
1 of 16

Secure Virtual Enclaves: Supporting Coalition Use of Distributed Application
Technologies

 Deborah Shands, Richard Yee, Jay Jacobs E. John Sebes
 NAI Labs at Network Associates Kroll-O’Gara

 {dshands, ryee, jjacobs}@nai.com ejs@securify.com

Abstract

The Secure Virtual Enclaves (SVE) collaboration
infrastructure allows multiple organizations to share their
distributed application objects, while respecting
organizational autonomy over local resources. The
infrastructure is transparent to applications, which may
be accessed via a web server, or may be based on Java
RMI, or Microsoft’s DCOM. The SVE infrastructure is
implemented in middleware, with no modifications to
COTS operating systems or network protocols. The
system enables dynamic updates to security policies to
support changes in both coalition membership and
participants’ perception of risks. While the prototype
demonstrates fine-grained access control for secure
collaborative computing, we have identified significant
issues that remain to be addressed, particularly in the
area of policy development, before such collaboration
will be convenient. The SVE infrastructure offers a
platform and conceptual basis for further exploration of
these issues and experimentation with new solutions.

1. Introduction

The need for mechanisms to allow organizations to
collaborate securely is recognized in many environments.
Military alliances and joint task forces are formed to
accomplish a common goal and the participating
organizations engage in some form of distributed
collaborative planning. After a natural disaster, crisis
management collaborations are formed from an often
disjoint collection of disaster/incident response teams
(e.g., medical personnel, local police, engineers). In a
commercial environment, companies outsource some of
their operations (e.g., payroll, data center operations),
employ contractors to perform certain tasks, or offer some
of their data to customers. They may also form
consortiums to perform collaborative research, develop
standards, or battle competitors. There are at least two
common elements in any of the resulting scenarios: (1) the

collaborating organizations have limited trust in one
another, and (2) the coalitions are dynamic.

Because the organizations may have competitive or
even adversarial relationships, they do not completely
trust one another. They are, however, motivated by a
common goal to share some of their resources. Their trust
in one another and the limits of that trust are generally
specified through some extra-technological means, such as
contracts, treaties, or memoranda of agreement.

Coalitions are likely to be dynamic, in that
organizations may join or leave over the lifetime of the
collaboration. An organization’s level of trust in its
partners may also change with time, impacting the degree
of resource sharing–local resources may be added or
removed from the sharing arrangement. The mode of
access to a particular resource may also change over time.

We believe that the degree of dynamism necessary to
support coalition creation, evolution, and eventual
dissolution preclude a hardware-intensive solution (e.g.,
setting up a new, joint network). Virtual Private Networks
(VPNs) can authenticate individual users, but do not
support access controls on fine-grained objects (e.g., a
Java interface/method). VPN-based solutions are also
relatively static, as adding new coalition members requires
some manual reconfiguration. To support fine-grained
access controls and dynamic changes to coalition
membership, the SVE project focused on software
solutions.

The goal of the Secure Virtual Enclaves (SVE) project
was to develop software technology to enable multiple
enclaves to engage in controlled collaborative computing
using distributed applications, while retaining
organizational autonomy over local resources. By
enclave, we mean a collection of computers and networks
managed by the same organization and subject to the same
security policy. Collaboration occurs when principals in
partner enclaves are permitted to access selected local
resources. Security controls are necessary to ensure that
collaborators get only the intended access to local
resources. Local autonomy is exceedingly important, as
an organization’s willingness to share its resources with
others is influenced by the degree of control it retains over
those resources. An organization that knows it can

2 of 16

unilaterally choose to withdraw its resources from a
coalition at any time may be more willing to collaborate.
Finally, by distributed applications, we mean applications
built primarily on middleware infrastructures that support
program and/or data object distribution. Examples
include Java RMI, CORBA, Microsoft DCOM, and
Enterprise JavaBeans. We may also include ordinary file
system objects and resources accessible via a web server
(e.g., HTML files).

Our approach was further bounded by the following
constraints: the SVE infrastructure should be transparent
to applications and based on commercially available
operating systems and open networks. This forced us to
work primarily in the realm of middleware, which, given
our focus on distributed application technologies, was
appropriate. We also emphasized the “Virtual” in “Secure
Virtual Enclaves,” deciding against solutions that replicate
resources and synchronize multiple copies. Though these
approaches can improve the fault tolerance of a system
and availability of its resources, they introduce
undesirable system complexity. SVE resources remain
within, and under the protection of, their local enclaves,
while mechanisms are introduced to control accesses to
these resources by external subjects. There is one caveat
to our assumption about application transparency: we
must be able to authenticate the identity of a requesting
principal, so we insist that application traffic use some
authentication mechanism.

Based on our goals and constraints, we designed an
SVE to work in the following way: two or more
organizations decide, through extra-technological means,
to collaborate by sharing some of their local resources.
The administrator of one of those organizations begins the
technical and administrative process of naming and
creating an SVE, and noting which other enclaves are
trusted to join the collaboration. The creating enclave
becomes the sole member of the SVE. The administrator
then creates a resource access policy to identify the local
resources to be shared and the local principals that will be
authorized to access SVE resources, both local and
foreign. The administrators of the remaining enclaves
follow an administrative process to request to join the
established SVE. After a join request has been submitted
to the local SVE system, the remainder of the process is
automatic—SVE system components of one enclave
communicate with SVE system components of the other
enclaves to establish the desired coalition membership.
Finally, clients (acting for authorized principals) may
begin to access SVE resources residing in any of the
member enclaves.

Figure 1 shows the general SVE concept of operations.
Two enclaves are participating in an (already formed)
SVE. The SVE, shown in the shaded area in the center of
the figure, is a projection of access rights for principals
belonging to the SVE. Thus, the SVE identifies a
distributed collection of related resources, along with the
principals that are authorized to access those resources.

Figure 1: SVE concept of operation

� � � � � � � � � � � 	
 � � � �
 �
� � � � � � � � � � �
 �

� � � � � � � � � � 	 � � �
 � � � � � � � � �
 � � � 	 � � �
 �
� � � � � � � �
 � � � �
 �

enclaveA.com enclaveB.com

Legend:

�������

3 of 16

The resources and principals remain unchanged by the
introduction of the SVE infrastructure.

2. Architecture

The SVE infrastructure consists of components that
create, distribute, and enforce security policy, as shown in
Figure 2. Each “egg” in the figure represents an enclave.
The components in the upper halves of the eggs (policy
GUI, administration GUI, and SPEX controller) are
responsible for creating, maintaining, and distributing
resource access policy, as well as administering SVE
operations. The remaining components of the architecture
interpret and enforce access policy.

The GUI components provide policy and
configuration facilities to a local enclave administrator.
The Policy GUI allows the administrator to develop and
maintain access policy for local enclave resources.
Through the policy tool, the administrator submits new
policies or incremental updates. The SVE Policy
Exchange (SPEX) Controller propagates policies within a
local enclave to the SVE policy enforcement components,
and to other SVE member enclaves. The SPEX controller
also accepts SVE control commands from the SPEX
Administration GUI, and participates in SVE control
protocols (e.g., join, leave). The Interceptor/Enforcers
capture client requests for server resources, query a local

Access Calculator for an access decision, and enforce the
decision by either allowing the request to proceed as
usual, or dropping the request and returning an error
message to the client. The access calculator encapsulates
a local SVE resource access policy, and responds to
access queries from local interceptor/enforcers. The
SPEX controller provides asynchronous policy updates
(either full or partial) to local access calculators.

Figure 3 shows a typical client-server application, with
SVE interceptor/enforcers. The use of the SVE
infrastructure is invisible to the application client,
application server, and application developer.
Interceptor/enforcers must, however, be installed between
external clients and internal servers, via either gateways or
server modifications. The remainder of the SVE
infrastructure does not communicate with or affect the
workings of the application.

2.1. Resource access policy

The administrator of an enclave creates and maintains
the local resource access policy for the SVE by
identifying the resources that may be shared and the
principals that may participate. Since an enclave may
choose to belong to multiple SVEs, there may be multiple
local policies (one per SVE) in force at any given time. In
fact, there may be several more policies lying dormant in

Figure 2: SVE component architecture

SVE Control Messages

Enclave A

SPEX
Controller

Policy
 GUI

SPEX
Admin
GUI

Interceptor/
Enforcer

Access
Calculator

Access
Calculator

Access
Calculator

Interceptor/
Enforcer

Interceptor/
Enforcer

Interceptor/
Enforcer

Enclave B

SPEX
Controller

Policy
 GUI

SPEX
Admin
GUI

Interceptor/
Enforcer

Access
Calculator

Access
Calculator

Access
Calculator

Interceptor/
Enforcer

Interceptor/
Enforcer

Interceptor/
Enforcer

4 of 16

case changing conditions (and levels of trust) compel the
administrator to replace one of the active policies. In this
section, we will describe a single SVE policy, local to the
enclave in which it was created.

The SVE policy language uses concepts familiar from
Domain and Type Enforcement (DTE) [5], which defines
policy in terms of the access rights of equivalence classes
of subjects to equivalence classes of objects. An object is
a resource accessed by software. A subject is a software
component that accesses resources on behalf of a
principal. Principals are persons or persistent programs
(such as servers). In DTE, objects are grouped into
equivalence classes called types, and subjects are grouped
into equivalence classes called domains.

SVE policies have four components: type definition
rules, which map distributed objects into types; domain
derivation rules, which map subjects into domains; a
domain � type access matrix; and, potentially, a collection
of additional access constraints. Figure 4 shows an
example SVE resource access policy.

A type definition identifies a collection of resources
that will be treated identically for access control purposes.
For many object-oriented distributed systems, a resource
is the pair (object interface, method). In systems that
support distinguishable objects (e.g., Enterprise Java
Beans), this could mean the more specific pair (named
object, method). The example shows definitions for three

types of resources: specification resources, source code
resources, and financial resources. Thus, specification-
related resources to be controlled include html files found
in the specs directory at eweb.com, as well as the
view method of the SpecAdminI interface. The “_t”
appended to each type name is a mnemonic device, rather
than a syntactic requirement.

Domain derivation rules uniquely identify principals
on whose behalf a subject will be assigned to a particular
domain. Domains are, essentially, role specifications. In
the example, frank and jane (both of Acme, Inc.) are
assigned to the engineering and accounting domains
(roles) respectively. sue (of Toyco, Inc.) is assigned to
the engineering domain. frank and sue, both
engineers, will have identical access to resources as long
as Acme and Toyco collaborate within an SVE. jane
will also have access to SVE resources, but because she is
an accountant, rather than an engineer, it is likely that her
resource access permissions will be different from
frank’s and sue’s. Thus, the semantics of “domain”
within the context of Domain and Type Enforcement is
very different from the “domain” addressed in network
terminology. The example specifications show an email
address (found within an X.509 certificate) prepended
with a unique name for the user’s home enclave (e.g.,
Acme). This name identifies the SPEX controller that
issued the domain derivation rule. The “_d” appended to

Server

SVE
interceptor/

enforcer

Server

SVE
interceptor/

enforcer

Gateway

Enclave A

Figure 3: SVE client-server communication

Client Client
Enclave B

5 of 16

each domain name is a mnemonic device, rather than a
syntactic requirement.

The access matrix shows the types of resources to
which subjects in a given domain are permitted access. In
our example, engineers may access source code and
specifications, while accountants may access financials.

 Finally, an entry of the access matrix may be
decorated with a constraint, identifying conditions that
must be met before the subject (i.e., domain) can access
the object (i.e., type). This allows us to extend our
policies to address restrictions that may not be
conveniently expressible in an ordinary access matrix. In
the example, a time interval constraint is placed on
accountants’ access to financial data: subjects in the
accountant_d domain may access financials_t
type objects only during the hours between 9am and 5pm,
Monday through Friday.

2.2. Policy distribution

A complete SVE policy, comprised of the four
components described above, is necessary for an access
control decision. An access calculator must, therefore,
retain a complete policy and receive policy updates from
its local SPEX controller. Some portions of the policy
must also be shared among SVE member enclaves. In this
section, we examine the need for inter-enclave policy
distribution and discuss the role of the SVE Policy
Exchange (SPEX) controller in the architecture.

An enclave defines its resource access policy, makes
access control decisions, and enforces those decisions for
each of its local resources, including resources it shares

with other enclaves via an SVE. When a client from
enclave A requests a resource on a server in enclave B,
the principal responsible for the request must be identified
by enclave B and the requestor mapped into an
appropriate domain in order to determine whether the
access should be permitted. B cannot recognize the
principal behind the client without authentication and role
information provided by A.

Information describing the requestor might be
provided in a variety of ways. At one end of the
spectrum, the client might present a credential at request
time, containing the domain to which the requestor should
be assigned. A certifying authority for A would have
signed the credential. In this case, the client carries all of
the data needed by B. At the other end of the spectrum, A
might send all of its domain derivation rules to B in
advance. When an A client makes a request, B would
authenticate the identity of the responsible principal, then
apply the appropriate rules to establish a domain for the
requestor. In this case, the client carries almost none of
the data needed by B. A range of hybrid solutions is
possible, with some data delivered by the requesting client
and some delivered in bulk, in advance.

There are advantages and disadvantages to any of
these approaches. For the SVE architecture, we have
chosen the approach in which an enclave sends domain
derivation rules for its principals to other collaborating
enclaves and only the identification and authentication
data are carried by the client request. Because these rules
allow enclaves to recognize “ foreign” principals, we have
renamed them principal recognition rules. Principal
recognition rules are the only SVE policy component that
must be exchanged among SVE member enclaves. All

Type Definitions

specifications_t = https://eweb.com/specs/* ,
 rmi://com.eweb.SpecAdminI/com.eweb.JavaSpec view(int)
source_code_t = rmi://com.eweb.sourceI/*
financials_t = dcom://123-456-789/321-654/1

Domain Derivation Rules (Principal Recognition Rules)

Acme!frank@acme.com = engineer_d
Acme!jane@acme.com = accountant_d
Toyco!sue@toyco.com = engineer_d

Access Matrix

engineer_d = specifications_t, source_code_t
accountant_d = financials_t+TimeInterval!900!1700!M!F

Figure 4: Example SVE resource access policy

6 of 16

other policy components (resource-type mappings, access
matrix, and constraints) remain within their local enclave.
This provides the local administrator with the unilateral
ability to control which of the local resources are shared –
the administrator can change the resource-type mappings,
the access matrix, or the constraints for the local resources
without consulting other SVE member enclaves.

As a result, an enclave retains the right to authorize
both local and foreign principals’ access to local
resources. In doing so, however, the enclave
administrator does not authorize access directly to those
principals. Rather, access is granted to a domain (role).
Principal recognition rules (both local and foreign)
provide the basis for determining membership in that
domain. Thus, an enclave determines the roles that its
principals assume within the coalition by providing
appropriate principal recognition rules. This approach
improves the scalability of the coalition-formation
process, in that an organization need not have a priori
knowledge of every foreign principal that might
eventually participate. However, an enclave must trust its
coalition partners to provide accurate and appropriate
principal recognition rules. Note that the trust requirement
for accurate domain placement does not diminish if clients
carry domain designations or other forms of authorization
in their credentials.

The SPEX component of the SVE architecture is
responsible for distributing access policy to local access
calculators, as well as communicating the local principal
recognition rules to the SPEX controllers of other SVE
members. Each enclave must have a SPEX controller.
Since access calculators must be able to recognize
principals from other enclaves, an aggregate of local and
foreign principal recognition rules must be created by the
local SPEX controller. The aggregate principal
recognition rules, along with the local type definitions,
access matrix, and constraints, are delivered to the access
calculators by the SPEX controller. Local principal
recognition rules are published to other SVE member
enclaves via SPEX-to-SPEX communication when the
enclave joins an SVE or when changes are made to the
responsibilities of local personnel. When foreign enclaves
update and publish their principal recognition rules, the
SPEX controllers of SVE member enclaves deliver those
updates to their local access calculators, without human
administrative action.

2.3. Access calculation

The access calculators in the SVE architecture are
responsible for deciding whether a given access is
permissible. Each enclave contains one or more access
calculators, though for performance reasons, we expect
that an access calculator would be deployed on each host
that supports SVE-sharable resources.

An access calculator presents two interfaces to
components of the SVE infrastructure: an access decision
interface to accept and respond to requests from
interceptor/enforcers, and a policy update interface to the
local SPEX controller. An interceptor/enforcer queries an
access calculator for a policy decision, while the local
SPEX controller pushes policy updates into the access
calculator. The access policy is completely contained
within the access calculator, so decision-making is
accomplished strictly locally.

Access calculation is a four step process: domain
derivation, type derivation, access matrix check, and
constraint check. Domain derivation is accomplished
using identity data, extracted from an authenticated
credential, in combination with principal recognition
rules, provided by the principal’s “home” enclave. Type
derivation is accomplished using resource request data,
taken by the application interceptor, in combination with
type derivation rules defined by the local SVE policy.

The premise underlying SVE access calculation is that
each enclave cannot be expected to define access policy
based on the individual identities of foreign principals. In
order to grant access to foreign principals in a timely and
scalable way, principals must be grouped into domains by
their home enclaves. These groupings embody the roles
of those individuals and the degree to which the
individuals are trusted by their home enclaves.

In the SVE system, access authorization is granted
equally to all principals (both local and foreign)
represented by a domain, rather than to an individual
principal. As in Figure 4, individuals acting in the
engineer_d role will have access to the same SVE
resources, regardless of their home enclaves or the
location of the resources they access. In our prototype,
these authorizations are represented by a domain-type
access matrix. However, any policy representation that
assigns access authorization to groups or roles could be
used with the SVE system. If the access request is
permissible according to the access matrix, then any
constraints of the access are checked. The boolean result
is returned to the interceptor/enforcer that initiated the
query.

2.4. Request interception and policy
enforcement

SVE interceptor/enforcers perform the tasks of
capturing a request for a distributed system object,
extracting data to identify both the target object and the
requestor, forwarding this data to a local access calculator,
and enforcing the access calculator’s decision. One
interceptor/enforcer may differ from another quite
drastically, as their distributed application technologies
can differ drastically from one another. We will discuss

7 of 16

some of those implementation issues in Section 3, but will
briefly identify two important classes of
interceptor/enforcers, both of which are supported by the
SVE architecture.

When server resources are to be protected, request
interception and policy enforcement for distributed
application technologies may be implemented via either a
protocol gateway or a server-resident interceptor. Though
the use of a gateway obviates the need for server
modifications, information regarding a request is often
incomplete “on the wire” . In the case of distributed
application technologies, this is often evident in that target
identification (e.g., method call) is not resolved until the
server receives the request. Gateways can sometimes be
constructed to call out to a server for additional context
data to circumvent this issue. When this is undesirable,
when intra-enclave access control is necessary, or when
client-server communication uses end-to-end encryption,
server-resident policy enforcement may be the preferred
approach. Note also that layered defenses can be built
with combinations of gateway and server-resident
interceptor/enforcers. The SVE infrastructure can support
both types of interceptor/enforcer.

2.5. SVE administration

The administrator of an enclave is responsible not only
for defining the enclave’s resource access policies for
each of the SVEs that the enclave joins, but also for
performing local SVE administration tasks. In particular,
the administrator must represent the enclave’s trust
relationships with foreign enclaves by identifying the list
of enclaves with which it intends to collaborate in an SVE.
This establishes an enclave-level trust policy that
determines which foreign enclaves may have access to
local resources. Both trust policy and resource access
policy are managed by the enclave administrator via GUIs
that communicate with the local SPEX controller. SVE
administration commands for establishing trust policy, as
well as creating, joining, and leaving an SVE, are initiated
by an administrator via the GUI. Once initiated, these
processes are carried out automatically by communicating
SPEX controllers.

3. Implementation

The SVE infrastructure is primarily a Java-based
architecture, tested on Sun Solaris, Windows NT 4.0, and
Linux. Intra-enclave communication among SVE
components is done via Java RMI. Inter-enclave
communication is primarily accomplished using the group
communication facilities provided by the Ensemble
system [7], via the JavaGroups interface [3]. Except for
the platform-specific binaries required by Ensemble, the

SVE components are platform independent. Most of the
components were engineered from scratch, using Java 1.1,
with the considerable exception of the interceptor/enforcer
code.

We chose to support distributed applications based on
the following commonly used technologies: Java RMI,
Microsoft’s DCOM, and two web servers—Sun’s Java
Web Server, and Microsoft’s IIS. In order to authenticate
the identity of a requesting principal, application traffic
must use an authentication mechanism. Since Java RMI
and HTTP traffic can run over SSL, we use data from
SSL-carried X.509 certificates to identify both web object
requestors and Java RMI object requestors. The DCOM
protocol does not currently run over SSL, but we can
extract identity data from the Windows NT access token
(created for the user at logon) which is carried with the
DCOM request. If client identity cannot be established,
(e.g., when a web or RMI application is not run over SSL,
or a DCOM application allows an anonymous request) the
SVE infrastructure will not permit access to resources it
controls.

3.1. SVE Policy Exchange (SPEX) Controller

The SPEX controller is a multithreaded Java-based
server that implements three interfaces for SVE
administration and policy distribution: an administrative
interface, which communicates with the administrative
GUIs; an intra-enclave policy distribution interface; and
an inter-enclave communication interface. The controller
also implements repositories for resource access policies
and SVE administrative data.

SVE administration (SVE policy updates and control
requests) is handled through the SPEX controller’s
administrative interface. The administrative GUI
communicates with the SPEX controller via Java RMI. At
the administrator’s request, the administrative GUI
forwards SVE control requests (e.g., create a new SVE,
join an existing SVE) to the SPEX controller. Changes in
the enclave’s state are pushed back to the administrative
GUI for display to the administrator.

Intra-enclave policy distribution is handled through the
policy service interface of the SPEX controller. Access
calculators register via Java RMI as subscribers to the
policy update mechanism. Policy changes originating at
the policy GUI are accepted by the SPEX controller.
Access calculators must enforce access policy for all of
the SVEs to which the local enclave belongs. Thus, the
SPEX controller must aggregate the local principal
recognition rules, type mappings, access matrices, and
constraints written for each SVE to which the local
enclave belongs. Principal recognition rules received
from foreign SVE member enclaves must also be
aggregated with the local rules. This aggregate policy is

8 of 16

propagated by either full or incremental updates to the
subscribed calculators whenever the policy GUI gets an
update from an administrator or when foreign members
update their principal recognition rules.

Inter-enclave control messages and policy distribution
are handled via the communication service interface of the
SPEX controller. When an enclave attempts to join an
existing SVE, its SPEX controller makes an RMI request
to a liaison (a SPEX controller for an enclave already
belonging to the SVE). The liaison launches a voting
request by sending a message object through the
JavaGroups interface to the Ensemble communication
system. All of the current SVE members receive the
voting request and consult their lists of trusted
collaborators. The liaison tabulates the voting results –
only a unanimous positive result will allow the
prospective member to join. The result is returned to the
prospective member as a response to the original RMI
request. If accepted, the new member subsequently takes
part in the group communication and submits its principal
recognition rules for the SVE.

3.2. Interceptor/Enforcers

The SVE project implemented server-side (i.e., end-
system-based, rather than gateway-based)
interceptor/enforcers for Java RMI, Microsoft DCOM,
and two web servers (Microsoft’s IIS and Sun’s Java Web
Server). Both server-resident and gateway-based
interception for CORBA requests were addressed by the
Sigma project [13], a predecessor to the SVE project.

The implementation of interceptor/enforcers for a
variety of distributed application technologies provided
significant engineering challenges. Most of these
technologies were not designed to allow for request
filtering. Our interceptors are, therefore, highly
implementation dependent, and vulnerable to version
changes. Choosing to use gateway-based interception
would have traded these problems for others. In
particular, gateways must tolerate varying and evolving
protocol implementations. For example, the developers of
CORBA’s GIOP/IIOP protocol did not take the need for
boundary access control mechanisms into account when
developing the original protocol specification. This
decision created problems not only for firewall proxy
development, but also for interoperability of different
vendors’ products when a gateway is involved. As
mentioned in Section 2, identifying the requested resource
before the request reaches the server is often exceedingly
difficult as often only the server has sufficient contextual
information to interpret the data carried by the protocol.
We will now discuss some of the implementation
challenges we faced in building server-resident
interceptors for the various application technologies.

3.2.1. Java RMI. The first distributed application
technology for which the SVE project implemented an
interceptor/enforcer was Java RMI. Currently, Sun’s RMI
interface specification provides no defined application
hook for intercepting client method invocation requests as
they arrive at the RMI server. Consequently, providing a
server-side interceptor for Java RMI required functional
enhancements to Sun’s RMI reference implementation.

The Sun specification describes the architecture of
RMI in three layers. The topmost layer consists of the
RMI stub and skeleton, which provide the client proxy
and server dispatch functionality commonly found in
distributed object models. The middle layer is designated
as the remote reference layer and is responsible for
providing specific remote invocation semantics, such as
whether the remote server object will be a single object or
part of a replicated object group. At the bottom is the
transport layer, which is responsible for managing
network connections and tracking remote server objects.

The RMI remote reference layer provides an ideal
location for interceptor placement since it is considered
part of the Java system API. In contrast, embedding an
interceptor at the top layer would have required special
skeletons to be generated for each application remote
server implementation, while embedding an interceptor at
the transport layer would not have provided adequate
information about the invocation target. A consequence,
however, of providing interception at the remote reference
layer is that the interceptor is very specific to the RMI
implementation. We chose to add interceptor capability
specifically to Sun’s RMI remote reference

Transport Layer

Remote Reference Layer

Client
Stub

Server
Skeleton

Application
Client

Remote
Object
Server

Credential
Lookup
Table

Access
Calculator

Figure 5: Java RMI interceptor

9 of 16

implementation for JDK 1.1. Figure 5 provides a high-
level view of our design for RMI interception.

As shown in Figure 5, an additional complication to
RMI interception was the inability to cleanly pass
authentication credentials from the transport layer to the
remote reference layer. The standard RMI interfaces in
JDK 1.1 do not provide a means for passing credentials
between layers. Thus, we were forced to implement a
credential lookup table, which is shared by the transport
and remote reference layers. We made an implementation-
specific decision to use a thread identifier as the credential
lookup key, since a single thread carries an invocation
request through each layer in Sun’s RMI implementation.
Based on this design, the transport layer, upon receiving a
client invocation request, will insert the associated
credential into the lookup table using the current thread
context identifier as the key. When the remote reference
layer receives the same request, it will use its current
thread context identifier as the lookup key for retrieving
the credential associated with the request.

3.2.2. Microsoft DCOM. The second distributed
application technology for which the SVE project
implemented a interceptor/enforcer was Microsoft’s
DCOM. DCOM is the distributed specification for
Microsoft’s Component Object Model (COM)
technology. A DCOM component can take any of three
forms: a shared library (DLL), a binary executable (EXE),
or a system service. A DCOM component is a collection
of COM interfaces, each of which identifies methods,
which are exported to applications. Using Windows NT
4.0, an access policy for DCOM components can be
specified on a component-by-component basis. However,
due to our goals of maximizing control and local
autonomy, the SVE project required finer-grained
constraints on interfaces and methods.

In order for a client to invoke a method on an interface
offered by a remote DCOM component, the client must
obtain an interface pointer to identify the requested object
(i.e., instance of the component). Each interface of a
DCOM component has a virtual table (v-table) data
abstraction, which is a lookup table with pointers to
method implementations. Pietrek, in [10], uses a custom
DLL to modify DCOM v-tables and a kernel jump table to
re-route DCOM method calls. The SVE system uses
Pietrek’s method of request interception. Other
techniques have been developed which can be applied to
the interception of DCOM requests. The method
described by Balzer and Goldman in [4] replaces a portion
of the application’s assembly code, diverting the program
to the interceptor. As we did not require the generality of
the Balzer-Goldman approach, we chose to implement the
simpler Pietrek method.

Once the interceptor has captured the DCOM request,
it must request an access decision from an SVE access

calculator. Assembly language code, such as that written
for the kernel-based interceptor, cannot communicate
directly with a Java-based server, such as an SVE access
calculator. This problem forced us to build a bridge from
the interceptor to the access calculator.

The bridge is based on COM. A COM client and a
COM server are inserted in the communication path
between the assembly code-based interceptor and the
Java-based access calculator. The C++-based COM client
is called by the interceptor code. The COM client calls
the Java-based COM server. Since Microsoft’s Java
Virtual Machine (JVM) does not currently support RMI,
we used a collection of RMI classes developed by IBM to
patch the COM server. This server can then communicate
with the SVE access calculator.

Our interceptor can currently handle DCOM
applications in the binary executable (EXE) form. The
interceptor may be extensible to shared library (DLL)-
based and system service-based DCOM applications.

3.2.3. Java Web Server. Web-based applications are
another technology that SVE supports. We have
developed two web server interceptor/enforcers, the first
of which is Sun’s Java Web Server. The Java Web Server
(JWS) was designed with modular extensibility in mind
and is built upon a server framework called the JavaServer
Toolkit (JST). The JST allows developers to build
network application services using the Java programming
language. The types of services that can be built with the
JST include established services such as HTTP and FTP,
as well as application services that have yet to be created.

Java Web Server

SVE
Interceptor

Servlets

JWS
Internal
Servlets

Access
Calculator

Figure 6: Java Web Server interceptor

Application
Client

10 of 16

The JST supports the concept of a servlet, a service
extension API that augments the capabilities of a
particular service for customized application handling.
Servlets run within a JST server as objects in support of a
service and can be dynamically loaded on demand from
any local or network source. The JWS uses servlets to
manage all resources provided through its HTTP and
HTTPS services. For example, the JWS uses a file servlet
to provide its file-serving capabilities, a CGI servlet to
execute any CGI-based scripts or programs, and an
invoker servlet to execute custom application-specific
servlets.

Providing an access control interceptor for the JWS
was fairly straightforward. The JWS allows servlets to be
chained together for the purpose of further augmenting
service capabilities. Since the standard JWS utilizes
internal servlets to manage all of its web resources,
providing interception was merely a matter of inserting an
interceptor servlet in front of each of the internal servlets.
Thus, we were able to intercept all client requests for web
resources managed by the JWS. Figure 6 provides a high-
level view of our design for JWS interception.

3.2.4. Microsoft IIS Web Server. The final SVE
interceptor/enforcer was developed for Microsoft’s web
server: the Internet Information Server (IIS). IIS uses
Windows NT’s Internet Server Application Programming
Interface (ISAPI) as a customization interface. ISAPI is a
server-side API with functionality similar to the Java
servlet interface. An IIS filter conforms to the ISAPI, and
is analogous to a Java servlet, used by the Java Web
Server. Some filters are specially designated system
filters, provided by Microsoft. Custom filters can be
developed and added to the IIS server, as well. Both
system and custom filters can be chained together to
augment IIS services, with system filters being executed
before any custom filters within the filter chain.

The SVE IIS interceptor is implemented within a
custom filter, placed after the SSL system filter, but before
other custom filters in the filter chain. The SVE
interceptor makes use of an Active Server Pages (ASP)
file, which should (according to the IIS documentation)
allow the interceptor to forward the client request data to a
local access calculator for an access decision.

Unfortunately, due to Microsoft’s engineering
problems with IIS 4, custom filters are unable to
automatically execute ASP files before resource
processing. Thus, the SVE filter is unable to
automatically intercept resource requests. We worked
around the problem by sacrificing transparency and
manually modifying each of the IIS resources. During
resource processing, the SVE filter first executes the SVE
ASP file. Though this non-transparent approach would be
unacceptable in an operational environment, the
workaround was tolerable for experiments with SVE. We

hope and expect that Microsoft will correct these
problems with future releases of IIS.

The lack of Microsoft JVM support for Java RMI once
again forced us to develop a bridge between the ASP and
the access calculator. We had hoped to use the same
bridge that we built for the DCOM interceptor, but were
unable to force the SVE interceptor filter to communicate
directly with a COM client. We, therefore, prepended
additional bridging components to enable the
communication. Figure 7 provides a high-level view of
IIS interception.

3.3. Communication security

To ensure that intra-enclave policy distribution takes
place without danger of policy corruption or source
spoofing, SVE Java RMI communication runs over SSL.

Access
Calculator Bridge

System Filters

SSL Filter

SVE
ASP File

Custom Filters

SVE Interceptor Filter

IIS Web Server

Application
Client

Figure 7: IIS Web Server interceptor

11 of 16

The SPEX controller authenticates the source of policy
update commands and SVE administrative actions.
Similarly, the access calculator ensures that the SPEX
controller is, in fact, the source of a policy update.
Communication between interceptor/enforcers and their
access calculators has not yet been secured, due to project
resource limits. To ensure that interceptor/enforcers
cannot be fooled by imposters spoofing access decision
results, these communications should be secured.

Inter-enclave communication has been secured to
protect the integrity of policy data (in particular, principal
recognition rules) and prevent source spoofing. The
initial, RMI-based communication between a prospective
enclave SVE member and its chosen liaison is secured
using SSL. The remainder of inter-enclave SVE
communication takes place using the group
communication system. We had the option of using the
communication security facilities provided by Ensemble
(albeit not via JavaGroups); however, as we had earlier
decided to insulate the SVE infrastructure from the choice
of group communication facilities, we chose not to rely on
Ensemble’s security facilities. Instead, we chose to sign
SVE message objects to provide source authentication and
message data integrity.

To secure SVE communication, we used an
implementation of the Java Cryptographic Extensions
(JCE), produced by the Institute for Applied Information
Processing and Communications (IAIK) from Graz,
Austria. We used IAIK’s Digital Signature Standard
(DSS) implementation to ensure source authentication and
data integrity for SVE messages carried over Ensemble.
IAIK’s iSaSiLk Java-based implementation of SSL was
used to secure all of our RMI-based communication.

3.4. SVE policy

The implementation of SVE resource access policies
facilitates both dynamism in policy updates and the use of
a potentially broad range of policy models. An SVE
policy is represented as a Java object that is created by an
administrator, using the SVE policy GUI, stored and
distributed via the SPEX controller, and, finally, lodged in
an access calculator. The policy encapsulates both
metadata (e.g., principal recognition rules, resource to
type mappings, access matrix, and constraints) and rules
(i.e., code) for interpreting that metadata. The policy
object provides an update interface to allow the policy
metadata to be changed, and an interface to respond to
access queries from interceptor/enforcers. An active
access policy resides in an access calculator. The
calculator delegates any access decision requests to the
policy object, which executes code to interpret its
metadata and returns its decision to the calculator. The
calculator responds to the interceptor/enforcer that
initiated the query.

Because it is fully encapsulated, the policy can be
passed within the SVE infrastructure and handled as an
opaque object by most of the components. The access
calculator provides an architectural placeholder in the
SVE infrastructure to insulate interceptor/enforcers from
details of policy-based decision making. The SPEX
controller can push updated policy metadata into an active
policy, or install a completely new policy in the access
calculator without interrupting access decision requests
from interceptor/enforcers. This approach ensures that the
policy update process can be exceptionally dynamic.

The policy object’s interface to an access calculator is
quite simple: requestor and resource data are consumed
and a boolean access decision is produced. Though the
SVE policy language and GUIs reflect the OODTE
influence, a policy need not be OODTE-based to be used
within the SVE infrastructure. Any policy model
implementation that respects the Java interface defined for
the policy object could be substituted in the architecture.
This offers us tremendous flexibility in selecting
appropriate policy models. We hope to experiment with a
variety of resource access policy models and use the SVE
infrastructure to deliver and evaluate policies in working
systems.

4. Discussion

The SVE project has developed a software
infrastructure to enable collaborative distributed
computing. During the analysis, design and
implementation of this system, we identified several
significant issues that impact the creation and use of
secure virtual enclaves. Many of these issues (enclave
autonomy, policy semantics, principal data representation
and transmission, and trust policy) have both conceptual
and implementation consequences. System design and
implementation choices in each of these areas have
significant conceptual repercussions on the relationships
among coalition members, the protections offered by the
system, and the complexity of establishing and
maintaining a collaborative environment. Some of the
issues, such as system implementation and performance
and scalability, primarily impact the engineering of the
SVE system and its fitness for use in particular
collaborative environments. We will discuss each of these
issues, identifying our results, limitations of the SVE
approach, lessons learned, and some areas that deserve
further attention.

4.1. Enclave autonomy

In this section, we describe how the SVE system
enables enclave autonomy, and discuss security issues that
arise from that autonomy. It is essential to facilitate as

12 of 16

much organizational autonomy as possible because an
infrastructure that required mutually suspicious
organizations to cede significant control to potential
competitors or adversaries would not encourage
collaboration. The SVE infrastructure offers enclaves a
great deal of autonomy in controlling access to their local
resources.

The SVE infrastructure supports enclave autonomy
within a coalition in two ways: (1) by ensuring that most
resource access policy components are used only within
the local enclave, and (2) by enabling an enclave to
unilaterally withdraw from an SVE at any time.

An SVE member enclave retains full control over local
resource access policy. Specifically, resource to type
mappings, access matrices, and constraints are never
propagated among enclaves. In the event that an enclave
discovers a collaboration partner to be untrustworthy, the
enclave may respond immediately by modifying any of
these local policy components and updating its access
calculators. This permits an enclave to unilaterally restrict
access to its local resources by external entities.
Alternatively, the enclave may withdraw from the SVE
altogether, effectively removing all of the SVE members’
principal recognition rules from the policy enforced by the
local access calculator. This immediately prevents any
principals in those foreign enclaves from accessing local
resources. Leaving the SVE is a more drastic step as it
denies local resource access to all of the SVE member
enclaves.

As with any security mechanism, the protection
offered by SVE policy enforcement cannot extend beyond
the system itself. In particular, the design of the SVE
infrastructure does not address the following two issues,
both of which arise due to the autonomous operations of
the collaborating enclaves: (1) despite an enclave’s
request to leave an SVE (or principal recognition rule
update), its local principals may continue to access foreign
SVE resources if other SVE members fail to update their
access policies in a timely manner; and (2) a trusted SVE
member enclave may inadvertently or intentionally share a
copy of a resource with a non-SVE member.

In the first case, an enclave depends on other SVE
members to correctly manage principal recognition rules.
These rules are the only policy elements shared among
SVE members, but they require careful handling by each
of the SVE member enclaves to ensure that principals are
granted appropriate access authorizations. For example, if
principal “Alice” is transferred by her employer, enclave
A, to a new position and no longer requires access to the
“Alpha Project” SVE, enclave A depends on the other
SVE members to remove Alice’s principal recognition
rules promptly. Alice may, otherwise, have continued
access to Alpha Project resources held by foreign
enclaves. We assume that A removed Alice’s principal
recognition rules promptly, so that she doesn’ t have

access to the local Alpha Project resources. This problem
also arises if enclave A leaves the Alpha Project SVE, due
to new concerns about the trustworthiness of the other
Alpha Project members. Alice may inadvertently continue
to access Alpha Project resources held by foreign enclaves
if A’s principal recognition rules are not purged from
foreign Alpha Project members’ active policies. This
places Alice’s, and, thus, A’s integrity at risk from
compromised foreign resources.

In the second case, when a trusted collaboration
partner shares resources (intentionally or unintentionally)
with non-SVE members, we can’ t know which resources
have been compromised, or how widely they may have
been circulated. The compromise of an SVE member
makes our local resources conveniently available to an
attacker. We must, therefore, trust that our partners are
not only honest and cautious, but also savvy about
protecting their network infrastructures. These issues are
not unique to the SVE system, but, rather, impact
coalitions in general and are likely to be significant
considerations in planning collaborative efforts.

4.2. Transmission of principal data

To enable principals to access resources in foreign
enclaves, while satisfying the requirements for
application-level transparency, requestor data must be
transmitted to the resource owner’s enclave. As discussed
in Section 2, approaches to transmitting this data range
from annotating principal certificates to supplying a list of
all local principals’ data. In this section, we discuss the
advantages and disadvantages of the SVE approach.

The SVE approach to transmitting requestor’s data to
a resource owner’s enclave is to propagate a collection of
principal recognition rules in bulk before a request is
made. This bulk propagation approach has the advantage
that modifying a role specification (i.e., changing a
principal recognition rule) is less expensive than reissuing
a certificate. Certificates are usually issued off-line, so
producing a new certificate can take a relatively long time.
Furthermore, with each authorization change, the old
certificate must be revoked and a certificate revocation list
updated. While we can’ t avoid dealing with certificate
revocation with respect to identity certificates, the use of
authorization certificates might create even more
significant certificate revocation issues because
authorizations are likely to change more frequently than
identities.

The use of bulk principal recognition rules has its
disadvantages, however. When enclave A reorganizes its
employees and changes their organizational roles, it must
issue updates of its principal recognition rules to ensure
that employees have access to the correct SVEs and that
their subjects are mapped into the correct domains.

13 of 16

Whenever enclave A makes organizational changes, all
other enclaves in the SVEs in which A is a member must
update their systems to handle those changes. This
misplaces the burden of accommodating local changes
onto foreign entities.

It is possible that a hybrid approach to authorization
transmission would be valuable: some role information is
contained in an authorization certificate, a user manages
multiple such certificates, and additional (more volatile)
data is expressed in principal recognition rules.

4.3. Policy semantics

Policy semantics is a thorny issue when
role/authorization data crosses enclave borders. In this
section, we describe problems that may arise with regard
to policy semantics, and their impact on the development
of security policies for coalitions.

A major problem with policy semantics is the different
interpretations of common entities across multiple
enclaves. For example, though enclave A may designate a
principal for the manager role, the semantics of
manager are known only within A. manager might
mean line management (e.g., matching staff to projects,
reviewing salaries), or it might mean project management
(e.g., project tasking, project budgets). In either case, the
semantics of the manager designation are established
within the A context.

Suppose, for discussion, that by manager, enclave A
means project management. When the manager
designation crosses into enclave B, either in an
authorization certificate, or as a target domain in an SVE
principal recognition rule, the critical context data is lost.
At least three possible problems might arise: (1) If enclave
B has no manager role, then it will not authorize
resource access, as the principal designation is unknown
in B. The foreign manager, therefore, will be denied
access. (2) If enclave B locally defines a manager role
with the semantics of line management, then the foreign
manager may inadvertently gain access to some of B’s
salary data. (3) If enclave B defines a project
management role, but instead uses the spelling
project-manager, then the local project managers
may have access to different resources than the foreign
manager, despite the intention to grant them identical
resource access.

One might expect that this problem could be handled
by treating this as a namespace issue, however, that
approach is insufficient, as marking the manager role
with an enclave qualification gives us something like
“enclaveA/manager” . This designation does not
provide B with the information necessary to interpret the
role in the B context. Nothing short of establishing the

semantics of roles in advance of their use will completely
solve this problem.

In the SVE project, we assumed that the domain
names to be used in resource access policies were
established by the SVE creator and agreed upon via extra-
technological means by other SVE members in advance of
any resource sharing. A system in which A’s and B’s
roles could differ would require some translation
mechanism, either directly between A and B, or into some
agreed-upon intermediate specification. Translation
mechanisms might be constructed by wrapping local role
data with filters. Overall, the need to establish a common
understanding of security policy semantics among
collaborating organizations will prove crucial to the
effective use of coalition enabling technologies.

4.4. Trust

Trust is the foundation of any collaboration. In this
section, we consider three trust issues arising in an SVE
context, and how the SVE infrastructure handles (or might
be extended to handle) those issues.

The first issue pertains to the granularity of trust
expressible within the system. In the SVE system, a
principal’s identification credentials are delivered to an
interceptor/enforcer when an access request is made. The
interceptor/enforcer must authenticate the credentials
(e.g., check certificate signatures) and determine whether
it trusts the signer before extracting the identification data
and forwarding it to an access calculator. We either trust
that the certificate accurately identifies the requestor or we
don’ t. If we had used authorization certificates, we might
have applied a trust designation to each authorization
contained in the certificate. The certificate signer may or
may not be trusted by the target enclave to certify each of
the authorizations. A finer granularity of trust could be
distinguished within an SVE policy, which could then
influence access calculation.

The second issue pertains to the uniformity of trust
relationships within an SVE. When joining an SVE, an
administrator must specify to the local SPEX server the
list of other enclaves that are trusted to join this SVE.
These enclaves may share local SVE resources. The SVE
system treats each of these member enclaves identically—
each member is equally trusted. To create distinct trust
relationships among enclaves, an administrator would
form multiple SVEs with different resource access
policies for each SVE. Extending the SVE trust model to
better support asymmetric trust relationships could make
the system applicable to a broader set of coalition
environments.

The third issue pertains to the degree of symmetry
required in SVE member relationships. SVE member
enclaves are peers. For example, to admit a prospective

14 of 16

member to the SVE, each current member must vote, and
the votes must be unanimously positive to allow the
prospective member to join. It would be worthwhile to
consider non-peer relationships within the SVE context, to
allow the concepts of “subordinate” or “subcontractor” to
be represented. In an asymmetric relationship, some
enclaves are primary SVE members, while, for example,
other enclaves participate in the SVE because they
manage resources at the direction of primary members.
Secondary members that supply services to other enclaves
may not require a full vote in this scheme. We have not
determined how such asymmetries might be expressed
within the SVE context.

4.5. Implementation

In this section, we briefly review our analysis of SVE
implementation issues and identify alternative
implementation options we might choose today, if the
SVE project were just beginning. As mentioned in
Section 3, most of the SVE infrastructure was
implemented in Java 1.1, using RMI for intra-enclave
communication and the Ensemble group communication
system for inter-enclave communication. Though both
Java and JavaGroups/Ensemble proved to be good choices
for implementation, upcoming Java facilities and
development tools would have eased our development
task. For example, Sun Labs has recently developed a
reference implementation of Java reliable multicasting
(JRM) [12]. This might allow us to eliminate some of the
platform-dependent multicasting facilities provided by
Ensemble. Sun Labs plans to add the JRM API into
future versions of the Java Development Kit (JDK).

By far, our most significant implementation problems
arose during the development of the interceptor/enforcers.
Neither Java RMI nor DCOM were built to allow the
modular addition of security mechanisms. The problem
was significantly compounded for DCOM due to its
relative complexity and the lack of available internal
specifications. Fortunately, the RMI interceptor was not
quite as problematic, as RMI is simple and its
specification is well-documented. However, both
interceptors are implementation dependent and vulnerable
to version changes.

The web servers were clearly designed to allow
additional functions to be added. In the case of the Java
Web Server, the servlet concept allowed us a simple
means of encapsulating and installing SVE interception
code. Microsoft’s IIS web server offered a similar
approach to extensibility via its filter concept.
Unfortunately, several documented features of IIS did not
work as specified. As a result, an administrator must
manually prepare IIS resources before they can be
controlled by the SVE system. We hope that Microsoft
will correct the problems with IIS in a future release.

4.6. Performance and scalability

Project resources did not permit us to perform a
quantitative performance evaluation of our system. We
can, however, discuss our qualitative observations from
the perspectives of an administrator and of a user client.

4.6.1. Performance. We developed the initial version of
the system without any communication security for the
SVE infrastructure. This initial version did require client
authentication, however, to allow us to test our access
decision-making and enforcement. We built a simple
distributed application to test and demonstrate the SVE
system, using Sun’s JDK versions 1.1.6 and higher, with
the Just in Time (JIT) compiler enabled. The application
included two data repositories, one contained in a
Microsoft access database and one contained in flat files.
We built DCOM and RMI clients, and used web browsers
to access the resources. We used a variety of machines
ranging from a 166 MHz Pentium Pro with 32 MB RAM
to a SPARC Ultra-1 with 128 MB RAM, up to a 450 MHz
Pentium 2 with 128 MB RAM. All of these machines
were connected via our local Ethernet.

When run with communication security turned on
(SSL for RMI and the web browsers, and the Microsoft
proprietary protocol for DCOM), users noticed a
significant performance impact. When accessing Java-
based resources via RMI over SSL, the delay between a
request and the display of resource data was less than 2 or
3 seconds. The bridges we built to permit communication
between the Microsoft interceptors and the access
calculators degraded performance for these types of
requests. In our system, access requests for Microsoft
resources were significantly slower (perhaps on the order
of 7 or 10 seconds) than requests for the Java-based
resources. By inserting dummy access decisions into our
enforcement code, we established that the bridges, rather
than the interceptors, were at fault.

From an administrator’s perspective, SVE control
operations appeared to have reasonable performance (i.e.,
under 1 second for an SVE join operation), without
communication security. Once we enabled message
signing and verification, the performance degraded
noticeably. An administrator might wait up to 5 seconds
before receiving confirmation of a successful join
operation. In summary, it appears that both intra-enclave
and inter-enclave communication security introduce
significant obstacles to attractive performance of the SVE
system.

4.6.2. Scalability. Our system was tested with only a few
SVEs (5 or fewer), and only a few member enclaves of
each SVE (3 or fewer). The small size of the experiment
was due primarily to the administrative overhead of

15 of 16

developing security policies. Scalability was not,
therefore, addressed by experiment. Roughly, the cost in
administrative overhead and communication of joining
and participating in two SVEs is twice the cost of joining
only one. Thus, the scalability of the system largely
hinges on how well we can support the growth of a single
SVE.

SVEs grow as new member enclaves issue join
requests, and are maintained as existing members issue
policy update requests. The join operation has the highest
messaging requirement of any of the SVE operations, as
voting requests must be conveyed to each member, ballots
collected from each member, and result notification sent
to each member. All of these underlying operations are
accomplished using Ensemble-based communication.
Therefore, the scalability of inter-enclave SVE
communication is heavily dependent on the scalability of
the underlying Ensemble communication system, whose
performance is addressed in [7].

5. Related work

Several research projects have addressed problems
related to collaborative computing. Systems such as
Ensemble [7], Rampart [11], Transis [1] and Enclaves [6]
provide secure group communications, allowing
collaborating entities to maintain privacy and message
integrity in their communications. The SVE system,
however, focuses on supporting policy-driven access
controls for distributed object systems.

There is also research in the area of security policies
for group communication. In [15], Srisuresh and Sanchez
describe policy-based routing for IP security.
Requirements are described for intermediate and end
nodes to support security policies for packets crossing
enclave boundaries. At this level, policies refer to packet
forwarding rules or communication security mechanisms
and their parameters. The Dynamic Cryptographic
Context Management (DCCM) system [2] provides
dynamically changeable mappings from low-level policy
abstractions onto cryptographic mechanisms for secure
group communications. DCCM offers a mechanism for
inter-enclave policy negotiation. In this case, policies
refer to cryptographic context specifications (e.g., ipsec
3des-cbc encryption, using sha-1 integrity verification).

Other work that has dealt with access controls for
distributed objects include the Sigma project [13], which
investigated the integration of security technologies into
CORBA-based distributed computing environments. The
Sigma project built prototypes of both gateway and
server-resident (ORB plug-in) interceptor/enforcers for
CORBA requests and developed the object-oriented
version (OODTE) [14] of the Domain and Type
Enforcement (DTE) [5] policy specification language.

Sigma results were focused on policy definition (via
OODTE and other policy specification languages) and
request interception. The SVE project extended these
results by introducing an infrastructure to support shared
policy elements for collaborating organizations. The
Multi-Protocol Gateway (MPOG) [9] extended the
CORBA ORB gateway to enforce access policy for both
CORBA and Java RM requests. We hope to extend the
SVE system to provide dynamic policy updates for the
MPOG to enable it to consistently enforce SVE resource
access policies.

Each of the types of middleware resources (e.g., web
resources, RMI resources, DCOM resources) for which
the SVE infrastructure provides access controls has its
own model of access policy specification and
enforcement. For example, the default mechanism for
specifying access policy for resources controlled by the
Java Web Server is access control lists. Currently, there is
no mechanism for controlling RMI access to distributed
Java resources. In the future, however, the Java
Authentication and Authorization Service (JAAS) [8] will
be used to control this type of access. Access to DCOM
applications can be controlled by Windows NT, but the
finest granularity of control is at the per-application level
(e.g., “ launch,” “configure”). Each of these middleware
systems specializes in controlling access to its own
distributed resources, rather than providing uniform
access policy enforcement for multiple types of distributed
object resources. None of these policy enforcement
systems support notions of collaborative computing
among multiple organizations. The SVE system focuses
on supporting collaborative computing through uniform
access controls on various distributed object resources.

The SVE system was engineered using many
previously developed technologies. As mentioned in
Section 3.2.2, the SVE approach to DCOM interception
applied a method described by Pietrek in [10]. A more
general approach to mediating calls into a Windows NT
API is described by Balzer and Goldman in [4]. As we
did not require the generality of Balzer/Goldman, we
opted for the relative simplicity of the Pietrek method.

The SVE infrastructure made use of the Ensemble
group communication system to provide reliable
communication for SVE member enclaves. The
JavaGroups toolkit [3], developed by Ban at Cornell,
provided us with a Java-based interface to the Ensemble
system. Protocols for SVE management make calls
through JavaGroups to communicate over Ensemble.

6. Conclusions

Our primary goal was to study software mechanisms to
support coalitions in collaborative computing efforts.
Because coalition partners may have only limited trust in

16 of 16

one another, a coalition support system must provide both
the means for careful control of coalition partners’ access
to local resources and the ability to dynamically change
those controls as trust relationships evolve. In addition,
the need to share current application resources required
that our system solutions be transparent to applications
and based on commercially available operating systems
and open networks.

To meet coalition requirements for a collaborative
computing environment, we designed and implemented a
prototype security infrastructure. The prototype
addressed the problem of limited trust relationships by
providing significant resource access policy definition and
enforcement autonomy to individual member enclaves.
To support the changing nature of a collaborative
arrangement, we provided a dynamic policy update
mechanism.

The SVE infrastructure allows multiple organizations
to share their distributed application resources, while
retaining organizational autonomy over local resources.
While we demonstrated an approach to fine-grained
access control for secure collaborative computing, we also
identified significant problems that remain to be solved,
particularly in the area of policy development, before such
collaboration will be convenient. The SVE infrastructure
offers a platform and conceptual basis for further
exploration of these problems and experimentation with
new solutions.

Acknowledgements

We would like to thank David Chieu for his patience
and persistence in implementing the DCOM and
Microsoft IIS interceptors. Yongjian Wang produced the
first versions of our administrative GUIs, giving us a
better understanding of SVE administrative issues. Debbie
Sturdevant produced several of the diagrams for this
paper. Bob Rice and Dennis Hollingworth reviewed drafts
of the paper, and their suggestions have helped us improve
the presentation. This work was supported under DARPA
contract #F30602-97-C-0269.

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A
communication sub-system for high availability. In Proceedings
of the 22nd International Symposium on Fault-Tolerant
Computing, pages 76-84, July 1992.

[2] D. M. Balenson, D. K. Branstad, P. Dinsmore, M. Heyman,
and C. Scace. Dynamic cryptographic context management
(DCCM) report 3: Cryptographic context negotiation protocol.
Technical Report TISR #0757, TIS Labs at Network Associates,
Inc., February 1999.

[3] B. Ban. Design and implementation of a reliable group
communication toolkit for Java.
http://www.cs.cornell.edu/home/bba/papers.html.

[4] R. Balzer and N. Goldman. Mediating connectors. In
Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems Workshop (ICDCS ’99), pages
73-77, Austin, TX, May 1999.

[5] L. Badger, D. Sterne, D. Sherman, K. Walker, and S.
Haghighat. Practical domain and type enforcement for UNIX.
In Proceedings of the 1995 IEEE Symposium on Security and
Privacy, pages 66-77, Oakland, CA, May 1995.

[6] L. Gong. Enclaves: Enabling secure collaboration over the
Internet. In Proceedings of the Sixth USENIX Unix and
Network Security Symposium, pages 149-159, San Jose, CA,
July 1996.

[7] M. Hayden. The Ensemble System. Ph.D. dissertation.
Cornell University, Ithica, New York. Available as technical
report TR98-1662, 1998.

[8] C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers.
User authentication and authorization in the Java platform. To
appear in Proceedings of the 15th Annual Computer Security
Applications Conference, Phoenix, AZ, December 1999.

[9] G. Lamperillo. Architecture and concepts of the MPOG.
Technical Report NAI #0768, NAI Labs at Network Associates,
Inc., June 1999.

[10] M. Pietrek. Learn system-level win 32 coding Techniques
by writing an API spy program. In Microsoft Systems Journal,
vol. 9, no. 12, pages 17-44, 1994.

[11] M. Reiter. Secure agreement protocols: Reliable and
atomic group multicast in Rampart. In Proceedings of the
Second ACM Conference on Computer and Communication
Security, pages 68-80, Fairfax VA, November 1994.

[12] P. Rosenzweig, M. Kadansky, and S. Hanna. The Java
reliable multicast service: a reliable multicast library. Technical
Report #TR-98-68, Sun Microsystems, Inc., September 1998.

[13] E. J. Sebes and T. C. Vickers Benzel. Sigma: Security for
distributed object interoperability between trusted and untrusted
systems. In Proceedings of the 12th Computer Security
Applications Conference (ACSAC ’96), pages 158-168, San
Diego, CA, December 1996.

[14] D. Sterne, G. Tally, D. McDonnell, P. Pasturel, D. Sames,
D. Sherman, and E.J. Sebes. Scalable access control for
distributed object systems. In Proceedings of the 8th USENIX
Security Symposium, August 1999.

[15] P. Srisuresh and L. A. Sanchez. Policy framework for IP
security. Internet Draft draft-ietf-ipsec-policy-framework-
00.txt, February 1999.

