy hasone“Query
Rule” (QR) identifiedby aquestionmarkbeforethename
of therule, thatrelatesall therulesspecifiedin thepolicy.
This rule usesthealgebradefinedbeforeto specifywhich
rulesshouldbe enforcedandhow. Thedomainof appli-
cability of a policy is the domainof applicability of the
QR.

In a SPLpolicy someof thesetscanbeparametersthat
are passedto the policy whenever it is instantiated(or,
morecorrectly, activated). This allows for the construc-
tion of several abstractpolicies,which may be activated
severaltimeswith differentparameters.For instance,it is
possibleto have a genericDAC policy, a genericsepara-
tionof dutypolicy, or asimplegenericACL policy (Figure
9).

policy ACL(
user set AllowUsers, // Users that are allowed to

// perform restricted actions
object set ProtObjects, // The protected objects
interface RestrictActions) // The restricted actions�
?Psimple:
ce.action IN RestrictActions & // if event action

// is restricted
ce.target IN ProtObjects // and target object

// is protected then
::ce.author IN AllowUsers// the event is allowed

// if the author is allowed�

Figure 9. Generic policy implementing an ACL
tuple.

When instantiated,a policy acts as a rule and can
be included into anotherpolicy by composingit with
other rules throughthe tri-value algebra. As in several
object-orientedlanguages,instantiationis performedby
the “new” keyword. Figure 10 shows a securitypolicy
(’InvoiceManag’)that activatesan ACL policy anddele-
gatesinto it thedecisionon eventacceptability.

Theability to composepoliciesinto morecomplex poli-
cies,using the tri-valuealgebra,is oneof the important

policy InvoiceManag�
// Clerks would usually be a role
// but for simplicity here it is a group
user set clerks ;

// Invoices are all objects of type invoice
object set invoices =

AllObjects@ � .doctype = "invoice"
�
;

// In this simple policy clerks can
// perform every action on invoices
DoInvoices: new ACL(clerks, invoices, AllActions);

?usingACL: DoInvoices;�

Figure 10. A simple example of policy instanti-
ation.

featuresof SPL,becauseit allows for thedevelopmentof
librariesof commonsecuritypolicies.Thesesecuritypoli-
ciescanthenbeusedasbuilding blocksfor morecomplex
securitypolicies,thussimplifying thespecificationof se-
curity policiesfor complex organizations.

The naturalSPL policy sharingmechanismis delega-
tion, but SPLalsosupportspolicy inheritanceto simplify
somesharingsituations. For example,defininga policy
similar to anotherpolicy with just onerule slightly differ-
ent is muchmoredifficult with delegation thanwith in-
heritance.In theexamplepresentedin Figure11 it is de-
fineda policy thatextendsthe“InvoiceManag”policy by
restrictingthe domainof the rule “DoInvoices” to events
with write actions.

Policy RestrictInvoiceManag extends InvoiceManag�
// Now only write actions are allowed
DoInvoices:

super.DoInvoices@ � .action.name = "write"
�
;

// The query rule is inherited from the super�

Figure11.Example of policy inheritance.

SPLpoliciesareactive only if instantiatedandinserted
into anotherpolicy, exceptfor themasterpolicy, which is
activatedimplicitly by the securityservice.The result is
a hierarchicaltreeof active policieswith the masterpol-
icy on top. This structurehasseveral advantagesover a
flat one[4, 23, 39]. First, it clearly identifieswhich rules
arerelatedwith eachother, simplifying theglobalunder-
standingof thepolicy. Second,it allows thedynamicac-
tivation anddeactivationof policies,by insertingandre-
moving themfrom otherpolicies.Third, it partiallysolves
theproblemof conflictingpolicies.



2.5. Conflict Solving

SPLsupportsnon-monotonicpolicies,in thesensethat
it is ableto expressbothpositiveandnegativeconstraints
at the sametime. The ability to expressnon-monotonic
policieshaslong beenrecognizedasvery importantfor
the expressibility of securitypolicies [24, 25]. Notably
theC2level of TCSECstandard[14] includesthisexplicit
requirement.

The increased expressibility added by non-
monotonicity does not come without cost as it leads
to potentialconflictsbetweencontradictoryrules.Usually
theseconflictsaresolved by the introductionof implicit
priority algorithmsthat choosewhich rule overridesthe
other. Someof thesealgorithmsare very simple (e.g.
negative rules overridespositive ones)othersare more
complex and use not only the rules type but also the
authorityof therules’ issuers(i.e. rulesissuedby ahigher
authoritymanageroverrideothers),the specificityof the
rules (often more specific rules should override more
genericones),and the issuing time of the rules (more
recentlyrulesoverrideolderones)[2, 25]. This approach
is very intuitive andnatural,but it hassomedrawbacks.
It is not unusualfor a high authoritativemanagerto issue
a rule which may be overriddenby a low authoritative
manager, or to expressa mandatorygeneralrule which
shouldnot beoverridden.

Anotherstrategy is to stratify thesecurityrulesandin-
cludeaspeciallayerof rulesto decidewhich rulesshould
overridetheothers[3, 23]. SPL follows this strategy but
insteadof creatinga speciallayer of rules to solve con-
flicts, SPL forcesthe securityadministratorto combine
policiesinto a uniquestructurewhich is by definitionfree
of conflicts. In SPL, every active securitypolicy must
be in the hierarchicaldelegationtreeof policies. There-
fore, if two active policiesgive conflicting resultsto the
sameevent(onedenying it, andtheotherallowing it), then
somewhereupthehierarchicaltreethey mustbecombined
in onetri-valueexpressionthat inherentlysolvesthecon-
flict. If the two policies are combinedusing a tri-value
“AND” theevent is denied.If they arecombinedusinga
tri-value“OR” theeventis allowed.

However, this solutioncannotbeappliedto every type
of securitypolicy inconsistency, because(i) sometypes
of inconsistenciesarenot conflicts,and(ii) someshould
not be solvedby an automaticprocess.For instance,the
securityconflictsproducedby designerrorsshouldnotbe
implicitly solvedbecausethatwould masqueradethede-
signerror. In [31] we describea tool thatis ableto detect
several typesof inconsistenciesin SPLandcanbeeasily
expandedto checkfor inconsistenciesbetweenthe secu-
rity policy andotherspecifications.

3. SpecialConstraints

The languagedescribedin the previous sectioncanbe
used to expressseveral types of constraints,including
complex constraintsthat requirespecialimplementation
considerations.In this sectionwe show how to express
andimplementwith aneventmonitor, threespecialtypes
of constraints:history basedconstraints,obligationcon-
strainsandinvariantconstraints.

3.1.History constraints

Severalsecuritypoliciesrequireeventsto be recorded,
in order to implementconstraintswith dependencieson
thepast.Amongthem,theChineseWall policy [10] is one
of thebestknown. But many otherformsof separationof
duty [34] andinformationflow policies[28] alsorequire
eventrecording.

The importanceof history-basedpoliceshasbeenrec-
ognizedby several authors[15, 32, 40], however to our
knowledgenonewas able to simultaneousexpresscon-
ciselyandimplementefficiently history-basedpolicies.

In SPL history-basedpoliciesareexpressedby simple
quantificationrulesover the abstractsetPastEvents.
Eachof theserulesdeclaresandquantifiesoneeventvari-
able,usedto classifyeachtype of pastevent monitored
by the event monitor. Thus, to monitor a sequenceof
eventsin SPL,it is necessaryto cascadeseveralquantifi-
cationrulesover thePastEvents set,onefor eachtype
of event. Figure12 shows a history-basedpolicy which
deniesany eventwith an actiondifferentfrom “read” on
a targetwhich hasbeen“verified” and“approved” in se-
quence.

policy HistorySequence�
?HistorySequence:
FORALL e1 IN PastEvents �
FORALL e2 IN PastEvents �
ce.target = e1.target &
ce.target = e2.target &
e1.time < e2.time &
e1.action.name = "verify" &
e2.action.name = "approve"
:: ce.action.name = "read"�
;��

Figure 12. A history-based policy with se-
quence events.

This approachmakesit very simpleto expresshistory-
basedpoliciesbasedon simplesequencesof events,but
slightly harderto expresshistory-basedpoliciesbasedon
statemachines.To expressthis type of policesit is nec-
essaryto defineoneeventvariablefor eachevent leaving
eachstateandwrite constraintsexpressingthe temporal



dependenciesbetweenthoseevents.Neverthelesswe be-
lieve thatmosthistory-basedpoliciesareof thefirst type,
thusany statemachinebasedapproachwouldbeunneces-
sarily complex.

3.2. Obligation constraints

SPLis ableto expresstheconceptsof permission,pro-
hibition and obligation. While the first two are usually
supportedby accesscontrol services,the last one is not.
Oneexceptionis [12], whichdefinesamodallogic, based
ondeonticlogic to expresssecuritypolicies.However, al-
thoughit presentsa cleardefinitionof obligation,it does
not proposea solutionto implementit by a securitymon-
itor or any othertypeof securityservice.

3.2.1. Enforceableobligations

To act upon rules, a securitymonitor must know when
thereis an attemptto violate themandwhat to do then.
On most securitymonitors the attemptsof violation of
rulesbasedon theprohibitionconceptaredetectedwhen
an event requestingan actionoccurs,in which case,the
action requestedis denied. With rulesbasedon obliga-
tion the time at which a violation attemptoccurs(viola-
tion attempttime) andthe actionto perform(default ac-
tion) whenthat happensarenot so easyto define. First,
becausea genericobligation(Statement1) doesnot need
to haveadeadline;andsecond,becausethereis nogeneric
actionto performin caseof violationattempt.

Principle O mustdo Action O (1)

SPLdoesnot allow genericobligations.Insteadit sup-
ports,with somerestrictions,anotherusefulform of obli-
gationthatcomprisesa triggeraction(Statement2).

Principle O mustdo Action O
if Principle T hasdoneAction T

(2)

This form of obligationhasamuchmoresimpledefini-
tion for default actionthanthegenericobligation. While
with the generictype of obligationa systemis in an un-
stablestateuntil the obligationis fulfilled, with the trig-
geredobligationasystemhastwo stablestates,onebefore
the triggeractionandoneafter theobligationis fulfilled.
Thus,when the trigger action is executedbut the corre-
spondingobligationis not fulfilled, thenaturaldefaultac-
tion for a system,with this typeof obligation,is to return
to thestablestatebeforethetriggeraction.

However, defining a default action doesnot by itself
solve the problem. Using simple logic it is possibleto
rewrite statement2 into statement31,

1 ACBED�FCG=D�BHGIA

PrincipleT cannotdo Action T
if Principle O will not do Action O

(3)

whichspecifiesaconstraintwith adependency onafuture
action.Schneider[36] statesthatwith a monitorlikecon-
structionit is not possibleto enforcea securitypolicy in
which the acceptabilityof an executiondependson pos-
sible future executions.Informally his argumentis quite
simple. Given the sequencesof executionsJ�K and J , in
which J is theprefixof someexecutionof J�K , it is notpos-
sibleto allow J onthebasisthatoneof its extensionsJ�K is
allowed by the securitypolicy, becausethe systemcould
stopbeforeJ�K .

Thekey issueis thenotionof execution.To Schneider,
an executionis simultaneouslythe unit by which the se-
curity policy governsthe executionof a systemand the
only atomicunit presentin the system. We believe that
thereareadvantagesin separatingthesetwo concepts.In
fact, it is not unusualfor atomicrequeststo becomposed
of several actionswhich are themselvessubjectedto the
securitypolicy. Here atomic meansin the senseof the
transactionACID properties:eitherall happensor none
happens.Insidetheseatomicrequestsit is possibleto de-
fine securitypolicieswith dependenciesin futureactions,
becauseit is not possiblefor a systemto stopexecution
beforethecompletesequencebeingexecuted.

Therefore,securitypolicieswith dependenciesin thefu-
ture areenforceablebut only if they areconfinedto the
boundsof anatomicexecution.Thus,in orderfor a trig-
geredobligationpolicy to be enforceable,it is necessary
that theviolation attempttime belessor equalto theup-
per boundof an atomic execution. Albeit restrictedto
the boundsof atomic executions,this type of constraint
(triggeredobligation)is usefulin many situations.For in-
stance,a useris obligedto registerafterstartusinga soft-
ware,or the informationflow policy presentedin section
4.5.

In mostsituationsit is possibleto find a trigger action
for anobligation,howeverit is notalwayspossibleto per-
form both the triggeractionandthe obligatoryactionin-
sideanatomicexecution,becausesomeactionscannotbe
undone,e.g. sendinga documentto a printer or show-
ing sometext on thescreen.Theseactionsarecalledreal
actionson transactionmanagementsystems[21] andare
alreadyknown to requirespecialtreatmentby thosesys-
temsin orderto achieveatomicity. Usuallysystemsdelay
theexecutionof suchactionsuntil all theotheractionsare
executed,but if theseactionscannotbereorderedthesys-
temis not ableto ensureatomicity.

The problem is slightly more complex than in usual
transactionmanagementsystemsbecausethe set of ac-
tions identifiedas real actionsmust includeactionsthat
changehumanknowledgestate(e.g. showing sometext



on thescreen),which arenot oftenconsidered.

3.2.2. Expressingobligations

Expressinganobligationconstraintin SPLis assimpleas
expressinga history-basedconstraint.As waspreviously
shown in section L 3.2.1the kind of obligationsenforced
by SPL can be expressedas constraintswith a depen-
dency in thefuture.Therefore,by symmetrywith thecon-
straintswith dependenciesin the past,thenaturalway to
expressanobligationconstraintin SPL is usingquantifi-
cationrulesover a specialabstractsetFutureEvents.
As in thesymmetricsituation,eachof thoserulesdeclares
and quantifiesone event variable,usedto classify each
typeof futureeventmonitored.Figure13 shows anobli-
gation basedpolicy which statesthat if someoneexe-
cutes thegoodies applicationhe/shemusteventually
(in thenearfuture)registeritself asauser. Anotherexam-
ple is presentedin Figure20, whereobligationis usedto
expressa relaxedform of informationflow policy.

policy Register�
?Register:
EXIST fe IN FutureEvents �
ce.action.name = "execute" &
ce.target = "goodies" ::
ce.author = fe.author &
fe.action.name = "register" &
fe.target.name = "RegisterServer"
fe.parameters[0] = "goodies"�
;�

Figure13.An obligation-based policy.

3.3. Invariant constraints

An invariantrule is a very usefultypeof rule. It speci-
fiesthataconditiononsomeobjectpropertiesshouldhold
beforeand after every event. Theserules are a special
typeof amoregeneralgroupof rulesthatareexpressedin
termsof resultsof actions,insteadof actionsthemselves.

SPL is anevent-orientedlanguagein thesensethat the
goal of eachrule is to decideif an event shouldbe al-
lowedor denied;thus,invariantrulescannotbeexpressed
directly in SPL becausetheir goal is not an event in it-
self but theresultof thatevent. A systemwith a rule that
allowseveryevent,if aconditionholdsanddeniesit other-
wise,couldendupin adeadlock,becausetheeventwhich
causedthe condition to be broken was alreadyallowed
whenthesituationis detected.However, if therule states
thataneventis allowed,if for all thefollowing eventsthe
conditionholds,andis deniedotherwise,the systemde-
niestheevent thatwould have brokenthecondition,pre-
ventingit.

A rule expressedasstatedhasa similar constructionof
statement3, thusit canbeexpressedandimplementedas
an“obligation to complywith theinvariantcondition”.

4. Examples

In this section,we presentsomesecuritypolicy exam-
plesexpressedin SPL to show how SPL copeswith dif-
ferenttypesof securitypolicy paradigms.

4.1.DAC

Although therearemany differentpoliciesin theDAC
category they all sharea commonbasethatcomprisesthe
essentialof DAC. Thiscommonbasecanbeimplemented
by an SPL policy, that canlater be usedto build several
DAC policies.

policy DAC�
// Owner can do everything to his objects
authorRule: ce.target.owner = ce.author :: true;

// User policies are applied restricted to their
// own objects
userPolicyRule:
FORALL u IN AllUsers �
FORALL r IN u.userPolicy �
r @ � ce.target.owner = u

��M�
;

// The policy denies any event not allowed by any
// of the rules
?DAC: authorRule OR userPolicyRule OR deny;�

Figure14.An example of a general DAC policy.

A DAC policy hastwo constraints(Figure14). Thefirst
constraintstatesthat the ownerof an objectcanperform
every actionon it. Thesecond,statesthatevery userpol-
icy shouldberestrictedto thetargetsownedby theowner
of thepolicy. TheQR rule statesthat if any of thesecon-
straintsallows an event to happenthe event is allowed,
otherwiseit is forbidden.

SPL can expressseveral types of separationof duty
policies. Oneof the simplestmay be implementedwith
therule “DutySep” presentedin figure5. This rule states
thatpaymentorderscannotbeapprovedby thesameusers
who wrotethem.

The combinationof the “DutySep” rule with the DAC
policy presentedin Figure 15, implementsthe policy
statedin the introduction,whereanorganizationgivesto
eachemployeethe control over the documentsthey pro-
duce,with theexceptionof paymentordersthatcannotbe
approvedby thesomeuserthatwrotethem.

4.2.ChineseWall

TheChineseWall policy is amonotonicsecuritypolicy,
designedfor opensystems.Briefly the policy statesthat



policy DAC SepDuty�
// A DAC instantiation
myDAC: new DAC;

// Payment order approvals cannot be done
// by the owner of payment order
DutySep: ce.target.type = "paymentOrder" &

ce.action.name = "approve"
::ce.author != ce.target.owner;

// Events are allowed only if both
// rules do not deny it
?DAC SepDuty: myDAC AND DutySep;�

Figure 15. Combination of a DAC policy with a
separation of duty policy.

objectsareclassifiedinto classesof conflicting interests,
andausercanaccesseveryobject,but only onefrom each
classof interest.

Therearemany waysto write the ChineseWall policy
in SPL terms. Oneof thesimplestis presentedin Figure
16, in which only one classof interestis defined. The
policy definesonesetandonerule. Thesetcontainsall the
objectswith thesameconflict of interests.Therule states
that the currentevent is deniedif the target of the event
is in the“interestclass”andexistsa pasteventperformed
by thesameuseron a differenttargetthatbelongsto that
“interestclass”.

policy ChineseWall�
object set InterestClass;

?ChineseWall:
FORALL e IN PastEvents �
ce.target IN InterestClass &
e.target IN InterestClass &
ce.author = e.author &
ce.target != e.target &
:: false�
;�

Figure 16. A specification for the Chinese Wall
policy.

Usually an organizationimplementinga ChineseWall
policy has several classesof conflicting interests. The
above policy hasjust one class,but can be instantiated
severaltimes,onefor eachclassof interest.

Thedecide-expressionof therule hasa constantvalue,
which is consistentwith themonotonicityof theChinese
Wall definition. This definition specifieswhich events
shouldbe denied,but leavesfor complementarypolicies
thedecisionupontheonesthatareaccepted.

4.3.Roles

Althoughthey do not alwaysagreeon thedefinitionof
role [23] mostsecuritysystemsandservicessupportsome
form of role-basedaccesscontrol(RBAC).

Roles can be very complex entities comprisingcon-
straintsonrolemembership,constraintsonroleactivation,
andconstraintsonroleuse[18, 35, 37]. To allow all these
constraintsandpossiblyothers,SPLrolesarethemselves
policiesthatcanbedefinedasrequiredandusedin other
policieswhenevernecessary.

Rolescanbecomposedof severalsetsandconstraints.
However, thesimplerform of role hasonly two sets,one
with theusersthatareallowedto playtheroleandanother
with the userswho areplaying the role. Obviously only
theusersin thefirst setshouldbeallowedto beinsertedin
thesecondset(Figure17).

policy simpleRole (user set Authorized,
user set Active)�

// Events inserting a user into
// the Active set are allowed only if
// that user is in the Authorized set
?simpleRole: ce.action.name = "insert" &

ce.target = Active
:: ce.parameter[1] IN Authorized ;�

Figure 17. The figure represents a simple role
policy.

In this modelonly the userswho are in the active set
shouldhave thenecessaryauthorizationsto play therole.
Theseauthorizationsarenot includedin theroletypedefi-
nition becausethey aredifferentfor eachspecificrole,but
they areincludedin thedefinitionof eachspecificrole.

policy Clerk�
// All users of localhost are members of RoleUsers
user set RoleUsers = AllUsers@ � .host = localhost

�
;

// Invoices are all objects of type invoice
object set Invoices =

AllObjects@ � .doctype = "invoice"
�
;

// The set of users playing the role starts empty.
user set ActiveGroup = � � ;
// Members of RoleUsers may play the Clerk role
ClerkRule: new simpleRole(RoleUsers,ActiveGroup );

// All members of ActiveGroup may access Invoices
InvoiceRule:

new ACL(ActiveGroup, Invoices, AllActions);

?Clerk: ClerkRule AND InvoiceRule;�

Figure 18. Example of a specific policy instan-
tiation.



Figure18,showsaspecificroledefinitionpolicy, which
statesthat usersof “localhost” may assumethe “Clerk”
role andthatevery “Clerk” mayaccessinvoices.Thepol-
icy hastwo rules. One rule (“ClerkRule”) is an instan-
tiation of the “simpleRole” policy and definesthe com-
ponentsof the role. The other (“InvoiceRule”) is an in-
stantiationof theACL policy anddefinesthespecificau-
thorizationsof the role. The link betweenthe two rules
is the “ActiveGroup”set,which is simultaneouslytheset
of usersplaying the role andthe setof usersallowed to
performactionson invoices.

4.4. Closedand Openpolicies

Securitypoliciescanbe openor closed. Closedpoli-
ciesdeny everythingthat is not specificallyallowed,and
openpoliciesallow everythingthat is not specificallyde-
nied. Closedpoliciesaregenerallyconsideredsaferbut
openpoliciesareconsideredmoresuitablefor looseenvi-
ronments,suchastheonesusedin cooperativework [16].

// A close policy
?Clerk: ClerkRule AND InvoiceRule OR deny

// An open policy
?Clerk: ClerkRule AND InvoiceRule AND allow

Figure 19. Different QR to transform the Clerk
policy into a closed or an open policy.

The“Clerk” policy definedin figure18is neitherclosed
nor open. To be oneor the otherthe domainof applica-
bility mustbe universal. Henceto make the “Clerk” an
openor closedpolicy all is neededis to modify theQRto
allow or deny the eventsnot belongingto the domainof
theoriginalpolicy (Figure19).

4.5. Inf ormation flow policy

AlthoughSPLis a constraint-basedlanguage,it is pos-
sible to expresssomerelaxed forms of informationflow
policieswith it.

As originally explainedin [13], andformally provedin
[36], informationflow policiescannotbefully enforcedby
eventmonitorsbecauseeventmonitorsdonotknow about
otherallowedsequencesof executionsof thesameappli-
cation and thus they cannotknow about implicit flows.
Implicit flowsresultfrom theknowledgeof thesequences
of executionsallowedby anapplication.If someapplica-
tion requiresthat variable N takesthe value O whenever
variable P is greaterthan Q thanthereis a flow of infor-
mationfrom P to N althoughthereis no explicit storage
pathfor informationon variableP to variableN .

However, in somesituations[16] the informationleak
resultingfrom implicit flow doesnot posea serioussecu-

rity risk, whetherbecausetheinformationonvariablesde-
terminingthe sequenceof executionis public or because
it is not possibleto infer thesequenceof executionsfrom
theresultsof thatsequence.For thesesituationsit is pos-
sible to defineinformation flow policies enforceableby
securitymonitorsbecausetheregulationof explicit infor-
mationflow fromstorageto storagecanbeperformedwith
just theknowledgeof pastexecutions.

Nevertheless,SPLcannotenforceor evenexpresssuch
restrictedform of informationflow policy basedonly on
information from past executions. BecauseSPL is an
event-orientedlanguage,andevery history informationis
event-basedit would benecessaryto expressapolicy that
recursively verifiesthe sourceof every pieceof informa-
tion written by information-flow events,which arein the
storage-pathof the informationbeingwritten by the cur-
rentevent. Expressingsucha policy in SPL it is not pos-
sible bothbecauseSPLdoesnot allow recursive policies
andbecauseit wouldincuronahighperformancepenalty.

To expresssuchinformationflow policies,SPLusesthe
obligationconceptto force the applicationto summarize
theinformationflow into theexistingSPLrules.Thepol-
icy in figure 20 statesthat eachobject that receives in-
formationfrom anotherobjectshouldbesubjectedto the
samesetof rulesastheoriginatorobject.This is achieved
by an obligation rule that forcesthe receiving object to
belongto thesamegroupsof theoriginatorobject.

policy InfoFlow ()�
interface ReadFlowActions;
interface WriteFlowActions;
object set ProtObjects;

?InfoFlow:
FORALL pe IN PastEvents �
FORALL g IN pe.target.groups �
EXISTS fe IN FutureEvents �
ce.action IN WriteFlowActions &

pe.target IN ProtObjects &
pe.action IN ReadFlowActions &

ce.task = pe.task &

:: ce.target IN g�R�S�
;�

Figure20.An information flow policy.

The?infoFlow ruleof figure20tracesindirectinfor-
mationflow betweenreadandwrite eventsperformedby
thesametask.Therule statesthatif theactionof thecur-
rent event is a write actionandthe currenttaskhasread
a protectedobject (i.e. one of the eventsthat hasread
a protectedobjectwasdonein the context of the taskof
the currentevent), thanthereis a time in the future (i.e.
a future eventexists) in which all the setscontainingthe



protectedobjectalsocontainthe target object. This rule
assuresthat every rule that appliesto a protectedobject
which wasreadby that taskalsoappliesto the receiving
object, including the rule itself, i.e. the receiving object
becomesa protectedobjecttoo.

It shouldbe notedthat it is the applicationobligation
to ensurethat all the setsareupdatedproperly. The ap-
plicationcanperformthis taskeitherby itself or by using
a securitylibrary createdfor that purpose. The security
monitor duty is to ensurethat that obligationis fulfilled.
Thesecuritymonitorcannotupdateitself thesetsbecause
it cannotperformoperationswhichresultin statechanges.

Unlike other modelswhere information flow policies
are defined,the SPL model allows non-monotonicpoli-
cies. This propertymayproduceanuncommonresulton
someinformationflow policies. Whenthereis a permis-
sion rule that supersedesa prohibition rule, an object to
which theaccesswasrestrictedmaybecomeunrestricted
just becauseit received informationfrom an unrestricted
object.Althoughuncommon,theresultis correctbecause
denying may not alwaysbe the saferaction. For exam-
ple,anorganizationmaystatethatthepresidentshouldbe
able to accessevery documentcontainingorganization’s
classifieddata,but he doesnot needto be ableto access
employer’s privatedata. If an employer includesclassi-
fied datainto a privatedocument,that documentshould
becomeaccessibleto thepresident.

5. Implementation and Results

Oneof theproblemsof expressivesecurityframeworks
like SPL, is the low efficiency of their implementations.
While usualframeworksbuilt uponaccesscontrollists,la-
belsor unix permissionbits weredesignedto beefficient,
SPLwasdesignedto beexpressive.

In thissectionweshow thatusingamixtureof compila-
tion andquerytechniquesit is possibleto achieveaccept-
ableperformanceresults,evenfor policieswith thousands
of rules. We have designedandimplementeda compiler
for SPL(whichgeneratesstandardjava) thatis ableto de-
tectspecialSPLconstructionsandgeneratethemosteffi-
cientcodeto implementthem.

Giventheresemblanceof SPLstructurewith javastruc-
turemostof thecompileractionsaresimpletranslations:
eachSPL policy is directly translatedinto a java class;
eachrule is translatedinto a tri-valuefunctionwithoutpa-
rameters(with theexceptionof the queryrule which has
oneparameter– the currentevent); eachentity is trans-
latedinto a java interface;andeachsetvariableis trans-
latedinto a java variableof typeSplSet, which defines
an interfaceto accessseveralkindsof sets(externalsets,
subsetsof externalsets,internalsets).

As definedin L 2.3,rulescanbesimplerulescomprised
of a domain-expressionanda decide-expressionor they

canbea compositionof otherrules. Thus,functionsim-
plementingrules can rangefrom simple if-clauseswith
two logical expressions(onefor thedomain-andanother
for the decide-expression)to complex combinationsof
other functions(e.g. simplecombinationusing tri-value
operators;quantificationof rulesover sets;quantification
overhistoryevents;quantificationover futureevents).

Whereverapolicy instanceis usedin placeof arule,the
compilerexecutesanautomaticcastoperationconsisting
in making explicit the call to the query rule of the pol-
icy. Thus,theoverall structureof thegeneratedcodecan
beseenasa treeof tri-valuefunctionscalling otherfunc-
tions, in which the root is thefunctionresultingfrom the
translationof the queryrule of themasterpolicy andthe
leavesarethefunctionsresultingfrom simplerules.

AlthoughmostSPLconstructscanbeefficiently imple-
mentedin java by direct translation,someconstructsand
structuralproblemsrequirea deeperanalysis. In the re-
maining of this sectionwe addressthoseproblems,and
show someperformancemeasurementsthat validatethe
solutions.

5.1.Scalability

Oneof SPLmajordesignproblemsis scalability. While
in commonACL basedsystemsonly the accesscontrol
entries(ACE) belongingto theACL of eachtargetobject
areevaluatedoneachaccess,in SPLpotentiallyeveryrule
hasto beevaluatedfor every access.This is a problemin
systemswith thousandsof rules,usersandobjects.

SPL is a logical-basedlanguage,thus it is possibleto
applysomeevaluationoptimizations.In a conjunctionof
rules(tri-valueconjunctionasdefinedin L 2.3) if onerule
evaluatesto “deny” thanit is notnecessaryto evaluatethe
remainingrules(similar for disjunctionof rulesand“al-
low” values). Unfortunatelytheseoptimizationsarenot
very useful,becausedisjunctionof rulesarerareandthe
optimizationapplicableto conjunctionscanonly optimize
thedeniableof events.

Anothermoreusefuloptimizationcanbeappliedto the
restrictionoperation( rule@expression(event)). The“re-
strictionoperation”restrictsthedomainof applicabilityof
a rule to the setof eventssatisfyinga logical expression.
Thusif that expressionevaluatesto “f alse” it is not nec-
essaryto evaluatetherule. This optimizationis very use-
ful onthosesituationswhererulesareexplicitly organized
in domainsof applicability (e.g. rulesthatapply only to
targetsproducedby onebranchof anorganization).How-
ever, it isnotenoughto preventtheunnecessaryevaluation
of not applicablerulesinsidethesamedomain.Wherever
the restrictionoperationis not used,to reachthe conclu-
sion thatonebranchof theevaluationtreeis not applica-
ble to a particularevent it is necessaryto evaluateeach
domainexpressionof every leaf rule in thatbranch.



Onesolutionwould beto build a virtual restrictionop-
erationin which the restrictionexpressionwould be the
logical disjunctionof eachdomainexpression2 of every
leaf rule in thebranch.Althoughvery efficient in detect-
ing not applicablebranchesthis solutionpenalizesappli-
cablebrancheswith redundantevaluationof domainex-
pressionsin eachnodeof theevaluationtree.

The solution usedin SPL is basedon the assumption
that mostexpressedrulesaretarget-limited, in the sense
that they areappliedto only a limited setof targets.SPL
is ableto expressrulesnot target-limited(e.g. all actions
performedby someuser); nevertheless,we believe that
most securitypolicies expressedin SPL will be target-
limited. This assumptionis basedon theobservationthat
mostcurrentsecuritypoliciesare target-limited,e.g. all
ACL basedpolicies,chinesewall policies,DAC policies.
RBAC is not target-limitedbut is usedin conjunctionwith
ruleswhich aretarget-limited.

Basedon this assumptionwe have designeda simple
target-basedindex for rules,which allows for quick cuts
on branchesof the rule evaluationtree. The systemcre-
atesanindex for eachtarget.Eachindex is maintainedon
thecorrespondingtargetasa labelandkeepstheinforma-
tion of every rule thatmaybeapplicableto aneventwith
that target. The representationof that informationon the
currentprototypeis kepton a bit streamwith onebit for
eachrule in thesystem.However, giventhesparsenature
of theinformation(weexpectthatonly a few rulesareap-
plicableto eachtargetasin currentACL basedsystems)it
is possibleto developmorecompactstructures.

Onthetestsdonesofar this index techniquehasproved
to beefficient,showingonaverageaspeed-upof oneorder
of magnitude(see5.4).

5.2. History-basedpolicies

A monitor-like securityservicehasto decidefor each
eventwhetherit shouldallow theevent to happenor not.
The decisionmust be taken at the time the event is re-
questedwith theinformationavailableat that time. Thus,
in orderto implementhistory-basedpoliciesany monitor-
like securityservicehasto recordinformationaboutpast
events.

Somesecurityservicesrecordeventsimplicitly in their
own data structures[28] (mostly using labels) others
recordthemexplicitly into anevent log [4] that canlater
bequeriedfor specificevents.The latersolutionis more
flexible thanthe former but if the event log becomestoo
big, the memoryspacerequiredto keepthat log may be
unlimited and the time requiredto executeeachquery
couldhavea significantimpacton theperformanceof the
system.

2Obviouslya reducedcanonicalform.

In this sectionwe show that it is possibleto implement
efficiently thelogsolution,bothin termsof memory-space
andperformance.Themainachievementis obtainedby a
compilationalgorithmthatoptimizestheamountof infor-
mationto besavedandthewaythatinformationshouldbe
queried. We show that althoughthis algorithmdoesnot
obtain the bestresultsfor all history-basedpolicies, the
resultsobtainedfor mostcommonpoliciesareequivalent
to thoseobtainedby label-basedimplementations[33].

The goal of this algorithm is three-folded. First, the
securitymanagershouldselectively log just theeventsre-
quired by the history-basedpolicies specified,e.g. if a
policy needsto know if a documentwassigned,thereis
no needto recordeventsthatarenot “sign events”. Sec-
ond, the securitymanagershouldselectively log just the
fieldsof theeventsrequiredby thehistorypoliciesspeci-
fied, e.g. policy wantsto decidebasedon whetheror not
theauthorof thecurrenteventhassignedadocument,it is
notnecessaryto recordthe“parameters”field of signature
events. Third, securitymanagershouldusethe bestpos-
sible queryfor eachhistory-basedpolicy (equalityterms
can be searchedin TR1���5 andare preferredto inequality
terms)andthe bestinformationstructureto supportthat
query(a hashtableis preferredfor anequalitysearchbut
for aninequalitysearchabalancedtreemight bebetter).

The main drawback of this algorithm is that history-
basedpoliciescannotdecideon eventsprior to their ac-
tivation, i.e. the systemonly recordsevents for each
history-basedpolicy afterthepolicy exists.

Insteadof building a log for every history-basedpoli-
ciesthecompilerbuilds a specificandfinedtunedlog for
eachhistory-basedpolicy. This solutionhasseveral ad-
vantages.First, it dividestheproblemreducingthenum-
berof eventsrequiredto besearched.Second,it allowsfor
a betteradaptationof thebasestructureto eachquery, be-
causeeachlog canbekeptby a differentstructure.Third,
it simplifiesinsertionandremoval of policies. Theprob-
lem of this solution is the potential for maintainingre-
dundantinformationin several logs. However, giventhat
the informationkept by eachlog is the minimum infor-
mationnecessaryto that policy, the level of redundancy
expectedis similar to the oneof label-basedimplemen-
tations,wherethe labelsusedby different policies may
alsoberedundant.Nevertheless,this problemcanbefur-
therlimited by sharinglogswith thesamesignature(same
eventsto log, samefieldsof thoseeventsto log, samebase
structure)betweenpolicies3.

Figure21showsasimplifiedversionof thecodegener-
atedby the compilationof a history-basedrule. The ex-
pressionMyRule(e, ce) representsagenericrule that
maybecomposedof otherrules.

Thealgorithmhasfour phases.Thefirst phaseis justthe

3This featureis not implementedin thecurrentprototype.



MyPolicy: FORALL e IN PastEvents MyRule(e, ce)

(a)

triVal MyPolicy(event ce) {
triVal policyResult = notapply;
if( !invariantConditionals(ce) ) return notapply
while( MySpecialLog.hasMoreElements(ce) )
x = stripped_MyRule( MySpecialLog.next(ce) );
if( x == deny ) return deny;
if( x == allow ) policyResult = allow;

}
return policyResult;

}

class MySpecialLog {
HashTable Log;
void insert(event e) {
if( PastDependentTermsOfRule(e) )

log.insert(new RequiredFieldsOf(e))
}
boolean hasMoreElements(event ce) {
return log.find(new indexFieldsOf(ce));

}
RequiredFieldsOf nextElement(ce) {
return log.next(new indexFieldsOf(ce));

}
}

(b)

Figure 21. Translation of history rules. (a) is the
SPL representation of a generic history-based
rule. (b) is a simplified version of the java code
resulted from compilation.

removalof theinvariantconditionalsfrom theloop. In this
phasethecompilertries to build a logical expression(re-
ferredas“invariantConditionals”in Figure21)with terms
fromthedomainexpressionof MyRulewhicharemanda-
tory for theapplicabilityof theruleandarenotdependent
of variable � . This expressionis thenusedto performa
preliminarytestof applicabilityof therule.

Thesecondphasealsobuilds a logical expressionwith
termsfrom the domainexpressionof MyRule, but with
termsdependenton variable � andnot dependenton cur-
rentevent. Thegoalof this expression(“PastDependent-
TermsOfMyRule”)is to filter the eventsthat needto go
into thelog.

Thethird andfourthphasesbuild respectively oneclass
objectwith the fields of variable � usedin MyRule (re-
ferredas“RequiredFieldsOf”) andoneclassobjectwith
the fields of � by which eventsare indexed, initialized
with logical expressionsdependenton the currentevent
(referredas“IndexFieldsOf.Theformeris usedto record
only the information on pasteventswhich are useful to
thesecuritypolicy. Thelater is usedto searchthelog for
eventswith the index fields equalto the onesin the “In-
dexFieldsOfobject4.

4Thecurrentcompilerprototypecanonly implementlogswith hash

To illustratethealgorithmresultswe will show how an
SPL policy expressingthe ChineseWall policy (Figure
16) is enforcedby a monitor generatedby the SPLcom-
piler.

Thefirst andsecondphaseof thealgorithmtriesto iden-
tify logicalexpressionsbuilt form termsof thedomainex-
pressionwhicharemandatorytruefor theapplicabilityof
the policy. In this policy (Figure16) the domainexpres-
sionis composedby aconjunctionof simpleterms.Thus,
any term canbe usedindependentlyfor the construction
of thoseexpressions.Theproblemis morecomplex when
the domainexpressionis composedof bothconjunctions
anddisjunctions,in which casemaynot alwaysbepossi-
ble to completelyunfold thelogical expression5.

For the Chinese wall policy the “invariantCondi-
tionals” logical expression is composedof just one
termce.target IN InterestClass, thusaccord-
ing with figure21 thepolicy returns“notapply” if thetar-
get of currentevent is not in the classof interest,which
is conformablewith the expectedbehavior. The “Past-
DependentTermsOfRule”logical expressionis alsocom-
posedby only one term e.target IN Interest-
Class, thusonly the eventsover objectsin the interest
classarelogged.

The “RequiredFieldsOf” object for this Chinesewall
policy is composedby the“author” and“target” fieldsof
the “event” classobject,and the “indexFieldsOf” object
is composedof just the “author” field. Thus,the log just
keepsinformationaboutthetargetandtheauthorof each
recordedeventandit is queriedby eventswith a specific
author.

Becausethe log doesnot have to keeprepetitions,and
the specificnatureof the ChineseWall policy disallows
theexistenceof morethanoneelementwith thesameau-
thor, themaximumlengthof thelog is thenumberof dif-
ferentusersin the system.Usually the lengthof the log
is muchlessthenthenumberof users,becausenot every
useraccessa targetin the“interestclass”.However, if the
lengthof thetablesupportingthelog is equalto thenum-
ber of users,then the querycan be performedby direct
addressingtheuserfield, followedby acomparisonof the
targetfield.

This is much similar to the classiclabel implementa-
tion [33] whereeachuserhasonelabel for eachinterest
class,which containsnil if the userdid not accessany
targetin the“interestclass”or theidentificationof thetar-
getaccessed.However, thedescribedimplementationre-

tables,thusit doesnothandleeffectively policieswhereat leastonefield
of U is not equallycomparedwith a logical expressiondependenton the
currentevent.

5This is usually the casewhenseveral rulesarecombinedwith tri-
logicaloperations,becausetheoveralldomain-expressionis thedisjunc-
tion of thedomain-expressionof eachruleandthedomain-expressionof
eachbasicrule is usuallyaconjunctionof terms



sultsfrom the“compilation” of a languagewhich is able
to expresssimultaneouslyseveral other policies, includ-
ing otherhistorydependentpolicies,while theclassicla-
bel implementationis hardcodedin theusermanagement
structures.

This techniquecan be applied to other history-based
policieswhich areusuallyimplementedwith labels. The
reasonwhy thesepoliciescanbe implementedefficiently
by anSPLcompilerliesonits ability to keeptheirrelevant
historyinformationin smallpiecesof data(thelabels),di-
rectlyaddressedbyoneentity(users,objects,etc.).There-
fore, an SPL compiler which is able to detectexactly
which history informationis relevant to thepolicy andis
ableto index the resultingtableby the mostappropriate
entity (or entity property)canachieve similar efficiency
resultsaslabel-basedimplementations.

5.3. Obligation-basedpolicies

As explainedin L 3.2theobligation-basedsecuritypoli-
ciesenforceableby eventmonitorsareonly theonesthat
can be completelyresolved inside an atomic execution.
Themonitorgeneratedby theSPLcompilerdoesnotpro-
vide codeto make thosesequencesof actionsto behave
atomically, insteadit reliesonapplicationsto definethose
sequencesof actionsandon a transactionmonitor to im-
plementit. Thus, the problemof enforcingobligation-
basedsecuritypolicies is reducedto allowing or not the
event that instruct the transactionmonitor to commit a
transaction,whetheror not all the obligationswere ful-
filled at thetime of thatevent.

A securitypolicy that allows or deniesan event (the
commitevent)dependingon whetheror not someevents
wereexecuted(theobligations)is a history-basedpolicy.
Thus,theenforcementof anobligation-basedpolicy con-
trolling aparticulartypeof eventcanbedoneby ahistory-
basedpolicy controllingtheeventthatcommitsthetrans-
actiononwhich theoriginaleventwasexecuted.

The transformationfrom obligation-basedpolicy to
history-basedpolicy can be achieved in two steps. The
first stepcalled“aging”, consistsof replacingreferences
to eventsby older references.Referencesto the current
event are replacedby referencesto a past event called
“trigger-event”. Referencesto pasteventarereplacedby
referencesto apasteventbut with anadditionalconstraint
specifyingthat this eventoccursbeforethe trigger-event.
Referencesto futureeventsarereplacedby referencesto
pasteventswith theadditionalconstraintof occurringaf-
ter thetrigger-event.Thesecondstepconsistsof inserting
in this policy an explicit referenceto the event that re-
queststhe transaction-commit.This event becomesthe
currentevent of the new policy and is relatedwith the
trigger-eventby meansof the transactionid in which the
trigger-eventwasperformed.

policy HistoryInfoFlow ()�
interface ReadFlowActions;
interface WriteFlowActions;
object set ProtObjects;

?InfoFlow:
FORALL te IN PastEvents �
FORALL pe IN PastEvents �
FORALL g IN pe.target.groups �
EXISTS fe IN PastEvents �
ce.action.name = "commit" & // New

fe.time > te.time & // New

te.transaction = ce.parameter[0] & // New
te.action IN WriteFlowActions &

pe.time < te.time & // New
pe.target IN ProtObjects &
pe.action IN ReadFlowActions &
pe.task = te.task &
:: te.target IN g�R�S�

;�

Figure 22. The transformation of the informa-
tion flow policy of figure 20 into a history-based
policy.

Figure 22 shows the history-basedversion of the
obligation-basedpolicy shown in figure20. In thecurrent
prototypethis transformationis mixedwith thetranslation
to java, thustheSPLrepresentationof history-basedver-
sionsof obligation-basedpoliciesnever take place.

5.4.Results

Accesscontrol monitors are usedin several environ-
ments.Althoughthey areusedasserviceswhich aresel-
dom queriedby otherservices[29]. They arealsoused
at the centerof systemsbeingqueriedby every element
in the systemfor almostevery action, thus their perfor-
mancehasanimportantimpactontheoverallperformance
of thesystem.All measurementspresentedin this section
were taken on a personalcomputerwith a PentiumII at
333MHzrunningtheSunJava 1.2.2virtual machineover
WindowsNT 4.0.

The performanceof an accesscontrol monitor is mea-
suredby thetime it takesto respondto a query. However
moreimportantthanknowing the absolutevalueof time
taken by the monitor to solve a query, which varieswith
theplatformandtheintermediatecompilerused,is thedy-
namicbehavior of themonitorwith policy andlog scala-
bility, i.e. “How is thequerydelayaffectedby thenumber
of queriesansweredwhenhistory-basedpoliciesareused
?” or “How doesthequerydelayevolveswith thesizeof
thepolicy ?”.

To answerthe first questionwe have developeda test
basedontheChineseWall policy. In thistestwemeasured
the time to solve a query for the acceptabilityof events



producedby 100 differentusersby a monitor enforcing
a ChineseWall policy with 10 interestclasses,with 10
objectsperclass.Thetime for eachquerywastakeneach
100 eventsto verify the effect of event logging over the
queryperformance.

The eventswere chosensuchthat their targetswould
always be in one classof interestand that the expected
answerto the querywould alwaysbe positive (“allow”).
This is the most commonbehavior (in normal systems
mostactionsareallowed)andunfortunatelyit is alsothe
worst casefor this andmost policies expressedin SPL.
This behavior is sharedby every policy which usescon-
junctionsastheir predominantcompositionconstruction.
In this situationthe ChineseWall policy is composedby
a conjunctionof 10 policiesshowedin Figure16,onefor
eachinterestclass. If oneof thosetenpoliciesdeniesan
eventthenthereis noneedto evaluatetheremainingpoli-
cies. However, for eventswhich areallowedall the poli-
ciesareevaluated.
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Figure 23. Chinese Wall dependency with the
number of events queried

The resultspresentedin Figure23 show that the time
takento solveaqueryto theChineseWall policy doesnot
dependonthenumberof eventsqueried,thusproving that
thesolutionusedto minimizetheimpactof loggingonthe
overallperformanceof themonitoris effective.

The time neededto solve a queryto the ChineseWall
policy is alsonot affectedby the numberof usersor the
numberof objectsin eachclassof interest.But it is sever-
ally affectedby the numberof classesof interest(Figure
24). This resultis a directconsequenceof thenumberof
rulesusedto build theChineseWall policy with different
numbersof classesof interest.TheChineseWall defined
in Figure16 requiresthe definition of onerule for each
classof interest,thusfor ChineseWall policieswith more
classesof interestthemonitorneedsto evaluatemorerules
for eachquery.
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Figure 24. Chinese Wall scalability with the
number of classes of interest.

The index solutionpresentedin L 5.1 canminimize the
problemasshown by Figure24. Howeverit is notenough
for policiessuchasthe ChineseWall or any otherpolicy
with onesinglelargeconjunctionof rules.On thesepoli-
ciestheindex effectivenessis smallbecausethebranches
in the evaluationtree of thosepolicies are small. Thus
thecutswhich theindex is ableto performarenecessarily
small. Thesetype of policiesrequirebetterindexes. For
instance,indexeswith several layersof indexesover in-
dexes.Thissolutionis notimplementedin thecurrentpro-
totypebut its effect canbemeasuredbecauseit would be
similar to rearrangethepoliciesin orderto have a deeper
evaluationtree.For instance,thebig conjunctionof rules
of theChineseWall policy canbe rearrangedinto a con-
junctionof conjunctionsusingtheassociative propertyof
conjunctions.The resultsof Figure24 shows the effec-
tivenessof suchapproach.

Non Indexed
indexed normal optimized»½¼ ( »½¼ ) ( »¾¼ )

ChineseWall 10 56 1.5( 37) 1.3( 43)
ChineseWall 100 1992 3.3(597) 31.6( 63)
Global 303 7.6( 40) -

Table 2. Speedup results, with respect to non
indexed queries, for queries with normal index
and with index over rearranged policies.

Table 2 shows someexamplesof index effectiveness.
Two ChineseWall policieswith 10 and100classesof in-
terest,weretestedwithout index, with index andwith in-
dex over rearrangedforms of the policies. Although the
index speedupis not very sensiblefor the ChineseWall
policy with 10 classesof interestit becomesimportant



for the ChineseWall with 100 classesof interest. The
otherexampleshown in Table2 is the“Global” policy de-
scribedin appendixA, which is a policy with 41206 rules
dividedinto 100domainsover5 continents.Albeit simple
for a realpolicy of anorganizationthis policy is complex
enoughto representthetargetpoliciesof SPL.Thepolicy
wastestedfor 5000usersand12000targets,exhibiting a¿aÀÂÁ 	 delayfor eachquery, which is an acceptablevalue
for thesizeof thepolicy andtheunderlyingplatformused.

6. RelatedWork

Much work has been done on multi-policy environ-
ments,primarily to solve the conflict raisedby having
different policies governing the samesubject. Someof
this work triesto solve theproblemusingspecificsystem
mechanisms[11, 19], but mostdefineunifiedframeworks
in which differentpoliciescanbeexpressed[3, 4, 12, 22,
24, 27, 39].

Minsky andUngureanu[27] definea formalismandan
environment to specify and enforcesecuritypolicies in
distributedsystems.Their environmentassumesa mes-
sagemonitor that interceptsevery messagesent or re-
ceived, and runs securitypolicies. A securitypolicy is
composedof a setof clauses,eachonedefining the ac-
tionsthat themonitorshouldtake wheninterceptingeach
message.Theauthorsshow that the formalismis power-
ful enoughto expresscomplex policies,but it is not clear
how they dealwith conflictingpolicies.

Woo andLam [39] show how default logic canbeused
to expressauthorizationrules.Roughly, eachrule is com-
posedby threebinary formulas(g, f, f ’): formula g de-
finestheactionsallowedby therule; formulaf definesthe
actionsthat must be allowed by other rules in order for
this rule to be active; and formula f ’ definesthe actions
thatmustnotbeallowedby otherrules.Thisconstruction
is very powerful for relating rules with eachother, pro-
ducingvery expressivepolicies.Nevertheless,we believe
that the algebrafor securityrulesproposedby us is able
to expressmostsecuritypoliciesusingsimplerandmore
compactrules.

Adage [4] authorizationrules are very similar to our
own. They both have a domainof applicability function
andadecisionfunction.However, Adagedoesnotspecify
analgebrafor rulesandpolicies,whichmakesthemmuch
moredifficult to composeinto complex policiesandto ex-
pressdefault behavior. Furthermore,it doesnot providea
conflict resolutionmechanismor anefficient implementa-
tion of history-basedpolicies[40].

Conflict resolutionapproachesdefinedby Bertinoet al
[3] andJajodiaet al [23] have somesimilarities. In [3],

6Only 1690 rules can be directly countedfrom SPL specification.
The remainingrules are insertedinto the “userPolicy” group of each
user.

rulesareclassifiedinto two categories:strongandweak.
The strongrulesmay overrideweakrules,but not other
strongrules. This meansthatconflictsmaystill arisebe-
tweenstrongrulesandhave to besolvedby othermeans.

Jajodiaet al [23] define a logical languagewith ten
predicatesymbols.Threeof thoseareauthorizationpredi-
cates(dercando,cando,do),usedto definetheallowedac-
tions. Althoughnot explicit thesepredicatesdefinethree
levelsof authorization,with dercandoastheweakestand
do as the strongest.However, the problemremains,be-
causeconflictsmaystill arisebetween“do” rules[24].

Anotherapproachto conflictresolution,presentedin [2]
and[25] useselementslike rule authorshipauthority, rule
specificityandrule recency to prioritize rules. Although
simple and naturalthis approachmay lead to undesired
behavior. It is not uncommonfor high authoritymanager
to issuearulewhichmaybeoverriddenby alow authority
manager, or to expressa mandatorygeneralrule which
shouldnotbeoverridden.

In [8, 9] Blazeat al proposeda differentconceptcalled
“Trust Management”. Their work startsby identifying
thatin servicesreceivingsignedrequests,theprincipalsis-
suingtherequestsarethekeys signingtherequests.Thus
if thepolicy maintainedby theauthorizationserviceis or-
ganizedin termsof keys insteadof names(usernames,
role names,servicename,etc.) it is not necessaryto per-
form theextra stepof checkingtheauthenticityof there-
quest.

They proposea tool, the PolicyMaker trust manage-
mentsystem, which is ableto expressin a singlecommon
languageauthorizationpolicies,certificatesandtrustrela-
tionships,thusintegratingwholetheseconcepts.

Thetrustpolicy enginerepliesto a requestbasedon the
localpolicy andtrustassertionsandonthecertificatespro-
vided by the requester. The enginechecksif the request
is authorizedby the local policy assertions,or if thereis
a pathof trust assertionsfrom a local assertionto a key
signinga policy certificatethat allows the request.This
solutionclearlyscalesbetterthanaglobalstaticpolicy.

KeyNote [6] and SPKI [17] are two other examples
of systemscomprisingthe notion of trust management.
KeyNote derivesfrom PolicyMaker andsharesthe same
principals. However, KeyNote wasdesignedto simplify
the integrationof theservicewith theclient applications.
Thus KeyNote hasa built-in credentialverification sys-
tem anda simplenotationto expressauthorizationpred-
icates. SPKI (Simple Public Key Infrastructure)on the
otherhand,resultsfrom the extensionof the certificates
kept by a Public Key Infrastructureto allow authoriza-
tion certificates. Although slightly more restrictive than
KeyNote, SPKI sharesthe samefundamentalfeaturesof
KeyNote and PolicyMaker. SPKI also (i) useskeys as
principals,(ii) allows trust to be delegatedfrom onekey



to another(iii) allows policiesto be inserteddynamically
in theform of certificate.

Although with similar results each of these trust-
managementsystemshave a differentcompliancecheck-
ing engine. The onefrom PolicyMaker is the mostgen-
eral, in thesensethat it canusearbitraryfunctionsto ex-
pressassertions,providedthatthey aremonotonic.Onthe
otherhandthecompliancecheckingenginefrom SPKIal-
lowsa limited typeof assertionsbut it allowsnegativeas-
sertions.

In [5] Blazeat al shows that checkingthe compliance
for thegeneralproblemis NP-hardandgivesseveralalter-
nativeswith differentlevelsof expressivenessandusabil-
ity. However, thebestbalancebetweenexpressivenessand
usability is still anopenissue.We believe that theSPL’s
compliancecheckingengineis a fair alternative, because
althoughit is harderto dynamicallyinsertpolicies(poli-
ciescanonly beaddedatspecificpointsin theglobalpol-
icy) it hasa goodperformance,anddoesnot compromise
in any wayexpressiveness.

Most of theseenvironmentscanstatebothpositive and
negativeauthorizationrules.In [12] it is showedthatobli-
gationcanalsobea very powerful conceptto expressse-
curity policies,however it is not clearhow canit be im-
plemented.

Althoughexpressiveenoughto handlemostof theusual
policies,includingtheoneswith historydependence,like
theChineseWall andseveralotherseparationof dutypoli-
cies,noneof theabove environmentssupportsobligation
constraintsor informationflow policiesasSPLdoes.

7. Conclusion

We have definedan accesscontrol languagethat sup-
portssimultaneouslymultiplecomplex policies,andhasa
higherexpressive power thanothermulti-policy environ-
ments. The languageusesits hierarchicalbased,policy-
orientedstructureto solve conflicts betweensimultane-
ouslyactivepolicies.

The languagewasdesignedto be easilyenforcedby a
securitymonitor. We have shown how index techniques
can be applied to the policy structureto implementef-
ficiently most securitypolicies. Specialcarewas taken
on theenforcementof history-basedconstraints.We have
shown that by generatingspecificandspecialtunedlogs
for eachhistory-basedpolicy it is possibleto implement
SPL history-basedpolicies as efficiently as handcoded
label-basedimplementations.

The languagegoesbeyond the permission/prohibition
conceptsof securityand shows how to expressand im-
plementthe obligation concept. It usesthis conceptto
expressarelaxedform of informationflow policy, thereby
showing thatsomeformsof informationflow policiescan
beexpressedin SPLandthat they cancoexist with other

policies.
This work is just a first steptowardsa securityframe-

work, which alsoincludesthe specificationandenforce-
mentof authenticationpolicies,toolsto verify theconsis-
tency of both specificationand tools to verify the cross
consistency of both specificationswith other systemsin
theorganization.Namelywe have alreadydefineda tool
thatverifiesthecrossconsistency of anauthorizationpol-
icy describedin SPLanda workflow specification[30].
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A. Appendix
package Global;
import SplInterfaces;

alias object set collection;
alias user set team;

policy Group {
team UserGroup;
?Group: ce.action.name = "read" &

ce.target.owner IN UserGroup &
ce.author IN UserGroup :: true;



}

policy AclDomain {
collection DomainTargets;
owner: ce.author = ce.target.owner :: true;
given:
FORALL r IN ce.target.owner.userPolicy {r};

group0: new Group;
group1: new Group;
group2: new Group;
group3: new Group;
group4: new Group;
group5: new Group;
group6: new Group;
group7: new Group;
group8: new Group;
group9: new Group;
groups: group0 OR group1 OR group2 OR

group3 OR group4 OR group5 OR
group6 OR group7 OR group8 OR group9;

total: {groups OR owner} AND given OR deny;
?AclDomain: total@{ .target IN DomainTargets };

}

policy ACE(object target, operation action,
user author, boolean result) {

?ACE: ce.target = target & ce.action = action &
ce.author = author :: result;

}

policy ChineseClass
{

collection InterestClass;
?ChineseClass:
NOT EXIST e IN PastEvents {

ce.target IN InterestClass &
e.target IN InterestClass &
e.author = ce.author &
e.target != ce.target :: true

};
}

policy Role {
team Authorized;
team Active;
?Role: ce.action.name = "insert" &

ce.target = Active ::
ce.parameter[0] IN Authorized;

}

policy ChineseRBAC {
collection DomainTargets;
broker: new Role;
inspector: new Role;
china0: new ChineseClass;
china1: new ChineseClass;
china2: new ChineseClass;

china3: new ChineseClass;
china4: new ChineseClass;
china5: new ChineseClass;
china6: new ChineseClass;
china7: new ChineseClass;
china8: new ChineseClass;
china9: new ChineseClass;
ChineseWall: china0 AND china1 AND china2 AND

china3 AND china4 AND china5 AND
china6 AND china7 AND china8 AND china9;

LocalChina: ChineseWall@{.author IN broker.Active};
Inpection: ce.author IN inspector.Active ::

ce.action.name = "read";
total: {LocalChina AND Inpection} OR deny;
?ChineseRBAC: total@{.target IN DomainTargets };

}

policy Continent {
acl0: new AclDomain;
acl1: new AclDomain;
acl2: new AclDomain;
acl3: new AclDomain;
acl4: new AclDomain;
acl5: new AclDomain;
acl6: new AclDomain;
acl7: new AclDomain;
acl8: new AclDomain;
acl9: new AclDomain;
acls: acl0 AND acl1 AND acl2 AND

acl3 AND acl4 AND acl5 AND
acl6 AND acl7 AND acl8 AND acl9;

rbac0: new ChineseRBAC;
rbac1: new ChineseRBAC;
rbac2: new ChineseRBAC;
rbac3: new ChineseRBAC;
rbac4: new ChineseRBAC;
rbac5: new ChineseRBAC;
rbac6: new ChineseRBAC;
rbac7: new ChineseRBAC;
rbac8: new ChineseRBAC;
rbac9: new ChineseRBAC;
rbacs: rbac0 AND rbac1 AND rbac2 AND

rbac3 AND rbac4 AND rbac5 AND
rbac6 AND rbac7 AND rbac8 AND rbac5;

?Continent: acls AND rbacs;
}

policy Global {
europe: new Continent;
america: new Continent;
asia: new Continent;
africa: new Continent;
oceania: new Continent;
?Global: europe AND america AND

asia AND africa AND oceania;
}


