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Abstract

Mostorganizationauseseveral securitypoliciesto con-
trol different systemsand data, comprisingin this way a
global complex policy. Thesesecuritypoliciesare often
scatteed over different ervironments,eac one with its
own securitymodeland domainof administation, mak-
ing themdifficult to administerand undesstand. More-
over, someapplications(e.g. workflow), often needto
crossseveral of thesesecuritydomainsand satisfyeat
oneof their policies,which is very difficult to accomplish
whenthesepoliciesare scatteedovertheorganization,n
conflictwith eadch otherandfrequentlyexpressedn differ-
entmodels.

This work presentsa securitypolicy language that al-
lows organizationsto expressand keeptheir global se-
curity policiesin onesingledescription.Althoughflexible
enougho expresssimultaneouslgereral typesof comple
securitypolicies,thislanguage canbeeasilyimplemented
by an eventmonitor

Theproposedanguage canexpresstheconceptof per
mission and prohibition, and somerestricted forms of
obligation. We showhowto expressandimplementobli-
gationusingthetransactionconceptandhowto useobli-
gation to expressinformationflow policiestogetherwith
othercomplex securitypolicies.We alsoaddressthe prob-
lem of conflicting policies and show how to efficiently
enforce the security policies expressedby the language
with a securityeventmonitor, includinghistory-basednd
obligation-basedecuritypolicies.

1. Intr oduction

Overtheyears severalaccesgontrolpolicieshavebeen
proposedn the literature. Althoughthesepoliciescover
mary differentsituationsand datatypes, they are often
consideredn isolation. This is not suitablefor organi-
zationswith complex structuresand several datatypes,
which requiresthe simultaneoususe of differentaccess
control policies. Moreover, policies are scatteredover

different ervironments,which makes understandingand
managinglobalpoliciesof organizationsnuchmoredif-
ficult.

The cooperationbetweenMAC (Mandatory Access
Control) and DAC (DiscretionaryAccessControl) poli-
cies to achieve DAC flexibility and MAC resistanceo
Trojan Horseattacks,is one of the earliestexamplesof
cooperatiorbetweenpolicies. However, thereare mary
other usefulforms of cooperatiorbetweenpolicies with
differentobjecties.

For instance an organizationmay wish to give to each
employee the control over the documentshey produce
but, for paymentorders, the organizationmay want to
dery theright to approve themto thosewho have written
the paymentorders.This canbe accomplishedy a DAC
policy combinedwith a simpleseparatiorof duty policy.

Anotherorganizatiormaywishto haveaveryloosepol-
icy onmostof its departmentsn whichonly afew actions
areforbidden,but in oneof themhave avery strict policy
in which only afew actionsareallowed. Thisis acombi-
nationof anopenpolicy with aclosedone.

Unfortunately it is not possibleto predictwhich com-
binationsaregoingto beusefulon every situationor even
the policiesthataregoingto beneeded.

Latelytherehasbeenaconsiderablénterestin erviron-
mentsthat supportmultiple and complex accesscontrol
policies,[3, 4, 11, 12, 19, 22, 24, 27, 39]. Our work fol-
lowsthatpathandtriesto progressn termsof expressve-
nessandfunctionality.

This paperdefinesasecuritypolicy languagégSPL)that
is flexible enoughto expresssimultaneouslseveraltypes
of complex authorizatiorpolicies,andneverthelesss con-
structedwith simple elementsthat can easily be imple-
mentedby a securityeventmonitor.

Oneof the problemsof puttingtogetherseveralpolicies
on the sameervironmentis the conflict that arisesfrom
contradictorydecisiongroduceddy thedifferentpolicies.
SPL solvesthis problemby forcing securityadministra-
tors to take priority decisionson every policy composi-
tion.

Most multi-policy ervironmentssupportseveral forms



of discretionaryandmandatoryaccessontrol policiessi-
multaneouslySomesupportrolesandhistory-basegboli-
cieslike the Chinesewall policy andseveral otherforms
of separatiorof duty. However, to our knowledge,none
allows the combinationof generalinformationflow poli-
cieswith otherpolicies. In this paper we presentanin-
formationflow policy expressedn SPL,that cancoexist
with otherpoliciesandmake useof them. Thisis achiered
througha differenttype of rule thatcompriseghe obliga-
tion concept.

Theobligationconcepis avery powerful concepto ex-
presssecuritypolicies, however it is very difficult to en-
force within a securitymonitor. We show that by using
thetransactiorconceptanaccesgontrolservicebasedn
SPL mayenforcesomeformsof obligation.

We alsoshav how to efficiently implementbothobliga-
tion andhistory-basedgolicies, by building an SPL com-
piler ableto optimizetheinformationnecessaryo imple-
mentthosepolicies.

Theremaindenf thepapelis organizedasfollows. Sec-
tion 2 presentsSPL structureandbasicblocks(rules,en-
tities, setsandpolicies). Section3 shavs how to express
threespecialtypesof constraints:history, obligationand
invariantconstraints Section4 shovs somepolicy exam-
ples,includinganinformationflow policy. Section5 dis-
cussesmplementatiomotesand showvs performancere-
sults. Section6 discusseselatedwork. Finally, in section
7 we concludethe paper

2.SPL Structure & BasicBlocks

SPL is a policy-orientedconstraint-basethnguage. It
is composedf four basicblocks: entities,sets rulesand
policies. The fundamentablock of the languageis the
rule. Rulesexpressconstraintin termsof relationsbe-
tweenentitiesand sets. Policiesare complex constraints
thatresultfrom the compositionof rulesandsetsinto log-
ical units. Policiescanalsobe composednto morecom-
plex policiesuntil it formsaglobalandsinglepolicy.

Policiesare a key conceptof SPL, they provide the
structureneededo build complex accessontrol models
(e.g.RBAC,DAC, TRBAC). In fact,SPLgoesbeyondthe
simpleenumeratiorof rules. It allows for the association
of rulesandsetsinto policiescomprisingthelogical units
of the desiredmodel (seesection4.3). ThereforeSPL s
model-independernbut not model-lessijt allows for the
definition of complex RBAC modelswith parameterized
roles[20, 26] andcomplex role constraintslt alsoallows
for the definition of several forms of multilevel security
[1] andrelaxedformsof informationflow security

In this sectionwe presentin detail eachof the basic
blocks comprisingSPL and shav how they are usedin
writing SPLsecuritypolicies.

2.1.Entities

SPL entitiesaretypedobjectswith anexplicit interface
by which their propertiescanbe queried. Entitiescanbe
internalor externalto the securityservice.Queriesonthe
interfaceof externalentitiesaretranslatednto methodor
function calls on the objectsor servicesof thoseentities.
Ideally, thesequeriesshouldnot have secondaryeffects.
In practice this canonly beassuredby thesecurityservice
if eachof thosemethodsandfunctionshasbeenverified
andannotatedsstateless.

Queryingexternalentitiesis notusuallyconsideredafe
in securityservices,dueto the covert channelghat may
result. For instance,an unclassifieduser can become
awareof classifieddataby executinganactionwhoseac-
ceptability depend=on that dataand verifying if the ac-
tion fails or not. Neverthelessthis techniqueis essen-
tial to achieve theflexibility andexpressvenessiecessary
to somesystemsandapplicationg16]. To minimize the
risk, anSPL policy shouldbeverifiedbeforebeingimple-
mented to assurehatevery operationwhich dependn
propertiesof externalentitiesis allowedonly if thequery
of thosepropertiess allowed. However, it shouldbenoted
thatthis doesnot preventimplicit flow [13], or time chan-
nels.

Someof the entitiesmanipulatedby SPL are internal
to SPL, like setsandpolicies, but mostareexternal,like
usersfiles,andevents.Thepropertieof eachexternalen-
tity depend$ieaily ontheplatformthatimplementghose
entities. For example,a usermay have just the properties
nameandhome-hostor hecanhavethoseandaclearance
level, a signaturelD and mary others. This meansthat
SPL doesnot restrictthe propertiesof entitiesto a fixed
set,insteadit takesadvantageof every propertyavailable
to increasehe power of policies.

On mary SPL targetplatforms,the SPL entity setmay
form apolymorphichierarchywhereeachentity is a spe-
cializationof someotherentity. In Figurel, it is shavn
the entity type hierarchyusedin the examplesof the next
sections.On theroot of this hierarchyis the “object” en-
tity type. The remainingentity typesaredefinedby spe-
cializationof this basetype.

2.2.Sets

Entitiescanbe classifiedinto sets.Setsareessentialn
ary policy consideringhatthey providethenecessarab-
stractionto achieve compactnesgyeneralizatiorandscal-
ability. Withoutsetseachrule hadto berepeatedor each
entity to whichtherule applies.

Sets, like ary other entity, may be internal or exter-
nal. Someexternalsetsarevery usefulto the definition
of policies. For instancethe setsof all usersandall ob-
jectsknown to the system(Figure2).



type object {

string nane; /1 The name of the object
user owner; /1 The owner of the object
string type; /1 A string identifying the type

obj ect set groups;// The sets containing the object
string homeHost; // The host where the user
} /1 is defined

type user extends object {
rule set userPolicy; // User private policies

type operation extends object {

nunber 1D; /'l operation Id
type event extends object {
user author; // The author of the event
obj ect target; /1 The target of the event
operation action; /1 The performed action
obj ect set paraneter;// The set of paraneters
nunber tine; // The tine instant
obj ect task; // The task to which the event
} /'l belongs to

Figure 1. Example of an entity type hierarchy
definition.

external string localhost; // An external entity
external user set AllUsers; // Al the users
/1 in the system
external object set AllCbjects; // Al the objects
external operation set AllActions; // Al the actions
external event set AllEvents; // Al the events,
/1 past and future

Figure 2. Examples of external entities and
sets.

SPL supportawo typesof sets:catgyoriesandgroups.
Catayoriesaresetsdefinedby classificatiorof entitiesac-
cording to their properties,e.g. all usersloggedin ma-
chineA, andgroupsaresetsdefinedby explicit insertion
andremoval of their elements.Insertionand removal of
membersnto agroupcanonly bedoneby externalevents
since SPL shouldnot perform operationson external or
internalentitiesthatresultin change®f state.Both cate-
goriesandgroupsaredeclaredassets but areinstantiated
differently.

/1 Exanple of use of the restriction operator
/1 A category of all users that are defined locally
user set |ocal Users =

Al | Users@. honeHost = | ocal host };

/1 A group defined as enpty
user set ActiveGoup = {};

Figure3. Example of a category and a group.

Catgyories are definedby restricting the elementsof
other setsto the oneswith particularproperties. This is
doneby the SPL restrictionoperator(myset@ logical-
expression}), which is a polymorphicoperatorthat can
be usedon ary type of setor rule (Figure3)(seealsosec-

tion 2.3, for restrictionon rules). Therestrictionoperator
hastwo operandspneis the setthat it wantsto restrict,
andtheotheris alogical expressiorthatmustbe satisfied
by the elementsin the setin orderto belongto the re-
strictedset. The logical expressiorusespropertiesof the
elementdn the setto definewhich membersareselected.
Thesepropertiesaarewritten with a dot beforethename.

SPL definesfive moresetoperatorstheindex operator
(myset[nth)), thatappliedto a setreturnsthenth element
of the set; the membershipperator(elementN mysey;
thecardinaloperatoi(#myset) thatreturnsthenumberof
elementdn a set;thejoin operator(mysetl + myset2);
andthe meetoperator(myset1 x myset2).

2.3.Constraint rules

SPL is a constraint-basedanguage. Constraintlan-
guagesarewidely usedto expresssystemsplans[38] or
accesgontrolpolicies[4].

The languageis composedof individual rules, which
arelogical expressionshatcantake threevalues:“allow”,
“deny”, and“notapply”. Theirgoalis to decideontheac-
ceptability of eachevent underthe control of the access
control servicethat implementsthe language. To make
this decision,ruleshave animplicit parametethatrepre-
sentsthe eventuponwhich therule is deciding. Because
thiseventis usuallythecurrentevent,it is referredas“ce”.

A rule canbe simple or composed. A simplerule is
comprisedf two logical binaryexpressionspneto estab-
lish the domainof applicability andanotherto decideon
the acceptabilityof the event.

[l abel :] donmi n-expression :: decide-expression

Figure4. Syntax of a simple SPL rule.

The SPL syntaxfor a simplerule (Figure 4) hastwo
parts: an optional label and two logic expressionssepa-
ratedby a specialmarker (":;"), representinghe domain-
expressiorandthe decide-apressiorrespectiely.

The domainand decideexpressionsare simple binary
expressionswith the logic operators’&’, '|" and’~’,
respectiely for the conjunction, disjunction and nega-
tion, theequality/inequalityoperators=", 'l =, "<, ' >,
'>=", '=<’, andthespecialvalues‘true” and“false”.

Thedomain-decideonstructiorshouldnotbeconfused
with a simple binary implication. If a binary implica-
tion was used,every rule would be implicitly open,i.e.
it would allow every event not in the domain, which is
contraryto SPL designprinciple of beinga modelinde-
pendentanguage.

Figureb, shows two simplerules,labeledOwnerRule’
and'DutySep’respectiely. Thefirstonestateghatevents



/1 Every event on an object owned by the
/1 author of the event is allowed
OanerRul e: ce.target.owner = ce.author :: true;

/1 Payment order approvals cannot be done

/1 by the owner of paynent order

DutySep: ce.target.type = "paynentOrder” &
ce.action.nanme = "approve"
ce.author != ce.target.owner;

Figure5. Simple rule examples.

actingon atargetobjectownedby the authorof the event
(ce.taget.avner = ce.author)is always allowed (decide-
expressioralwaystrue). The secondrule stateshat pay-
mentorderapproalsareonly allowedif theauthoris not
theownerof thepaymentordet

The domain-decidetype of construction described
aboveis simple,yetit is more powerful thanthe permis-
sionandprohibitionconstruction23], in which eachrule
is exclusively a permissionor a prohibition. A permis-
sion/prohibitionrule just identifiesthe eventsthatareal-
lowed/deniedrom others. It cannotidentify simultane-
ously the eventsthat are allowed, the eventsthat are de-
nied, andthe eventsthat are neitherallowed nor denied.
Moreover, a permissioror a prohibition canbe expressed
quitesimplywith thedomain-decideonstructiorby mak-
ing the decide-&pressiontrue or false, respectiely, for
every eventwherethe domain-epressioris true.

| «a | B || a AND g3 | aORp | NOT « |
Allow Allow Allow Allow Dery
Dery Allow Dery Allow Allow
NotApply X X X NotApply
Allow Dery Dery Allow
Dery Dery Dery Dery
X NotApply X X

Table 1. Tri-value algebra operations definition:
AND, OR and NOT. x stands for a variable
which can assume any value.

A rule canbe composedf otherrulesthrougha spe-
cific tri-valuealgebrawith threelogic operatorsconjunc-
tion CAND’); disjunction('OR’); andnegation('NOT").
Theseoperatorsbehae astheir binary homorymsif the
“notapply” valueis notused(with the“allow” and“deny”
beingequalto “true” and“false”, respectiely). The pri-
mary characteristicof this logic is that the “notapply”
valueis the neutralelementof every operation(Table1).

This tri-valuelogic allows someinterestingconstructs
for accesscontrol expressieness. For instance,a de-
fault value canbe expressedising specialrulesin which
the domain-epressionis always true and the decide-
expressionis true or falsedependingon the default value

/1 Inplicit deny rule.
deny: true :: false; // Inplicit deny rule.
allow true :: true; // Inplicit allowrule.

/1 Sinple rule conjunction, with default deny val ue
Onner Rul e AND DutySep OR deny;

/1 Sinple rule conjunction, with default allow val ue
Omner Rul e AND DutySep AND al | ow;

/| DutySep has a higher priority then OmnerRul e
DutySep OR (DutySep AND Owner Rul e);

Figure 6. Composing rules with a tri-value alge-
bra.

being “allow” or “deny” in conjunction/disjuntionsas
shawvn in Figure6. Anotherinterestingconstructiorpre-
sentedin Figure 6, shavs how to expresspriorities be-
tweenrules. The resultof the compositionis the result
of the “DutySep” rule, exceptwhenthis rule is not ap-
plicable,in which casethe resultis equalto the resultof
“OwnerRule”.

/1 Universal quantifier syntax
FORALL var IN set { ruleskeleton(var) }

/1 Existential quantifier syntax
EXI ST var IN set { rul e.skeleton(var) }

Figure 7. Universal and existential quantifiers
syntax.

In orderto increasehe flexibility of composition, SPL
definesuniversal and existential quantifiersover rules.
Thesequantifiersaredefinedasthe tri-value conjunction
or disjunctionof all the rulesresultingfrom the replace-
mentof the enumeratiorvariablein therule skeleton,by
eachvaluein the set(Figure7).

/1 Apply all rules in the userPolicy set restricted
/Il to targets of the same owner

FORALL r IN u.userPolicy {

r @{ .target.owner = u }

Figure 8. Example of the restriction operand
applied to rules.

Rulesdo not have to be written at the sametime by the
sameauthor in factthey areusuallywritten dynamically
by severalauthors.Oftenit is necessaryo restrictthedo-
main of applicability of a rule previously written, by the
sameauthoror by a differentone, without removing it
completely For instancea rule may statethatthe private
rulesof userscanonly apply to target objectsbelonging
to them.In SPLthisis achiezedby applyingthe polymor
phicrestrictionoperator(presentedh section2.2)to rules



andpolicies,in orderto restricttheir domainof applica-
bility (Figure8).

Therestrictionoperatorcanbe appliedto bothrulesor
policies. It actsby restrictingthe eventsto whichtherules
or policies apply to thosesatisfyinga specifiedlogical
expression,e.g. given a rule p definedby the expres-
sions“D(event) :: A(event) anda logical expression
R(event) thanthe rule restriction“ p@QR may be repre-
sentedoy “D(event)&R (event) :: A(event), where&
standdor thelogical conjunction.

2.4. Policies

An SPLpolicy is agroupof rulesandsetsthatgoverna
particulardomainof events. Eachpolicy hasone“Query
Rule” (QR)identifiedby aquestiormarkbeforethename
of therule, thatrelatesall therulesspecifiedn the policy.
Thisrule useghealgebradefinedbeforeto specifywhich
rulesshouldbe enforcedandhow. The domainof appli-
cability of a policy is the domainof applicability of the
QR.

In a SPL policy someof the setscanbe parametershat
are passedo the policy whenever it is instantiated(or,
more correctly activated). This allows for the construc-
tion of several abstractpolicies, which may be activated
severaltimeswith differentparameterskor instancejt is
possibleto have a genericDAC policy, a genericsepara-
tion of duty policy, or asimplegenericACL policy (Figure
9).

policy ACL(
user set AllowUsers, // Users that are allowed to

/1 performrestricted actions
obj ect set ProtObjects, /1 The protected objects
interface RestrictActions) // The restricted actions

{

?Psi npl e:
ce.action IN RestrictActions & // if event action
/1l is restricted

ce.target IN ProtObjects // and target object

Il is protected then
;:ce.author IN All owdsers// the event is allowed

// if the author is allowed
}

Figure 9. Generic policy implementing an ACL
tuple.

When instantiated,a policy acts as a rule and can
be included into anotherpolicy by composingit with
other rules throughthe tri-value algebra. As in several
object-orientedanguagesinstantiationis performedby
the “new” keyword. Figure 10 shows a security policy
('InvoiceManag’)that activatesan ACL policy anddele-
gatednto it the decisionon eventacceptability

Theability to composepoliciesinto morecomplex poli-
cies, using the tri-value algebra,is one of the important

policy Invoi ceManag

/1 derks would usually be a role
/1 but for sinplicity here it is a group
user set clerks ;

/1 Invoices are all objects of type invoice
obj ect set invoices =
Al | Obj ects@ .doctype = "invoice" };

/1 In this sinple policy clerks can
/] performevery action on invoices
Dol nvoi ces: new ACL(cl erks, invoices, AlActions);

?usi ngACL: Dol nvoi ces;

}

Figure 10. A simple example of policy instanti-
ation.

featuresof SPL,becausét allows for the developmentof
librariesof commonsecuritypolicies. Thesesecuritypoli-
ciescanthenbeusedasbuilding blocksfor morecomplec
securitypolicies,thussimplifying the specificatiorof se-
curity policiesfor complex organizations.

The natural SPL policy sharingmechanisnis delega-
tion, but SPL alsosupportspolicy inheritanceto simplify
somesharingsituations. For example,defining a policy
similar to anothempolicy with just onerule slightly differ-
entis muchmore difficult with delegationthanwith in-
heritance.ln the examplepresentedn Figurellit is de-
fined a policy thatextendsthe “InvoiceManag”policy by
restrictingthe domainof the rule “Dolnvoices”to events
with write actions.

Policy Restrictlnvoi ceManag extends | nvoi ceManag
/1 Now only wite actions are all owed
Dol nvoi ces:

super . Dol nvoi ces@{. action.name = "wite"};

/1 The query rule is inherited fromthe super

Figurell.Example of policy inheritance.

SPL policiesareactive only if instantiatecandinserted
into anothemolicy, exceptfor the mastermpolicy, whichis
activatedimplicitly by the securityservice. Theresultis
a hierarchicaltree of active policieswith the masterpol-
icy ontop. This structurehasseveral advantagesover a
flat one[4, 23, 39]. First,it clearlyidentifieswhich rules
arerelatedwith eachother, simplifying the globalunder
standingof the policy. Secondit allows the dynamicac-
tivation and deactvation of policies,by insertingandre-
moving themfrom otherpolicies. Third, it partially solves
the problemof conflictingpolicies.



2.5 Conflict Solving

SPL supportsnon-monotonigolicies,in the sensehat
it is ableto expresshoth positive andnegative constraints
at the sametime. The ability to expressnon-monotonic
policies haslong beenrecognizedas very importantfor
the expressibility of security policies[24, 25]. Notably
the C2level of TCSECstandard14] includesthis explicit
requirement.

The increased expressibilty added by non-
monotonicity does not come without cost as it leads
to potentialconflictsbetweercontradictoryrules. Usually
theseconflicts are solved by the introductionof implicit
priority algorithmsthat choosewhich rule overridesthe
other Someof thesealgorithmsare very simple (e.g.
negative rules overridespositive ones)othersare more
complex and use not only the rules type but also the
authorityof therules’issuerq(i.e. rulesissuedoy a higher
authority manageioverride others),the specificity of the
rules (often more specific rules should override more
genericones), and the issuing time of the rules (more
recentlyrulesoverrideolderones)[2, 25]. Thisapproach
is very intuitive and natural,but it hassomedrawbacks.
It is notunusualffor a high authoritatve manageto issue
a rule which may be overriddenby a low authoritatve
manageror to expressa mandatorygeneralrule which
shouldnotbeoverridden.

Anotherstratey is to stratify the securityrulesandin-
cludeaspeciallayerof rulesto decidewhichrulesshould
overridethe others[3, 23]. SPLfollows this strateyy but
insteadof creatinga speciallayer of rulesto solve con-
flicts, SPL forcesthe securityadministratorto combine
policiesinto a uniquestructurewhichis by definitionfree
of conflicts. In SPL, every active security policy must
be in the hierarchicaldelgyationtree of policies. There-
fore, if two active policies give conflicting resultsto the
sameavent(onederyingit, andtheotherallowingit), then
someavhereupthehierarchicatreethey mustbecombined
in onetri-valueexpressiorthatinherentlysolvesthe con-
flict. If the two policies are combinedusing a tri-value
“AND” theeventis denied.If they arecombinedusinga
tri-value“OR” the eventis allowed.

However, this solutioncannotbe appliedto every type
of securitypolicy inconsisteng, becausdi) sometypes
of inconsistencieare not conflicts,and (ii) someshould
not be solved by an automaticprocess.For instance the
securityconflictsproducedy designerrorsshouldnotbe
implicitly solved becausahatwould masqueradéhe de-
signerror. In [31] we describeatool thatis ableto detect
severaltypesof inconsistenciein SPLandcanbe easily
expandedo checkfor inconsistenciedetweerthe secu-
rity policy andotherspecifications.

3. SpecialConstraints

The languagedescribedn the previous sectioncanbe
usedto expressseveral types of constraints,including
comple constraintsthat require specialimplementation
considerations.In this sectionwe shov how to express
andimplementwith aneventmonitor, threespecialtypes
of constraints:history basedconstraints pbligationcon-
strainsandinvariantconstraints.

3.1.History constraints

Several securitypoliciesrequireeventsto be recorded,
in orderto implementconstraintswith dependenciesn
thepast.Amongthem,theChinesénall policy [10] is one
of thebestknown. But mary otherformsof separatiorof
duty [34] andinformationflow policies[28] alsorequire
eventrecording.

The importanceof history-basedoliceshasbeenrec-
ognizedby several authors[15, 32, 40], however to our
knowledgenonewas able to simultaneousexpresscon-
ciselyandimplementefficiently history-basegbolicies.

In SPL history-basedoliciesare expressedy simple
guantificationrules over the abstractset Past Event s.
Eachof theserulesdeclaresandquantifiesoneeventvari-
able, usedto classify eachtype of pastevent monitored
by the event monitor.  Thus, to monitor a sequenceof
eventsin SPL, it is necessaryo cascadeseveral quantifi-
cationrulesoverthePast Event s set,onefor eachtype
of event. Figure 12 shows a history-basedolicy which
deniesary eventwith anactiondifferentfrom “read” on
a targetwhich hasbeen‘verified” and“approved” in se-
guence.

policy H storySequence

?Hi st orySequence:

FORALL el I N PastEvents {
FORALL e2 I N PastEvents {
ce.target = el.target &
ce.target = e2.target &
el.time < e2.tine &

el.action.name = "verify" &
e2. action.nane = "approve"
: ce.action.nanme = "read"
b

}

}

Figure 12. A history-based policy with se-
guence events.

This approachmakesit very simpleto expresshistory-
basedpolicies basedon simple sequencesf events,but
slightly harderto expresshistory-basegboliciesbasedon
statemachines.To expressthis type of policesit is nec-
essaryto defineoneeventvariablefor eacheventleaving
eachstateand write constraintsexpressingthe temporal



dependenciebetweerthoseevents. Neverthelesave be-
lieve thatmosthistory-basegboliciesareof thefirst type,
thusary statemachinebasedapproactwould beunneces-
sarily complex.

3.2 Obligation constraints

SPLis ableto expressthe conceptof permissionpro-
hibition and obligation. While the first two are usually
supportecby accesscontrol servicesthe lastoneis not.
Oneexceptionis [12], which definesamodallogic, based
ondeonticlogic to expresssecuritypolicies. However, al-
thoughit presentsa cleardefinition of obligation,it does
not proposea solutionto implementit by a securitymon-
itor or ary othertypeof securityservice.

3.2.1 Enforceableobligations

To act uponrules, a security monitor must know when
thereis an attemptto violate them andwhatto do then.
On most security monitors the attemptsof violation of
rulesbasedon the prohibition conceptare detectedvhen
an eventrequestingan actionoccurs,in which case,the
actionrequesteds denied. With rules basedon obliga-
tion the time at which a violation attemptoccurs(viola-
tion attempttime) andthe actionto perform(default ac-
tion) whenthat happensare not so easyto define. First,
because genericobligation(Statementl) doesnot need
to have adeadlineandsecondbecausé¢hereis nogeneric
actionto performin caseof violation attempt.

Principle O mustdo Action_O (1)

SPLdoesnot allow genericobligations.Insteadit sup-
ports,with somerestrictions anotherusefulform of obli-
gationthatcomprisesatriggeraction(Statemeng).

Principle O mustdo Action_O
if Principle.T hasdoneAction_T

)

This form of obligationhasa muchmoresimpledefini-
tion for default actionthanthe genericobligation. While
with the generictype of obligationa systemis in anun-
stablestateuntil the obligationis fulfilled, with the trig-
geredobligationa systemhastwo stablestatespnebefore
thetriggeractionandoneafterthe obligationis fulfilled.
Thus, whenthe trigger actionis executedbut the corre-
spondingobligationis notfulfilled, the naturaldefaultac-
tion for a systemywith this type of obligation,is to return
to the stablestatebeforethetriggeraction.

However, defining a default action doesnot by itself
solve the problem. Using simplelogic it is possibleto
rewrite statemeng into statemen8?,

lo0<«T=-T«< -0

PrincipleT cannotdo Action_T

if Principle.O will notdo Action_O (3)

which specifiesa constrainwith adependengonafuture
action.Schneidef36] stateghatwith amonitorlike con-
structionit is not possibleto enforcea securitypolicy in
which the acceptabilityof an executiondependsn pos-
sible future executions. Informally his argumentis quite
simple. Given the sequencesf executionst’ andr, in
which 7 is the prefix of someexecutionof 7/, it is not pos-
sibleto allow 7 onthebasisthatoneof its extensions’ is
allowed by the securitypolicy, becauseahe systemcould
stopbeforer’.

The key issueis the notion of execution.To Schneider
an executionis simultaneouslhthe unit by which the se-
curity policy governsthe executionof a systemandthe
only atomic unit presentin the system. We believe that
thereareadvantagesn separatinghesetwo concepts.n
fact,it is not unusualfor atomicrequestdo be composed
of several actionswhich arethemselessubjectedo the
securitypolicy. Here atomic meansin the senseof the
transactionACID properties:eitherall happensor none
happensinsidetheseatomicrequestst is possibleto de-
fine securitypolicieswith dependenciei future actions,
becausat is not possiblefor a systemto stop execution
beforethe completesequencéeingexecuted.

Thereforesecuritypolicieswith dependencies thefu-
ture are enforceablebut only if they are confinedto the
boundsof anatomicexecution. Thus,in orderfor atrig-
geredobligationpolicy to be enforceableijt is necessary
thatthe violation attempttime be lessor equalto the up-
per bound of an atomic execution. Albeit restrictedto
the boundsof atomic executions,this type of constraint
(triggeredobligation)is usefulin mary situations.For in-
stancea useris obligedto registerafter startusinga soft-
ware,or the informationflow policy presentedn section
4.5,

In mostsituationsit is possibleto find a trigger action
for anobligation,howeverit is notalwayspossibleto per
form both the trigger actionandthe obligatoryactionin-
sideanatomicexecution,becaussomeactionscannotbe
undone,e.g. sendinga documentto a printer or show-
ing sometext onthe screen.Theseactionsarecalledreal
actionson transactiormanagemensystemq21] andare
alreadyknown to requirespecialtreatmenty thosesys-
temsin orderto achieve atomicity. Usually systemgielay
theexecutionof suchactionsuntil all theotheractionsare
executedput if theseactionscannotbereorderedhesys-
temis notableto ensureatomicity.

The problemis slightly more complec than in usual
transactionmanagemensystemsbecausehe set of ac-
tions identified as real actionsmustinclude actionsthat
changehumanknowledgestate(e.g. shoving sometext



onthescreen)which arenot oftenconsidered.

3.2.2 Expressingobligations

Expressinganobligationconstraintin SPLis assimpleas
expressinga history-baseaonstraint. As waspreviously
shawn in section§3.2.1the kind of obligationsenforced
by SPL can be expressedas constraintswith a depen-
deng in thefuture. Therefore by symmetrywith thecon-
straintswith dependencies the past,the naturalway to
expressan obligationconstraintin SPLis usingquantifi-
cationrulesover a specialabstracisetFut ur eEvent s.
As in thesymmetricsituation,eachof thoserulesdeclares
and guantifiesone event variable, usedto classify each
type of future eventmonitored. Figure 13 shawvs anobli-
gation basedpolicy which statesthat if someoneexe-
cut es thegoodi es applicationhe/shemusteventually
(in thenearfuture)registeritself asa user Anotherexam-
ple is presentedn Figure20, whereobligationis usedto
expressarelaxedform of informationflow policy.

policy Register

?Regi ster:

EXI ST fe IN FutureEvents {
ce.action.nane = "execute" &
ce.target = "goodies" ::
ce.author = fe.author &
fe.action.name = "register” &
fe.target.name = "RegisterServer"
fe.parameters[0] = "goodi es"”
e

}

Figure13. An obligation-based policy.

3.3 Invariant constraints

An invariantrule is a very usefultype of rule. It speci-
fiesthataconditionon someobjectpropertieshouldhold
before and after every event. Theserules are a special
typeof amoregeneralgroupof rulesthatareexpressedn
termsof resultsof actions,insteadof actionsthemseles.

SPLis anevent-orientedanguagén the sensehatthe
goal of eachrule is to decideif an event shouldbe al-
lowedor denied;thus,invariantrulescannotbe expressed
directly in SPL becauseheir goal is not an eventin it-
self but theresultof thatevent. A systemwith arule that
allowseveryevent,if aconditionholdsanddeniest other
wise,couldendupin adeadlockpecausegheeventwhich
causedthe conditionto be broken was alreadyallowed
whenthe situationis detected However, if therule states
thataneventis allowed, if for all thefollowing eventsthe
conditionholds,andis deniedotherwise the systemde-
niesthe eventthatwould have brokenthe condition, pre-
ventingit.

A rule expressedhsstatedhasa similar constructiorof
statemens, thusit canbe expressedndimplementedas
an“obligationto complywith theinvariantcondition”.

4. Examples

In this section,we presentsomesecuritypolicy exam-
plesexpressedn SPLto shov how SPL copeswith dif-
ferenttypesof securitypolicy paradigms.

4.1.DAC

Althoughthereare mary differentpoliciesin the DAC
catgyory they all shareacommonbasethatcompriseshe
essentiabf DAC. Thiscommonbasecanbeimplemented
by an SPL policy, that canlater be usedto build several
DAC policies.

policy DAC

/1 Oaner can do everything to his objects
authorRul e: ce.target.owner = ce.author :: true;
/1 User policies are applied restricted to their
/1 own objects
user Pol i cyRul e:

FORALL u IN All Users {

FORALL r IN u.userPolicy {

r @{ ce.target.owner = u }
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/1 The policy denies any event not allowed by any
/1 of the rules
?DAC:. aut horRul e OR userPolicyRule OR deny;

}

Figurel4. An example of a general DAC policy.

A DAC policy hastwo constraintgFigure14). Thefirst
constraintstatesthat the owner of an objectcanperform
every actiononit. The secondstateghatevery userpol-
icy shouldberestrictedto thetargetsownedby the owner
of the policy. The QR rule stateshatif ary of thesecon-
straintsallows an event to happenthe eventis allowed,
otherwiseit is forbidden.

SPL can expressseveral types of separationof duty
policies. One of the simplestmay be implementedwith
therule “DutySep” presentedn figure 5. Thisrule states
thatpaymenborderscannotbeapproedby thesameusers
whowrotethem.

The combinationof the “DutySep” rule with the DAC
policy presentedin Figure 15, implementsthe policy
statedin theintroduction,wherean organizationgivesto
eachemployeethe control over the documentshey pro-
duce,with the exceptionof paymentbrdersthatcannotbe
approvedby the someuserthatwrotethem.

4.2.ChineseWall

The ChineséNall policy is amonotonicsecuritypolicy,
designedor opensystems.Briefly the policy statesthat



pol i cy DAC_SepDuty

/1 A DAC instantiation
nmyDAC:. new DAC,

/1 Payment order approval s cannot be done
/1 by the owner of paynent order
DutySep: ce.target.type = "paynentOrder” &
ce.action.nane = "approve"
;:ce.author !'= ce.target. owner;

/] Events are allowed only if both
/1 rules do not deny it
?DAC_SepDuty: nyDAC AND Dut ySep;

}

Figure 15. Combination of a DAC policy with a
separation of duty policy.

objectsare classifiedinto classeof conflicting interests,
andausercanaccesvery object,but only onefrom each
classof interest.

Therearemary waysto write the Chinesewall policy
in SPLterms. Oneof the simplestis presentedn Figure
16, in which only one classof interestis defined. The
policy definesonesetandonerule. Thesetcontainsall the
objectswith the sameconflict of interests.Therule states
thatthe currenteventis deniedif the target of the event
is in the“interestclass”andexists a pasteventperformed
by the sameuseron a differenttargetthatbelongsto that
“interestclass”.

pol i cy ChineseVal |
obj ect set Interestd ass;

?Chi neseWal | :

FORALL e IN PastEvents {
ce.target IN InterestClass &
e.target IN Interestdass &
ce.author = e.author &
ce.target != e.target &

fal se
b

}

Figure 16. A specification for the Chinese Wall
policy.

Usually an organizationimplementinga ChineseWall
policy has several classesof conflicting interests. The
above policy hasjust one class,but can be instantiated
severaltimes,onefor eachclassof interest.

The decide-apressiorof the rule hasa constantvalue,
which is consistentvith the monotonicityof the Chinese
Wall definition. This definition specifieswhich events
shouldbe denied,but leavesfor complementanypolicies
thedecisionuponthe onesthatareaccepted.

4.3.Roles

Althoughthey do not alwaysagreeon the definition of
role [23] mostsecuritysystemsandservicesupportsome
form of role-basediccesontrol (RBAC).

Roles can be very complec entities comprising con-
straintsonrolemembershipconstraint®nrole activation,
andconstraintonrole use[18, 35, 37]. To allow all these
constraintsandpossiblyothers,SPL rolesarethemseles
policiesthatcanbe definedasrequiredandusedin other
policieswhene/er necessary

Rolescanbe composedf several setsandconstraints.
However, the simplerform of role hasonly two sets,one
with theuserghatareallowedto play therole andanother
with the userswho are playing the role. Obviously only
theusersn thefirst setshouldbeallowedto beinsertedn
thesecondset(Figurel7).

policy sinpleRole (user set Authorized,
user set Active)

/1 Events inserting a user into
/1 the Active set are allowed only if
/1 that user is in the Authorized set

?sinpl eRol e:  ce. action.name = "insert" &
ce.target = Active
ce.paraneter[1] | N Authorized ;
}

Figure 17. The figure represents a simple role
policy.

In this model only the userswho arein the active set
shouldhave the necessarnuthorizationgo play therole.
Theseauthorizationgrenotincludedin therole type defi-
nition becausehey aredifferentfor eachspecificrole, but
they areincludedin the definitionof eachspecificrole.

policy derk

/1 Al users of |ocal host are nmenbers of Rol eUsers
user set RoleUsers = AllUsers@ .host = |ocal host };

/1 Invoices are all objects of type invoice
obj ect set Invoices =
Al | Obj ects@ . doctype = "invoice"};

/'l The set of users playing the role starts enpty.
user set ActiveGoup = {};

/1 Menbers of RoleUsers may play the Cerk role
ClerkRul e:  new sinpl eRol e(Rol eUsers, Acti veGroup );

/1 Al nenbers of ActiveGoup may access |nvoices
I nvoi ceRul e:
new ACL(ActiveG oup, Invoices, AllActions);

?C erk:
}

ClerkRul e AND I nvoi ceRul g;

Figure 18. Example of a specific policy instan-
tiation.



Figure18, shavs a specificrole definitionpolicy, which
statesthat usersof “localhost” may assumethe “Clerk”
role andthatevery “Clerk” mayaccessnvoices.The pol-
icy hastwo rules. Onerule (“ClerkRule”) is an instan-
tiation of the “simpleRole” policy and definesthe com-
ponentsof the role. The other (“InvoiceRule”)is anin-
stantiationof the ACL policy anddefinesthe specificau-
thorizationsof the role. The link betweenthe two rules
is the “ActiveGroup”set,which is simultaneouslythe set
of usersplaying the role andthe setof usersallowed to
performactionson invoices.

4.4. Closedand Open policies

Securitypolicies can be openor closed. Closedpoli-
ciesdery everythingthatis not specificallyallowed, and
openpoliciesallow everythingthatis not specificallyde-
nied. Closedpolicies are generallyconsideredsaferbut
openpoliciesareconsiderednoresuitablefor looseervi-
ronmentssuchasthe onesusedin cooperatie work [16].

/1l A close policy
?C erk: derkRule AND I nvoi ceRul e OR deny

/1 An open policy
?C erk: O erkRule AND I nvoi ceRul e AND al | ow

Figure 19. Different QR to transform the Clerk
policy into a closed or an open policy.

The“Clerk” policy definedin figure 18is neitherclosed
nor open. To be oneor the otherthe domainof applica-
bility mustbe universal. Henceto malke the “Clerk” an
openor closedpolicy all is neededs to modify the QR to
allow or dery the eventsnot belongingto the domainof
theoriginal policy (Figure19).

4.5, Information flow policy

Although SPL is a constraint-basethnguageit is pos-
sible to expresssomerelaxed forms of information flow
policieswith it.

As originally explainedin [13], andformally provedin
[36], informationflow policiescannotbefully enforcedoy
eventmonitorsbecauseventmonitorsdo notknow about
otherallowed sequencesf executionsof the sameappli-
cation and thus they cannotknow aboutimplicit flows.
Implicit flows resultfrom the knowledgeof thesequences
of executionsallowed by anapplication.If someapplica-
tion requiresthat variableY takesthe value a whenever
variable X is greaterthanb thanthereis a flow of infor-
mationfrom X to Y althoughthereis no explicit storage
pathfor informationon variable X to variableY'.

However, in somesituations[16] the informationleak
resultingfrom implicit flow doesnot posea serioussecu-

rity risk, whetherbecauséheinformationonvariablede-
terminingthe sequencef executionis public or because
it is not possibleto infer the sequencef executionsfrom
theresultsof thatsequencekor thesesituationsit is pos-
sible to defineinformation flow policies enforceableby
securitymonitorsbecauséhe regulationof explicit infor-
mationflow from storageo storagecanbeperformedwith
justthe knowledgeof pastexecutions.
NeverthelessSPL cannotenforceor evenexpresssuch
restrictedform of informationflow policy basedonly on
information from past executions. BecauseSPL is an
event-orientedanguageandevery historyinformationis
event-based would benecessaryo expressapolicy that
recursvely verifiesthe sourceof every pieceof informa-
tion written by information-flov events,which arein the
storage-pathof theinformationbeingwritten by the cur-
rentevent. Expressingsucha policy in SPLit is not pos-
sible both becausesPL doesnot allow recursie policies
andbecausé wouldincuronahigh performanceenalty
To expresssuchinformationflow policies,SPLuseshe
obligationconceptto force the applicationto summarize
theinformationflow into the existing SPLrules. Thepol-
icy in figure 20 statesthat eachobjectthat receivesin-
formationfrom anotherobjectshouldbe subjectedo the
samesetof rulesastheoriginatorobject. Thisis achieved
by an obligationrule that forcesthe receving objectto
belongto the samegroupsof the originatorobject.

policy InfoFlow ()

{

interface ReadFl owActi ons;
interface WiteFl owActions;
obj ect set Prot Qbjects;

?1 nf oFl ow.
FORALL pe IN PastEvents {
FORALL g IN pe.target.groups {
EXI STS fe IN FutureEvents {
ce.action IN WiteFl owActions &

pe.target |IN ProtCbjects &
pe. action | N ReadFl owActions &

ce.task = pe.task &
:: ce.target INg
Pr kb
}

Figure20. An information flow policy.

The?i nf oFl owrule of figure20tracesndirectinfor-
mationflow betweerreadandwrite eventsperformedby
the sametask. Therule stateghatif theactionof thecur-
rent eventis a write actionandthe currenttaskhasread
a protectedobject (i.e. one of the eventsthat hasread
a protectedobjectwasdonein the context of the task of
the currentevent), thanthereis a time in the future (i.e.
a future eventexists) in which all the setscontainingthe



protectedobjectalso containthe target object. This rule
assureghat every rule that appliesto a protectedobject
which wasreadby thattaskalsoappliesto the receving
object,including the rule itself, i.e. the receving object
becomes protectedbijecttoo.

It shouldbe notedthatit is the applicationobligation
to ensurethat all the setsare updatedproperly The ap-
plicationcanperformthis taskeitherby itself or by using
a securitylibrary createdfor that purpose. The security
monitor duty is to ensurethatthat obligationis fulfilled.
Thesecuritymonitorcannotupdateitself the setsbecause
it cannotperformoperationsvhichresultin statechanges.

Unlike other modelswhere information flow policies
are defined,the SPL model allows non-monotonicgoli-
cies. This propertymay producean uncommornresulton
someinformationflow policies. Whenthereis a permis-
sion rule that supersedea prohibition rule, an objectto
which the accessvasrestrictedmay becomeunrestricted
just becauset recevvedinformationfrom anunrestricted
object.Althoughuncommontheresultis correctbecause
derying may not always be the saferaction. For exam-
ple, anorganizatiormaystatethatthe presidenshouldbe
ableto accessvery documentcontainingorganizations
classifieddata,but he doesnot needto be ableto access
employer’s private data. If an employer includesclassi-
fied datainto a private documentthat documentshould
becomeaccessibl¢o the president.

5. Implementation and Results

Oneof the problemsof expressve securityframenorks
like SPL,is the low efficiengy of their implementations.
While usualframeaworksbuilt uponaccesgontrollists, la-
belsor unix permissiorbits weredesignedo be efficient,
SPLwasdesignedo beexpressve.

In this sectionwe show thatusinga mixture of compila-
tion andquerytechniquest is possibleto achieve accept-
ableperformanceesults gvenfor policieswith thousands
of rules. We have designedcandimplementeda compiler
for SPL(which generatestandargava) thatis ableto de-
tectspecialSPL constructionandgeneratehe mosteffi-
cientcodeto implementthem.

Giventheresemblancef SPLstructurewith javastruc-
ture mostof the compileractionsare simpletranslations:
eachSPL policy is directly translatedinto a java class;
eachruleis translatednto atri-valuefunctionwithoutpa-
rametergwith the exceptionof the queryrule which has
one parameter- the currentevent); eachentity is trans-
latedinto a java interface;and eachsetvariableis trans-
latedinto a java variableof type Spl Set , which defines
aninterfaceto accesseveral kinds of sets(externalsets,
subset®f externalsets,internalsets).

As definedin §2.3, rulescanbe simplerulescomprised
of a domain-epressionand a decide-e&pressionor they

canbe a compositionof otherrules. Thus,functionsim-
plementingrules can rangefrom simple if-clauseswith
two logical expressiongonefor the domain-andanother
for the decide-g&pression)to complex combinationsof
otherfunctions(e.g. simple combinationusingtri-value
operatorsguantificationof rulesover sets;quantification
over history events;quantificationover future events).

Whereverapolicy instancas usedin placeof arule,the
compilerexecutesan automaticcastoperationconsisting
in making explicit the call to the query rule of the pol-
icy. Thus,the overall structureof the generateccodecan
be seenasatreeof tri-valuefunctionscalling otherfunc-
tions, in which the rootis the functionresultingfrom the
translationof the queryrule of the masterpolicy andthe
leavesarethefunctionsresultingfrom simplerules.

AlthoughmostSPL constructanbe efficiently imple-
mentedin java by directtranslation someconstructsaand
structuralproblemsrequirea deeperanalysis. In there-
maining of this sectionwe addresghoseproblems,and
shav someperformancemeasurementthat validatethe
solutions.

5.1.Scalability

Oneof SPLmajordesignproblemss scalability While
in commonACL basedsystemsonly the accesscontrol
entries(ACE) belongingto the ACL of eachtargetobject
areevaluatedon eachaccessin SPLpotentiallyeveryrule
hasto be evaluatedfor every accessThisis a problemin
systemswith thousand®f rules,usersandobjects.

SPL is a logical-basedanguagethusit is possibleto
apply someevaluationoptimizations.In a conjunctionof
rules(tri-valueconjunctionasdefinedin §2.3)if onerule
evaluatego “deny” thanit is notnecessaryo evaluatethe
remainingrules (similar for disjunctionof rulesand“al-
low” values). Unfortunatelytheseoptimizationsare not
very useful,becausalisjunctionof rulesarerareandthe
optimizationapplicableto conjunctionscanonly optimize
thedeniableof events.

Anothermoreusefuloptimizationcanbe appliedto the
restrictionoperation( rule@epression(gent)). The“re-
strictionoperation’restrictsthedomainof applicability of
arule to the setof eventssatisfyinga logical expression.
Thusif thatexpressionevaluatesto “false”it is not nec-
essanyto evaluatetherule. This optimizationis very use-
ful onthosesituationsvhererulesareexplicitly organized
in domainsof applicability (e.g. rulesthatapply only to
targetsproducediy onebranchof anorganization).How-
ever, it isnotenougho preventtheunnecessargvaluation
of notapplicablerulesinsidethe samedomain.Wherever
the restrictionoperationis not used,to reachthe conclu-
sionthatonebranchof the evaluationtreeis not applica-
ble to a particulareventit is necessaryo evaluateeach
domainexpressiorof every leafrule in thatbranch.



Onesolutionwould beto build avirtual restrictionop-
erationin which the restrictionexpressionwould be the
logical disjunctionof eachdomainexpressioR of every
leafrule in the branch. Although very efficientin detect-
ing not applicablebrancheghis solutionpenalizesappli-
cablebrancheswith redundantevaluationof domainex-
pressionsn eachnodeof the evaluationtree.

The solutionusedin SPL is basedon the assumption
that mostexpressedulesaretarget-limited,in the sense
thatthey areappliedto only alimited setof targets. SPL
is ableto expressrulesnot target-limited(e.g. all actions
performedby someuser); neverthelesswe believe that
most security policies expressedn SPL will be target-
limited. This assumptions basedon the obsenationthat
most currentsecuritypolicies are target-limited, e.g. all
ACL basedoolicies,chinesewall policies,DAC policies.
RBAC is nottarget-limitedbut is usedin conjunctionwith
ruleswhich aretarget-limited.

Basedon this assumptionve have designeda simple
target-basedndex for rules,which allows for quick cuts
on branchef therule evaluationtree. The systemcre-
atesanindex for eachtarget. Eachindex is maintainedn
thecorrespondingargetasalabelandkeepsheinforma-
tion of every rule thatmay be applicableto aneventwith
thattarget. Therepresentationf thatinformationon the
currentprototypeis kepton a bit streamwith onebit for
eachrulein the system.However, giventhe sparsenature
of theinformation(we expectthatonly afew rulesareap-
plicableto eachtargetasin currentACL basedsystems)t
is possibleto developmorecompacistructures.

Onthetestsdonesofarthisindex techniquehasproved
to beefficient,shaving onaverageaspeed-umf oneorder
of magnitudg(see5.4).

5.2 History-basedpolicies

A monitorlike securityservicehasto decidefor each
eventwhetherit shouldallow the eventto happenor not.
The decisionmust be taken at the time the event is re-
guestedvith theinformationavailableat thattime. Thus,
in orderto implementhistory-basegboliciesany monitor
like securityservicehasto recordinformationaboutpast
events.

Somesecurityservicegecordeventsimplicitly in their
own data structures[28] (mostly using labels) others
recordthemexplicitly into aneventlog [4] thatcanlater
be queriedfor specificevents. The later solutionis more
flexible thanthe former but if the eventlog becomegoo
big, the memoryspacerequiredto keepthatlog may be
unlimited and the time requiredto executeeachquery
could have a significantimpacton the performancef the
system.

20lviously areducedcanonicaform.

In this sectionwe show thatit is possibleto implement
efficiently thelog solution,bothin termsof memory-space
andperformanceThe mainachiezementis obtainecby a
compilationalgorithmthatoptimizestheamountof infor-
mationto be savedandtheway thatinformationshouldbe
queried. We show that althoughthis algorithm doesnot
obtainthe bestresultsfor all history-basedolicies, the
resultsobtainedfor mostcommonpoliciesareequialent
to thoseobtainedby label-basedmplementation$33].

The goal of this algorithm s three-folded. First, the
securitymanageshouldselectvely log just the eventsre-
quired by the history-basedolicies specified,e.g. if a
policy needsto know if a documentwassigned,thereis
no needto recordeventsthatarenot “sign events”. Sec-
ond, the securitymanagershouldselectvely log just the
fields of the eventsrequiredby the history policiesspeci-
fied, e.g. policy wantsto decidebasedon whetheror not
theauthorof the currenteventhassigneda documentit is
notnecessaryo recordthe“parameters’field of signature
events. Third, securitymanageshouldusethe bestpos-
sible queryfor eachhistory-basedolicy (equalityterms
canbe searchedn O(1) and are preferredto inequality
terms)andthe bestinformation structureto supportthat
query(a hashtableis preferredfor anequalitysearchbut
for aninequalitysearcha balancedreemight bebetter).

The main drawvback of this algorithm is that history-
basedpolicies cannotdecideon eventsprior to their ac-
tivation, i.e. the systemonly recordseventsfor each
history-basedgbolicy afterthe policy exists.

Insteadof building a log for every history-basedoli-
ciesthecompilerbuilds a specificandfined tunedlog for
eachhistory-basedolicy. This solution hassereral ad-
vantagesFirst, it dividesthe problemreducingthe num-
berof eventsrequiredio besearchedSecondit allowsfor
abetteradaptatiorof the basestructureto eachquery, be-
causesachlog canbekeptby a differentstructure.Third,
it simplifiesinsertionandremoval of policies. The prob-
lem of this solution is the potential for maintainingre-
dundantinformationin severallogs. However, giventhat
the information kept by eachlog is the minimum infor-
mation necessaryo that policy, the level of redundang
expectedis similar to the one of label-basedmplemen-
tations, wherethe labelsusedby different policies may
alsoberedundantNeverthelessthis problemcanbefur-
therlimited by sharinglogswith the samesignaturgsame
eventsto log, samefieldsof thoseeventsto log, samebase
structure)betweerpolicies’.

Figure21 shavs asimplifiedversionof thecodegener
atedby the compilationof a history-basedule. The ex-
pressiorWRul e( e, ce) representagenericrulethat
may be composedf otherrules.

Thealgorithmhasfour phasesThefirst phases justthe

3This featureis notimplementedn the currentprototype.



M/Policy: FORALL e IN PastEvents MyRul e(e, ce)

CY

triVval MyPolicy(event ce) {

triVal policyResult = notapply;

if( !invariantConditionals(ce) ) return notapply

whi | e( MySpeci al Log. hasMor eEl enent s(ce) )
x = stripped_MyRul e( MySpeci al Log. next (ce) );
if( x == deny ) return deny;
if( x == allow ) policyResult = allow

}

return policyResult;

}

cl ass MySpeci al Log {
HashTabl e Log;
void insert(event e) {
i f( PastDependent TermsCf Rul e(e) )
| og. i nsert(new RequiredFieldsCf (e))

bool ean hasMor eEl enent s(event ce) {
return | og.find(new i ndexFi el dsCf (ce));

}
Requi redFi el dsOf next El ement (ce) {
return | og. next (new i ndexFi el dsOf (ce));
}
}

(b)

Figure 21. Translation of history rules. (a) is the
SPL representation of a generic history-based
rule. (b) is a simplified version of the java code
resulted from compilation.

removal of theinvariantconditionalsfrom theloop. In this
phasethe compilertriesto build a logical expression(re-
ferredas“invariantConditionalsin Figure21) with terms
fromthedomainexpressiorof My Rul e whicharemanda-
tory for theapplicability of therule andarenot dependent
of variablee. This expressionis thenusedto performa
preliminarytestof applicability of therule.

The secondphasealsobuilds alogical expressionwith
termsfrom the domainexpressionof MyRul e, but with
termsdependenbn variablee andnot dependenon cur-
rentevent. The goal of this expression(“PastDependent-
TermsOfMyRule”)is to filter the eventsthat needto go
into thelog.

Thethird andfourth phasesuild respectiely oneclass
objectwith the fields of variablee usedin MyRul e (re-
ferredas“RequiredFieldsOf) andoneclassobjectwith
the fields of e by which eventsare indexed, initialized
with logical expressiongdependenbn the currentevent
(referredas“IndexFieldsOf. Theformeris usedto record
only the information on pasteventswhich are useful to
thesecuritypolicy. Thelateris usedto searchthelog for
eventswith the index fields equalto the onesin the “In-
dexFieldsOfobject®.

4The currentcompilerprototypecanonly implementiogs with hash

To illustratethe algorithmresultswe will shav how an
SPL policy expressingthe ChineseWall policy (Figure
16) is enforcedby a monitor generatedy the SPL com-
piler.

Thefirstandseconghaseof thealgorithmtriestoiden-
tify logicalexpressionduilt form termsof the domainex-
pressiorwhich aremandatorytruefor the applicability of
the policy. In this policy (Figure 16) the domainexpres-
sionis composedy a conjunctionof simpleterms.Thus,
ary term canbe usedindependentlyfor the construction
of thoseexpressionsThe problemis morecomplex when
the domainexpressionis composedf both conjunctions
anddisjunctions,in which casemay not alwaysbe possi-
ble to completelyunfold thelogical expressior?.

For the Chinese wall policy the “invariantCondi-
tionals” logical expressionis composedof just one
termce. target I N Interestd ass,thusaccord-
ing with figure 21 the policy returns“notapply” if thetar
get of currenteventis not in the classof interest,which
is conformablewith the expectedbehaior. The “Past-
Dependent&rmsOfRule’logical expressionis alsocom-
posedby only oneterme.target IN Interest-
Cl ass, thusonly the eventsover objectsin the interest
classarelogged.

The “RequiredFieldsOf object for this Chinesewall
policy is composedy the “author” and“target” fields of
the “event” classobject, andthe “indexFieldsOf' object
is composedf just the “author” field. Thus,thelog just
keepsinformationaboutthe targetandthe authorof each
recordedeventandit is queriedby eventswith a specific
author

Becausedhelog doesnot have to keeprepetitions,and
the specificnatureof the ChineseWall policy disallonvs
the existenceof morethanoneelementwith the sameau-
thor, the maximumlengthof thelog is the numberof dif-
ferentusersin the system. Usually the length of the log
is muchlessthenthe numberof users becauseot every
useracces®tarmgetin the“interestclass”.However, if the
lengthof thetablesupportingthelog is equalto thenum-
ber of users,thenthe query can be performedby direct
addressinghe userfield, followedby a comparisorof the
targetfield.

This is much similar to the classiclabel implementa-
tion [33] whereeachuserhasonelabelfor eachinterest
class,which containsnil if the userdid not accessary
targetin the“interestclass”or theidentificationof thetar-
getaccessedHowever, the describedmplementatiorre-

tables thusit doesnot handleeffectively policieswhereatleastonefield
of e is not equallycomparedvith alogical expressiordependentn the
currentevent.

5This is usually the casewhen several rules are combinedwith tri-
logical operationspecausehe overalldomain-&pressioris thedisjunc-
tion of thedomain-epressiorof eachrule andthe domain-e&pressiorof
eachbasicrule is usuallya conjunctionof terms



sultsfrom the “compilation” of a languagewhich is able
to expresssimultaneouslyseveral other policies, includ-
ing otherhistory dependenpolicies,while the classicla-
belimplementatioris hardcodedn the usermanagement
structures.

This technigquecan be appliedto other history-based
policieswhich areusuallyimplementedwith labels. The
reasorwhy thesepoliciescanbe implementecefficiently
by anSPLcompilerliesonits ability to keeptheirrelevant
historyinformationin smallpiecesof data(thelabels),di-
rectlyaddressedy oneentity (userspbjectsetc.). There-
fore, an SPL compiler which is able to detectexactly
which history informationis relevantto the policy andis
ableto index the resultingtable by the mostappropriate
entity (or entity property) can achieve similar efficiency
resultsaslabel-basedmplementations.

5.3 Obligation-basedpolicies

As explainedin §3.2the obligation-basedecuritypoli-
ciesenforceabléy eventmonitorsareonly the onesthat
can be completelyresohed inside an atomic execution.
Themonitorgeneratedby the SPLcompilerdoesnot pro-
vide codeto make thosesequencesf actionsto behae
atomically insteadt relieson applicationgo definethose
sequencesf actionsandon a transactiormonitorto im-
plementit. Thus, the problemof enforcingobligation-
basedsecuritypoliciesis reducedto allowing or not the
event that instruct the transactionmonitor to commita
transactionwhetheror not all the obligationswere ful-
filled atthetime of thatevent.

A security policy that allows or deniesan event (the
commitevent) dependingon whetheror not someevents
were executed(the obligations)is a history-basedgolicy.
Thus,the enforcemenbf anobligation-basegolicy con-
trolling aparticulartypeof eventcanbedoneby ahistory-
basedpolicy controllingthe eventthatcommitsthetrans-
actiononwhich theoriginal eventwasexecuted.

The transformationfrom obligation-basedpolicy to
history-basedolicy canbe achieved in two steps. The
first stepcalled“aging”, consistsof replacingreferences
to eventsby older references.Referencedo the current
event are replacedby referencego a pastevent called
“trigger-event”. Referenceso pasteventarereplacedoy
references$o apasteventbut with anadditionalconstraint
specifyingthatthis eventoccursbeforethe triggerevent.
Referenceso future eventsarereplacedy referencego
pasteventswith the additionalconstraintof occurringaf-
terthetriggerevent. The secondstepconsistof inserting
in this policy an explicit referenceto the event that re-
gueststhe transaction-commit. This event becomeshe
currentevent of the new policy and is relatedwith the
triggereventby meansof the transactiorid in which the
triggereventwasperformed.

policy Hi storylnfoFlow ()

interface ReadFl owActi ons;
interface WiteFl owActions;
obj ect set ProtObjects;

?1 nf oFl ow:
FORALL te IN PastEvents {
FORALL pe I N PastEvents {
FORALL g I N pe.target.groups {
EXI STS fe IN PastEvents {
ce.action.nane = "commit" & /'l New

fe.time > te.tinme & /1 New

te.transaction = ce.paraneter[0] & // New
te.action IN WiteFl owActions &

pe.time < te.time & /1 New
pe.target IN ProtCbjects &

pe.action | N ReadFl owActions &

pe.task = te.task &

:: te.target INg

} 1}
}

Figure 22. The transformation of the informa-
tion flow policy of figure 20 into a history-based

policy.

Figure 22 shavs the history-basedversion of the
obligation-basegolicy shavn in figure 20. In the current
prototypethistransformationis mixedwith thetranslation
to java, thusthe SPL representationf history-baseder
sionsof obligation-basegoliciesnevertake place.

5.4.Results

Accesscontrol monitors are usedin several erviron-
ments. Althoughthey areusedasserviceswvhich aresel-
dom queriedby other services[29]. They arealsoused
at the centerof systemsbheing queriedby every element
in the systemfor almostevery action, thus their perfor
mancehasanimportantimpactontheoverallperformance
of thesystem All measuremenfsresentedn this section
weretaken on a personalcomputerwith a Pentiumll at
333MHzrunningthe SunJava 1.2.2virtual machineover
Windows NT 4.0.

The performanceof an accessontrol monitoris mea-
suredby thetime it takesto respondo a query However
more importantthanknowing the absolutevalue of time
taken by the monitorto solve a query which varieswith
theplatformandtheintermediateeompilerused,s thedy-
namicbehaior of the monitorwith policy andlog scala-
bility, i.e. “How is thequerydelayaffectedby thenumber
of queriesansweredvhenhistory-basegboliciesareused
?” or "How doesthe querydelayevolveswith the sizeof
thepolicy ?”.

To answerthe first questionwe have developeda test
basedntheChinesaNall policy. In thistestwe measured
the time to solve a queryfor the acceptabilityof events



producedby 100 differentusersby a monitor enforcing
a ChineseWall policy with 10 interestclasseswith 10
objectsperclass.Thetime for eachquerywastakeneach
100 eventsto verify the effect of eventlogging over the
queryperformance.

The eventswere chosensuchthat their targetswould
always be in one classof interestand that the expected
answerto the querywould always be positive (“allow”).
This is the most commonbehaior (in normal systems
mostactionsareallowed) andunfortunatelyit is alsothe
worst casefor this and most policies expressedn SPL.
This behaior is sharedby every policy which usescon-
junctionsastheir predominantompositionconstruction.
In this situationthe ChineseWall policy is composedy
a conjunctionof 10 policiesshavedin Figure16, onefor
eachinterestclass. If oneof thoseten policiesdeniesan
eventthenthereis no needto evaluatethe remainingpoli-
cies. However, for eventswhich areallowed all the poli-
ciesareevaluated.
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Figure 23. Chinese Wall dependency with the
number of events queried

The resultspresentedn Figure 23 shav thatthe time
takento solve a queryto the ChineséWall policy doesnot
dependnthenumberof eventsqueried thusproving that
thesolutionusedto minimizetheimpactof loggingonthe
overall performancef the monitoris effective.

The time neededo solve a queryto the Chinesewall
policy is alsonot affectedby the numberof usersor the
numberof objectsin eachclassof interest.Butit is sever
ally affectedby the numberof classeof interest(Figure
24). Thisresultis a directconsequencef the numberof
rulesusedto build the ChineséWall policy with different
numbersof classef interest. The ChineseéWall defined
in Figure 16 requiresthe definition of onerule for each
classof interestthusfor Chineséaall policieswith more
classe®f interesthemonitorneedgo evaluatemorerules
for eachquery
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Figure 24. Chinese Wall scalability with the
number of classes of interest.

Theindex solutionpresentedn §5.1 canminimize the
problemasshawvn by Figure24. Howeverit is notenough
for policiessuchasthe ChineseWall or ary otherpolicy
with onesinglelarge conjunctionof rules. Onthesepoli-
ciestheindex effectivenesss smallbecausehe branches
in the evaluationtree of thosepolicies are small. Thus
the cutswhichtheindex is ableto performarenecessarily
small. Thesetype of policiesrequirebetterindexes. For
instance,indexeswith several layersof indexesover in-
dexes.Thissolutionis notimplementedn thecurrentpro-
totypebut its effect canbe measuredecausét would be
similar to rearrangehe policiesin orderto have adeeper
evaluationtree. For instancethe big conjunctionof rules
of the ChineseéWall policy canbe rearrangednto a con-
junction of conjunctionausingthe associatie propertyof
conjunctions. The resultsof Figure 24 shows the effec-
tivenesf suchapproach.

Non Indexed
indexed | normal | optimized
s (ps) ( ps)
ChineseValll 10 56 | 1.5( 37)] 1.3( 43)
ChineseVdll 100 1992 | 3.3(597)| 31.6( 63)
Global 303 | 7.6( 40) -

Table 2. Speedup results, with respect to non
indexed queries, for queries with normal index
and with index over rearranged policies.

Table 2 shavs someexamplesof index effectiveness.
Two ChineseWall policieswith 10 and100 classe®f in-
terest,weretestedwithout index, with index andwith in-
dex over rearrangedorms of the policies. Although the
index speedugs not very sensiblefor the Chinesewall
policy with 10 classesof interestit becomesmportant



for the ChineseWall with 100 classeof interest. The
otherexampleshowvn in Table2 is the“Global” policy de-
scribedin appendixA, which is a policy with 412 rules
dividedinto 100domainsover5 continents Albeit simple
for arealpolicy of anorganizatiorthis policy is complec
enoughto representhetargetpoliciesof SPL. The policy
wastestedfor 5000usersand 12000targets,exhibiting a
40us delayfor eachquery which is an acceptablevalue
for thesizeof thepolicy andtheunderlyingplatformused.

6. RelatedWork

Much work has beendone on multi-policy ernviron-
ments, primarily to solve the conflict raisedby having
different policies governing the samesubject. Someof
this work triesto solve the problemusingspecificsystem
mechanism§l1, 19, but mostdefineunified framewvorks
in which differentpoliciescanbe expressed3, 4, 12, 22,
24,27, 39|.

Minsky andUngureany27] definea formalismandan
environmentto specify and enforce security policies in
distributed systems. Their ervironmentassumes mes-
sagemonitor that interceptsevery messagesentor re-
ceived, and runs security policies. A securitypolicy is
composedf a setof clauseseachone definingthe ac-
tionsthatthe monitor shouldtake wheninterceptingeach
message The authorsshaw thatthe formalismis power-
ful enoughto expresscomplex policies,but it is not clear
how they dealwith conflictingpolicies.

Woo andLam [39] shov how defaultlogic canbe used
to expressauthorizatiorrules. Roughly eachrule is com-
posedby threebinary formulas(g, f, f'): formulag de-
finestheactionsallowedby therule; formulaf defineshe
actionsthat mustbe allowed by otherrulesin orderfor
this rule to be active; andformulaf’ definesthe actions
thatmustnot beallowedby otherrules. This construction
is very powerful for relating rules with eachother, pro-
ducingvery expressve policies. Neverthelesswe believe
thatthe algebrafor securityrulesproposedoy usis able
to expressmostsecuritypoliciesusingsimplerandmore
compactules.

Adage[4] authorizationrules are very similar to our
own. They both have a domainof applicability function
andadecisionfunction. However, Adagedoesnot specify
analgebrafor rulesandpolicies,whichmakesthemmuch
moredifficult to composénto complex policiesandto ex-
pressdefaultbehaior. Furthermoreit doesnot provide a
conflictresolutionmechanisnor anefficientimplementa-
tion of history-basegbolicies[40].

Conflict resolutionapproacheslefinedby Bertino et al
[3] andJajodiaet al [23] have somesimilarities. In [3],

60nly 1690 rules can be directly countedfrom SPL specification.
The remainingrules are insertedinto the “userPolig” group of each
user

rulesareclassifiedinto two categories: strongandweak.
The strongrules may override weakrules, but not other
strongrules. This meanghat conflictsmay still arisebe-
tweenstrongrulesandhave to be solved by othermeans.

Jajodiaet al [23] definea logical languagewith ten
predicatesymbols.Threeof thoseareauthorizatiorpredi-
cateqdercandocandodo), usedto definetheallowedac-
tions. Although not explicit thesepredicateslefinethree
levels of authorizationwith dercandasthe wealestand
do asthe strongest. However, the problemremains,be-
causeconflictsmaystill arisebetweeri'do” rules[24].

Anotherapproacho conflictresolution presentedh [2]
and[25] useselementdik e rule authorshipauthority rule
specificityandrule receng to prioritize rules. Although
simple and naturalthis approachmay leadto undesired
behaior. It is notuncommorfor high authoritymanager
to issuearulewhich maybeoverriddenby alow authority
manager or to expressa mandatorygeneralrule which
shouldnotbeoverridden.

In [8, 9] Blazeatal proposecdh differentconceptcalled
“Trust Management”. Their work startsby identifying
thatin servicegeceving signedrequeststheprincipalsis-
suingtherequestarethekeys signingtherequestsThus
if the policy maintainedby theauthorizatiorserviceis or-
ganizedin termsof keys insteadof names(usernames,
role namesservicename,etc.) it is notnecessaryo per
form the extra stepof checkingthe authenticityof there-
quest.

They proposea tool, the PolicyMaker trust manage-
mentsystemwhich is ableto expressin asinglecommon
languageauthorizatiompolicies,certificatesandtrustrela-
tionships thusintegratingwhole theseconcepts.

Thetrustpolicy enginerepliesto arequesbasednthe
localpolicy andtrustassertionandonthecertificategro-
vided by the requester The enginechecksif the request
is authorizedby the local policy assertionsor if thereis
a path of trust assertiondrom a local assertiorto a key
signing a policy certificatethat allows the request. This
solutionclearly scalesetterthana global staticpolicy.

KeyNote [6] and SPKI [17] are two other examples
of systemscomprisingthe notion of trust management.
KeyNote derivesfrom PolicyMaker and shareshe same
principals. However, KeyNote was designedo simplify
theintegrationof the servicewith the client applications.
Thus KeyNote hasa built-in credentialverification sys-
tem anda simple notationto expressauthorizationpred-
icates. SPKI (Simple Public Key Infrastructure)on the
other hand,resultsfrom the extensionof the certificates
kept by a Public Key Infrastructureto allow authoriza-
tion certificates. Although slightly more restrictive than
KeyNote, SPKI shareshe samefundamentafeaturesof
KeyNote and PolicyMaker. SPKI also (i) useskeys as
principals, (ii) allows trustto be delegatedfrom onekey



to anothexr(iii) allows policiesto beinserteddynamically
in theform of certificate.

Although with similar results each of these trust-
managemensystemshave a differentcompliancecheck-
ing engine. The onefrom PolicyMaker is the mostgen-
eral,in the sensehatit canusearbitraryfunctionsto ex-
pressassertionsprovidedthatthey aremonotonic.Onthe
otherhandthecompliancecheckingenginefrom SPKl al-
lows alimited type of assertionsut it allows negative as-
sertions.

In [5] Blazeat al shavs that checkingthe compliance
for thegeneraproblemis NP-hardandgivesseveralalter
nativeswith differentlevels of expressienessandusabil-
ity. However, thebestbalancebetweerexpressvenessand
usabilityis still anopenissue.We believe thatthe SPLs
compliancecheckingengineis a fair alternatve, because
althoughit is harderto dynamicallyinsertpolicies(poli-
ciescanonly beaddedat specificpointsin theglobalpol-
icy) it hasa goodperformanceanddoesnot compromise
in ary way expressveness.

Most of theseervironmentscanstateboth positive and
negative authorizatiorrules.In [12] it is shovedthatobli-
gationcanalsobe a very powerful conceptto expressse-
curity policies,howeverit is not clearhow canit beim-
plemented.

Althoughexpressve enougho handlemostof theusual
policies,includingthe oneswith historydependencdike
theChinesanNall andseveralotherseparatiorof duty poli-
cies,noneof the above ervironmentssupportsobligation
constraintor informationflow policiesasSPLdoes.

7.Conclusion

We have definedan accesscontrol languagethat sup-
portssimultaneouslynultiple comple policies,andhasa
higherexpressve power thanothermulti-policy erviron-
ments. The languageusesits hierarchicalbased policy-
orientedstructureto solve conflicts betweensimultane-
ouslyactive policies.

The languagewvas designedo be easilyenforcedby a
securitymonitor. We have shavn how index techniques
can be appliedto the policy structureto implementef-
ficiently most security policies. Specialcarewas taken
ontheenforcemenbof history-baseaonstraintsWe have
shawvn that by generatingspecificand specialtunedlogs
for eachhistory-basedolicy it is possibleto implement
SPL history-basedpolicies as efficiently as handcoded
label-basedmplementations.

The languagegoesbeyond the permission/prohibition
conceptsof securityand shovs how to expressandim-
plementthe obligation concept. It usesthis conceptto
expressarelaxedform of informationflow policy, thereby
shaving thatsomeformsof informationflow policiescan
be expressedn SPL andthatthey cancoexist with other

policies.

This work is just a first steptowardsa securityframe-
work, which alsoincludesthe specificationand enforce-
mentof authenticatiompolicies,toolsto verify the consis-
teng of both specificationand tools to verify the cross
consisteng of both specificationswith other systemsn
the organization.Namelywe have alreadydefineda tool
thatverifiesthe crossconsisteng of anauthorizatiorpol-
icy describedn SPLandaworkflow specificatior{30].
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A. Appendix

package Q obal ;
import SpllInterfaces;

alias object set collection;
alias user set team

policy Goup {
t eam User Gr oup;

?G oup:

ce.action.nane = "read" &
ce.target.owner IN UserGoup &
ce.author IN UserGroup :: true;



} chi na3: new Chi nesed ass;
chi na4: new Chi nesed ass;

policy Acl Domain { chi na5: new Chi nesed ass;
col | ecti on Donmai nTar gets; chi na6: new Chi nesed ass;
owner: ce.author = ce.target.owner :: true; chi na7: new Chi nesed ass;
gi ven: chi na8: new Chi nesed ass;
FORALL r IN ce.target.owner.userPolicy {r}; chi na9: new Chi nesed ass;
group0: new G oup; Chi neseWal | : china0 AND chinal AND chi na2 AND
groupl: new G oup; chi na3 AND chi na4 AND chi na5 AND
group2: new G oup; china6é AND chi na7 AND chi na8 AND chi na9;
group3: new G oup; Local Chi na: Chi neseWal | @ . author | N broker.Active};
group4: new G oup; I npection: ce.author INinspector.Active ::
group5: new G oup; ce.action.nanme = "read";
group6: new G oup; total: {Local China AND I npection} OR deny;
group7: new G oup; ?Chi neseRBAC. total @.target |IN DonminTargets };
group8: new G oup; }
group9: new G oup;
groups: group0 OR groupl OR group2 OR policy Continent {
group3 OR group4 OR group5 OR acl 0: new Acl Domai n;
group6 OR group7 OR group8 OR group9; acl 1: new Acl Domai n;
total: {groups OR owner} AND given OR deny; acl 2: new Acl Domai n;
?Acl Domai n: total @ .target |IN DomminTargets }; acl 3: new Acl Domai n;
} acl 4: new Acl Domai n;
acl 5: new Acl Domai n;
policy ACE(object target, operation action, acl 6: new Acl Domai n;
user author, boolean result) { acl 7: new Acl Domai n;
?ACE: ce.target = target & ce.action = action & acl 8: new Acl Domai n;
ce.author = author :: result; acl 9: new Acl Donsi n;
} acls: acl0 AND acl 1 AND acl 2 AND
acl 3 AND acl 4 AND acl 5 AND
pol i cy ChineseC ass acl 6 AND acl 7 AND acl 8 AND acl 9;
rbac0: new Chi neseRBAC;
collection Interestd ass; rbacl: new Chi neseRBAC;
?Chi nesed ass: rbac2: new Chi neseRBAC,
NOT EXI ST e I N PastEvents { rbac3: new Chi neseRBAC,
ce.target IN InterestClass & rbac4: new Chi neseRBAC,
e.target IN InterestCass & rbac5: new Chi neseRBAC,
e.author = ce.author & rbac6: new Chi neseRBAC;
e.target != ce.target :: true rbac7: new Chi neseRBAC;
}; rbac8: new Chi neseRBAC,
} rbac9: new Chi neseRBAC,
rbacs: rbacO AND rbacl AND rbac2 AND
policy Role { rbac3 AND rbac4 AND rbac5 AND
t eam Aut hori zed; rbac6é AND rbac7 AND rbac8 AND rbach;
team Acti ve; ?Continent: acls AND rbacs;
?Rol e: ce.action.nane = "insert" & }
ce.target = Active ::
ce.paraneter[0] I N Authorized, policy dobal {
} europe: new Continent;
anerica: new Continent;
pol i cy Chi neseRBAC { asi a: new Continent;
col | ecti on Domai nTar gets; africa: new Continent;
broker: new Rol e; oceani a: new Conti nent;
i nspector: new Rol e; ?d obal : europe AND anerica AND
china0: new Chi nesed ass; asia AND africa AND oceani a;
chi nal: new Chi nesed ass; }

chi na2: new Chi nesed ass;



