Security of Encrypted rlogin Connections Created With KerberosIV

Kirsten Hildrum
University of California,Berkeley
hildrum@cs.berkeley.edu

Abstract

KerberosIV is an authentication system originally de-
veloped by MIT’s Project Athena. Using Kerberos au-
thentication, the client and the server can each verify
the identity of the other party during connection ini-
tialization. As a side effect, the client and the server
share a key once the connection s created, allowing
subsequent messages to be encrypted.

One common Kerberos application is rlogin. Ker-
berized rlogin allows the server to authenticate the
client and includes an option that encrypts sent data.
Because the Kerberos documentation describes a mes-
sage format that would protect such encrypted messages
from replay and other attacks, most users assume Ker-
berized rlogin provides that protection. This paper will
show that Kerberized rlogin does not use that message
format once the connection has been established, leav-
ing the user open to attacks reminiscent of the active
TCP attacks describe by Joncheray in [3]. Extension
of these attacks can possibly lead to discovery of the
session key.

1 Introduction

KerberoslIV is an authentication system originally de-
veloped by MIT’s Project Athena. Using Kerberos au-
thentication, the client and the server can each verify
the identity of the other party during connection ini-
tialization. As a side effect, the client and the server
share a key once the connection is created, allowing
subsequent messages to be encrypted.

One common Kerberos application is rlogin. Ker-
berized rlogin allows the server to authenticate the
client and includes an option that encrypts sent data.
Because the Kerberos documentation describes a mes-
sage format that would protect such encrypted mes-
sages from replay and other attacks, most users assume
Kerberized rlogin provides that protection. This pa-
per will show that Kerberized rlogin does not use that
message format once the connection has been estab-

lof b

lished, leaving the user open to attacks reminiscent of
the active TCP attacks describe by Joncheray in [3].
Extension of these attacks can possibly lead to discov-
ery of the session key.

1.1 Owverview of Kerberos

Here I present a brief overview of Kerberos. A de-
tailed description can be found in [4]. KerberosIV re-
lies on a central authority which shares passwords with
both clients and servers. To open a connection, the
client asks this central authority for a “ticket” for the
server. The central authority sends this ticket and a
session key (for use between the client and the server)
to the client in an encrypted message. The ticket it-
self is encrypted for the server (and so, unreadable to
the client), and includes the same key that was sent to
the client. To establish a connection to the server, the
client sends the ticket to the server. The server verifies
the client’s identity using the shared session key.

1.2 Encryption and authentication

This section briefly describes two functions that can
be used when creating an rlogin connection. This
paper does not discuss weaknesses in these functions,
but I mention them for comparison with des_write, the
function used to encrypt messages once the connection
has been established.

The Kerberos distribution (as described in [4]) pro-
vides a functions to send authenticated messages, and
a similar function to send encrypted messages. Both
of these are done using the shared session key. The
format of an authenticated (or “safe”) message con-
sists of: protocol information, user data, timestamp,
and sender’s network address. All information ex-
cept the protocol information is included in the check-
sum, which is calculated using the key. A private
(or encrypted) message, created with a function called
krb_priv, contains protocol information and a length
field for the length of the encrypted data followed by
an encrypted section consisting of: length of user data,



user data, time-stamp, and sender’s IP address.

1.3 Specifics of
KerberosIV

KerberosIV uses DES (Data Encryption Standard)
for encryption. DES is a symmetric key block cipher
which encrypts in blocks of eight bytes. I will use
DES(P) to mean the DES algorithm applied to P (in
this paper, the key will be implied), where P is a block
of eight bytes.

DES encryption has several modes. Kerberos uses
PCBC mode (Propagating Cipher Block Chaining) to
chain blocks together. In this mode, before encryption,
the plaintext is exclusive-ored with the ciphertext and
plaintext of the previous block. As a result, if there is
an error, all the blocks after the error are garbled.

In mathematical notation, if the plaintext blocks
are Py, P,,... P,, then the ith ciphertext block C; is
DES(P; ® P,_1 &® C;_1). Normally, an initial vec-
tor IV is used in encrypting the first block, so Cy =
DES(Py ® IV). Decryption is the reverse: P; =
DES_I(C,')EBCZ'_1 @®P;_1,and Py = DES_I(C())@IV.

In KerberosIV, a 64 bit version of the key is used
as the IV. The 56 bit DES key is divided into eight
seven-bit pieces. To each of these seven-bit pieces, a
parity bit is added, so that the now eight-bit block
has even parity. Then these eight eight-bit pieces are
concatenated to form the IV.

encryption in

1.4 This paper

In this paper, I will look at the weaknesses in krsh
and krlogin, which are versions rsh and rlogin which
use Kerberos. The specific version used is described
as “rlogin.c 8.3 (Berkeley) 8/31/94.” Since I do not
discuss plain rlogin, I use rlogin to refer to rlogin
with KerberosIV. I made my observations using TCP
dump on encrypted rlogin cconnections from Linux to
HPUX and Solaris. The client, or the user, is the one
who opens the connection. The server is the computer
to which the user is logging in.

2 Replay attacks

When rlogin or rsh sends an encrypted message, it
does not use the encryption function described in sec-
tion 1.2. Instead, it uses a function called des write,
shown in figure 1.

To summarize, all encryption is done with DES in
PCBC mode using the key as the initial vector. The
function starts by sending the length of the unen-
crypted data. Then, if the data is more than eight
bytes, it pads the data with zeros, encrypts it, and

20f 5

sends. If the data is less than eight bytes, it is left-
padded with random data before encryption.

This means that identical messages longer than eight
bytes always encrypt to the same ciphertext. Further-
more, identical messages shorter than eight bytes (indi-
vidual keystrokes) have different, but interchangeable,
encryptions. This is because they are padded with ran-
dom data that is ignored upon decryption.

The first and most obvious effect of this is that it is
possible to replay any keystroke sent by the user. To do
this, copy the packet in which the keystroke was sent,
adjust the TCP sequence number and checksum, and
resend. The faked packet will be accepted as if it was
sent by the user. Similarly, any packet sent to the user
can also be resent such that it appears to have come
from the user; simply adjust the IP addresses along
with the sequence number and checksum. If the at-
tacker can get a big enough dictionary, the attacker can
send an arbitrary command: say echo ++ > .rhosts.
This could be a serious security hole.

If the Kerberos private message format (described in
section 1.2) had been used, this sort of attack would
be much more difficult since krb_priv messages have
a timestamp. Even the Kerberos safe message format,
while not providing privacy, would protect against this
attack, assuming the security of the checksum (which
may not be wise [1]).

Below, I list several peculiarities of the rlogin and
des_write which increase the keystrokes available to
replay.

2.1 Small packets

Many of the packets exchanged in a rlogin session
are likely to be single keystrokes. For example, when
the user logs in to read mail, after the initial set up
packets, the next packets to be sent are “p”, “i”, “n”,
“e”, and “\n”. Of course, the attacker will not know
which letters were typed—he or she will only see that
there were five single-letter packets followed by a large
response from the server. This would probably be
enough for the attacker to guess what the user has just
typed. Having an encryption of “p”,“”,“n”, and “e”,
the attacker could send “pine”, but could also send any
of the letters individually just as easily.

Note that the attacker cannot simply do a frequency
analysis on the packets encrypting a single letter. Be-
fore encryption, data less than eight bytes long is left-
padded with random data; so while the encryptions are
interchangeable, since the random data is thrown away
upon decryption, the encryptions are different.



int
des_write( int fd, const char* buf, int len)
{

static int seeded = 0;
static char garbage_buf [8];

S_BIT32 net_len, garbage;

if(len < 8) {
if(!seeded) {
seeded = 1;

srandom( (int) time((time_t *)0));

}
garbage = random();
/* insert random garbage */

(void) bcopy(&garbage, garbage_buf, MIN(sizeof (S_BIT32),8));
/* this "right-justifies" the data in the buffer */
(void) bcopy(buf, garbage_buf + 8 - len, len);

}

/* pcbc_encrypt outputs in 8-byte (64 bit) increments */

(void) des_pcbc_encrypt((len < 8) 7 garbage_buf

des_outbuf,
(len < 8) 7 8 :
key_schedule,
key,

ENCRYPT) ;

len,

: buf,

/* DES key */
/% IV *x/

/* tell the other end the real amount, but send an 8-byte padded

packet */
net_len = htonl(len);

(void) write(fd, &net_len, sizeof(net_len));
(void) write(fd, des_outbuf, roundup(len,8));

return(len) ;

Figure 1: des_write: the function actually used by rlogin to encrypt data. The format has been slightly modified.

2.2 Length in the clear

The length is sent in the clear before the encrypted
data. That means that an encrypted message of “You
have mail” could be replayed as a number of things,
such as “You have m” or “You have mail” just by
adjusting the length field. By only sending the first
eight bytes of the encrypted messages and adjusting
the length field, the attacker could also send any of the
following: “e”, “ve”,“have”, or “You have”. In gen-
eral, since the length is in the clear, the attacker can
chose to replay the first n characters of the message, if
n > 8, and the last n characters in the first packet if
n < 8. This gives the attacker additional flexibility in
replaying packets.

2.3 Same encryption both directions

Since the same key is used in both directions, mes-
sages from A to B can be used to impersonate messages
from B to A. This gives the attacker additional replay
material. Notice that krb_priv the message format de-
scribed in section 1.2 prevents this from happening, as
long as the sender and the attacker are on different ma-
chines, because it includes the sender’s IP address in
the encrypted message.

Combined with some traffic analysis, this is useful to
the attacker. For example, in many cases, the prompt is
the same every time it is sent, and oftentimes, prompts
are predictable. The attacker could look for the encryp-
tion of the prompt (by looking for something repeated
frequently) and use it for additional material to replay.
Starting an email program could also send predictable
screen drawing commands, and if the attacker can guess

3ofb



which packet is the encryption of those screen drawing
commands, the attacker can use that as additional re-
play material.

2.4 Active code book building

A clever attacker need not wait to get by chance
the encryption of a certain keystroke. In certain situa-
tions, the attacker can cause an encryption of a given
keystroke to be sent.

For example, assume that the client is reading email
over the connection using Pine. The user will probably
hit “n” to view the next message. When the server
machine was an HP, the packet sent after the I hit “n”
was always 240 bytes in length. Suppose the attacker
sends the following email:

Date: Sat, 12 Dec 1998 19:38:28 -0800 (PST)

From: "Kris W. Hildrum" <hildrum@cs.berkeley.edu>
To: hildrum@cs.berkeley.edu

Subject: aaecho ++ > .rhosts

The first 240 byte encrypted chunk is not very use-
ful, but the message as been carefully prepared so that
the second block of encrypted data will begin with the
encryption of echo ++ >.rhosts. That means that
the attacker can now replay echo ++ >.rhosts, or any
other chosen text. A clever attacker might even being
able to arrange the rest of the header so the subject
line is something fairly plausible.

In general, it may not be possible to predict the
points that will be the start of an encrypted packet.
(For example, on the Sun OS, it is not possible to do
exactly the attack described above.) However, the at-
tacker may still be able to send an email message and
discover the encryption of a given plain text. For ex-
ample, if the attacker needs an encryption of a “+”, the
attacker can send an email message consisting entirely
of “+”s, and then is guaranteed to get an encryption
of the “47.

3 Recovering the key in PCBC
mode

If the attacker can force either party to decrypt ci-
phertext chosen by the attacker, the attacker can re-
cover the initial vector when PCBC mode is used.
PCBC mode is exactly the mode chosen by Kerber-
osIV. The idea is taken from [5, 2].

Since the initial vector is also the key, this is very
bad. Further, while this key is called a “session key”,
it is used over several sessions. It is valid for as long
as the ticket is valid, which is essentially all day. This
key is also vital to the authentication process; if the

40f 5

attacker knows the key, the attacker can masquerade
as the client and establish new connections.

3.1 Chosen ciphertext attack

Suppose that you know some plaintext Py that is
encrypted with the initial vector to get Cy. Then, the
attacker waits to see some ciphertext C1Cs...Cp .. ..
If the attacker can put Cy somewhere into that stream
of ciphertext, and get the decryption, then the attacker
can recover the key. Suppose the attacker managed to
get the decryption of C1Cs...CrCoChyi - ... Let this
decrypt to P1P2PnPPn+1 v

Here is how the attacker can recover the key.

P = DES 'Y Cy)aeC,eP,
= (heK)eC,d P,

So, K =P ® Py ® C,, ® P,. Since the attacker knows
Py, P, C,, and P,, the attacker has the key.

One problem is that all blocks after the P, will not
decrypt correctly. However, [2] shows that inserting
two copies of Cy will allow the attacker to recover the
initial vector but will correctly decrypt P, but with 16
bytes of random bits between P, and P,4;.

3.2 A more practical view

While not implemented, there is a way to make the
above attack work in practice. The idea is from David
Wagner [5]. Notice that finding a P is easy—one
example is the prompt. The difficult part would be
getting a decryption of the chosen ciphertext. How-
ever, using a list of replayable keystrokes built using
the methods above, this could be done by replaying
commands to the victim’s computer to write mail to
the attacker.

The ciphertext to be decrypted could be sent as the
body of the email. The attacker would then get the
decryption of the chosen ciphertext. Alternatively, the
attacker could also just send mail anywhere and watch
traffic to the sendmail port.

This could be carried out without the user noticing.
Imagine that the user was logged working on one com-
puter and had rsh into another computer on which he
or she was reading mail. After the mail is sent, the se-
quence numbers of the real connection would be wrong,
but the user would probably simply close the connec-
tion, not realizing that there was a security problem.
By then, however, the attacker has the key (which is
still valid when the user reinitiates the connection).



4 Conclusions

There are a number of small lessons to be learned
from this exercise and there is also one larger les-
son. The small lessons concern the cryptographic flaws,
many of which already appear in [1].

e Using any constant initial vector defeats the pur-
pose of using a chaining mode, especially if the
data length is frequently less than the block size.

e The key should not be used as an initial vector.

e Session keys valid for only a single session make it
more difficult to carry out attacks.

e Messages of encrypted data should contain their
length to prevent truncation; a timestamp or se-
quence number to prevent replay; and the sender
to prevent echoing.

These lessons are well understood by most crypto-
graphic protocol designers, are corrected in KerberosV,
and the most serious are addressed in the KerberosIV
authentication protocol.

But the larger lesson is that applications using cryp-
tographic systems need to be examined in detail even
when the cryptographic underpinnings are known to
be sound. The flaws in the KerberosIV rlogin pro-
tocol are obvious. The degree to which those flaws
are exploitable is surprising, but not astonishing. Even
though KerberosIV rlogin has been deployed for years
and the source code has been available, no one noticed
the problem because no one looked.People have found

5o0f 5

much more subtle flaws in the Kerberos protocol itself
because the details were published. Had the rlogin
implementation been proprietary, its flaws might never
have been revealed.

5 Acknowledgments

I would like to thank David Wagner for both the
initial idea for this paper and his helpful suggestions on
how to organize it. I would also like to thank Charlie
Kaufman for his help in preparing the final version.

References

[1] Steven M. Bellovin and Michael Merritt. Limita-
tions of the Kerberos authentication system. In
USENIX, 1991.

[2] Adrian M Tley. Kerberos ivec attack.
http://www.andrew.cmu.edu/"iley/kerbatck/
kerbatck.html.

[3] Laurent Joncheray. A simple active attack against
tcp. In USENIX UNIX Security Symposium, 1995.

[4] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I.
Schiller. Kerberos: An authentication service for
open network systems. In USENIX, 1988.

[5] David Wagner. sci.crypt:  Re:  Security
of des key encrypted with its self??777
http://www.cs.berkeley.edu/ daw/my-posts/
key-as-iv-broken-again, December 1996.



