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Abstract

SybilInfer is an algorithm for labelling nodes in a so-
cial network as honest users or Sybils controlled by an
adversary. At the heart of SybilInfer lies a probabilis-
tic model of honest social networks, and an inference
engine that returns potential regions of dishonest nodes.
The Bayesian inference approach to Sybil detection comes
with the advantage label has an assigned probability, indi-
cating its degree of certainty. We prove through analytical
results as well as experiments on simulated and real-world
network topologies that, given standard constraints on the
adversary, SybilInfer is secure, in that it successfully dis-
tinguishes between honest and dishonest nodes and is not
susceptible to manipulation by the adversary. Further-
more, our results show that SybilInfer outperforms state
of the art algorithms, both in being more widely applica-
ble, as well as providing vastly more accurate results.

1 Introduction

The Peer-to-peer paradigm allows cooperating users to
enjoy a service with little or no need for any centralised
infrastructure. While communication [24] and storage [4]
systems employing this design philosophy have been pro-
posed, the lack of any centralised control over identities
opens such systems to Sybil attacks [8]: a few malicious
nodes can simulate the presence of a very large number
of nodes, to take over or disrupt key functions of the
distributed or peer-to-peer system. Any attempt to build
fault-tolerance mechanisms is doomed since adversaries
can control arbitrary fractions of the system nodes. This
Sybil attack is further made practical through the use of
the existing large number of compromised networked ma-
chines (often called zombies) being part of bot-nets.

Similar problems plague Web 2.0 applications that
rely on collaborative tagging, filtering and editing, like
Wikipedia [31], or del.icio.us [28]. A single user
can register under different pseudonyms, and bypass any
elections of velocity check mechanism that attempts to
guarantee the quality of the data through the plurality of

contributors. On-line forums, starting with USENET [19],
to contemporary blogs or virtual worlds like Second
Life [22] always have to deal with the issue of disruption
in the discussion threads, with persistent abusers coming
back under different names. All these are forms of Sybil
attacks at the high-level application layers.

There are two schools of Sybil defence mechanisms,
the centralised and decentralised ones. Centralised de-
fences assume the existence of an authority that is capable
of doing admission control for the network [3]. Its role is
to rate limit the introduction of ‘fake’ identities, to ensure
that the fraction of corrupt nodes remains under a certain
threshold. The practicalities of running such an authority
are very system-specific and in general it would have to
act as a Public Key Certification Authority as well as a
guardian of the moral standing of the nodes introduced –
a very difficult problem in practice. Such centralised so-
lutions are also at odds with the decentralisation guiding
principle of peer-to-peer systems.

Decentralised approaches recognise the difficulty in
having a single authority vouching for nodes, and dis-
tribute this task across all nodes of the system. The first
such proposal is Advogato [14], which aimed to reduce
abuse in on-line services, followed by a proposal to use
introduction graphs of Distributed Hash Tables [6] to limit
the potential for routing disruption in those systems. The
state of the art SybilGuard [27] and SybiLimit [26] pro-
pose the use of social networks to mitigate Sybil attacks.
As we will see, SybilGuard suffers from high false neg-
atives, while SybilLimit makes unrealistic assumptions
about the knowledge of number of honest nodes in the net-
work. In both cases the systems Sybil detection strategies
are based on heuristics that are not optimal.

Our key contribution is to propose SybilInfer, a method
for detecting Sybil nodes in a social network, that makes
use of all information available to the defenders. The for-
mal model underlying our approach casts the problem of
detecting Sybil nodes in the context of Bayesian Infer-
ence: given a set of stated relationships between nodes,
the task is to label nodes as honest or dishonest. Based on
some simple and generic assumptions, like the fact that
social networks are fast mixing [18], we sample cuts in



the social graph according to the probability they divide
it into honest and dishonest regions. These samples not
only allow us to label nodes as honest or Sybil attackers,
but also to associate with each label output by our algo-
rithm a degree of certainty.

The proposed techniques can be applied in a wide vari-
ety of settings where high reliability peer-to-peer systems,
or Sybil-resistant collaborative mechanisms, are required
even under attack:

• Secure routing in Distributed Hash Tables motivated
early research into this field, and our proposal can
be used instead of a centralised authority to limit the
fraction of dishonest nodes, that could disrupt rout-
ing [3].

• In public anonymous communication networks, such
as Tor [7], our techniques can be used to eliminate the
potential for a single entity introducing a large num-
ber of nodes, and de-anonymize users’ circuits. This
was so far a key open problem for securely scaling
such systems.

• Leader Election [2] and Byzantine agreement [12]
mechanisms that were rendered useless by the Sybil
attack can again be of use, after Sybil nodes have
been detected and eliminated from the social graph.

• Finally, detecting Sybil accounts is a key step in pre-
venting false email accounts used for spam, or pre-
venting trolling and abuse of on-line communities
and web-forums. Our techniques can be applied in
all those settings, to fight spam and abuse [14].

SybilInfer applies to settings where a peer-to-peer or dis-
tributed system is somehow based on or aware of social
connections between users. Properties of natural social
graphs are used to classify nodes are honest or Sybils.
While this approach might not be applicable to very tradi-
tional peer-to-peer systems [24], it is more an more com-
mon for designers to make distributed systems aware of
the social environment of their users. Third party social
network services [29, 30], can also be used to extract so-
cial information to protect systems against sybil attacks
using SybilInfer. Section 5 details deployment strategies
for SybilInfer and how it is applicable to current systems.

We show analytically that SybilInfer is, from a theo-
retical perspective, very powerful: under ideal circum-
stances an adversary gains no advantage by introducing
into the social network any additional Sybil nodes that are
not ‘naturally’ connected to the rest of the social structure.
Even linking all dishonest nodes with each other (with-
out adding any Sybils) changes the characteristics of their
social sub-graph, and can under some circumstances be
detected. We demonstrate the practical efficacy of our ap-
proach using both synthetic scale-free topologies as well
as real-world LiveJournal data. We show very significant
security improvements over both SybilGuard and Sybil-

Limit, the current state of the art Sybil defence mecha-
nisms. We also propose extensions that enable our solu-
tion to be implemented in decentralised settings.

This paper is organised in the following fashion: in sec-
tion 2 we present an overview of our approach that can
be used as a road-map to the technical sections. In sec-
tion 3 we present our security assumptions, threat model,
the probabilistic model and sampler underpinning Sybil-
Infer; a security evaluation follows in section 4, providing
analytical as well as experimental arguments supporting
the security of the method proposed along with a compar-
ison with SybilInfer. Section 5 discusses the settings in
which SybilInfer can be fruitfully used, followed by some
conclusions in section 6.

2 Overview

The SybilInfer algorithm takes as an input a social
graph G and a single known good node that is part of this
graph. The following conceptual steps are then applied to
return the probability each node is honest or controlled by
a Sybil attacker:

• A set of traces T are generated and stored by per-
forming special random walks over the social graph
G. These are the only information retained about the
graph for the rest of the SybilInfer algorithm, and
their generation is detailed in section 3.1.

• A probabilistic model is then defined that describes
the likelihood a trace T was generated by a specific
honest set of nodes within G, called X . This model
is based on our assumptions that social networks are
fast mixing, while the transitions to dishonest regions
are slow. Given the probabilistic model, the traces T
and the set of honest nodes we are able to calculate
Pr[T |X is honest]. The calculation of this quantity
is the subject of section 3.1 and section 3.2.

• Once the probabilistic model is defined, we use
Bayes theorem to calculate for any set of nodes X
and the generated trace T , the probability thatX con-
sists of honest nodes. Mathematically this quality is
defined as Pr[X is honest|T ]. The use of Bayes the-
orem is described in section 3.1.

• Since it is not possible to simply enumerate all sub-
sets of nodes X of the graph G, we instead sample
from the distribution of honest node sets X , to only
get a few X0, . . . , XN ∼ Pr[X is honest|T ]. Using
those representative sample sets of honest nodes, we
can calculate the probability any node in the system
is honest or dishonest. Sampling and the approxi-
mation of the sought marginal probabilities are the
subject of section 3.3.

The key conceptual difficulty of our approach is the
definition of the probabilistic model over the traces T , and
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Figure 1. Illustration of Honest nodes, Sybil
nodes and attack edges between them.

its inversion using Bayes theorem to define a probability
distribution over all possible honest sets of nodes X . This
distribution describes the likelihood that a specific set of
nodes is honest. The key technical challenge is making
use of this distribution to extract the sought probability
each node is honest or dishonest, that we achieve via sam-
pling. Section 3, describes in some detail how these issues
are tackled by SybilInfer.

3 Model & Algorithm

Let us denote the social network topology as a graphG
comprising vertices V , representing people and edges E,
representing trust relationships between people. We con-
sider the friendship relationship to be an undirected edge
in the graphG. Such an edge indicates that two nodes trust
each other to not be part of a Sybil attack. Furthermore,
we denote the friendship relationship between an attacker
node and an honest node as an attack edge and the hon-
est node connected to an attacker node as a naive node or
misguided node. Different types of nodes are illustrated in
figure 1. These relationships must be understood by users
as having security implications, to restrict the promiscu-
ous behaviour often observed in current social networks,
where users often flag strangers as their friends [23].

We build our Sybil defence around the following as-
sumptions:

1. At least one honest node in the network is known. In
practise, each node trying to detect Sybil nodes can
use itself as the apriori honest node. This assump-
tion is necessary to break symmetry: otherwise an
attacker could simply mirror the honest social struc-
ture, and any detector would not be able to distin-
guish which of the two regions is the honest one.

2. Social networks are fast mixing: this means that a
random walk on the social graph converges quickly
to a node following the stationary distribution of the

graph. Several authors have shown that real-life so-
cial networks are indeed fast mixing [16, 18].

3. A node knows the complete social network topology
(G) : social network topologies are relatively static,
and it is feasible to obtain a global snapshot of the
network. Friendship relationships are already public
data for popular social networks like Facebook [29]
and Orkut [30]. This assumption can be relaxed to
using sub-graphs, making SybilInfer applicable to
decentralised settings.

Assumptions (1) and (2) are identical to those made by
the SybilGuard and SybilInfer systems. Previously, the
authors of SybilGuard [27] observed that when the adver-
sary creates too many Sybil nodes, then the graph G has a
small cut: a set of edges that together have small station-
ary probability and whose removal disconnects the graph
into two large sub-graphs.

This intuition can be pushed much further to build su-
perior Sybil defences. It has been shown [20] that the
presence of a small cut in a graph results in slow mix-
ing which means that fast mixing implies the absence of
small cuts. Applied to social graphs this observation un-
derpins the key intuition behind our Sybil defence mech-
anism: the mixing between honest nodes in the social net-
works is fast, while the mixing between honest nodes and
dishonest nodes is slow. Thus, computing the set of honest
nodes in the graph is related to computing the bottleneck
cut of the graph.

One way of formalising the notion of a bottleneck cut,
is in terms of graph conductance (Φ) [11], defined as:

Φ = min
X⊂V :π(X)<1/2

ΦX ,

where ΦX is defined as:

ΦX =
Σx∈XΣy/∈Xπ(x)Pxy

π(X)
,

and π(·) is the stationary distribution of the graph. Intu-
itively for any subset of vertices X ⊂ V its conductance
ΦX represents the probability of going from X to the rest
of the graph, normalised by the probability weight of be-
ing on X . When the value is minimal the bottleneck cut
in the graph is detected.

Note that performing a brute force search for this bot-
tleneck cut is computationally infeasible (it is actually NP-
Hard, given its relationship to the sparse-cut problem).
Furthermore, finding the exact smallest cut is not as im-
portant as being able to judge how likely any cut is, to be
dividing nodes into an honest and dishonest region. This
probability is related to the deviation of the size of any
cut from what we would expect in a natural, fast mixing,
social network.



3.1 Inferring honest sets

In this paper, we propose a framework based on
Bayesian inference to detect approximate cuts between
honest and Sybil node regions in a social graph and use
those to infer the labels of each node. A key strength of
our approach is that it, not only associates labels to each
node, but also finds the correct probability of error that
could be used by peer-to-peer or distributed applications
to select nodes.

The first step of SybilInfer is the generation of a set of
random walks on the social graphG. These walks are gen-
erated by performing a number s of random walks, start-
ing from each node in the graph (i.e. a total of s · |V |
walks.) A special probability transition matrix is used,
defined as follows:

Pij =

{
min( 1

di
, 1
dj

) if i→ j is an edge in G

0 otherwise
,

where di denotes the degree of vertex i in G.
This choice of transition probabilities ensures that the

stationary distribution of the random walk is uniform over
all vertices |V |. The length of the random walks is l =
O(log |V |), which is rather short, while the number of ran-
dom walks per node (denoted by s) is a tunable parameter
of the model. Only the starting vertex and the ending ver-
tex of each random walk are used by the algorithm, and
we denote this set of vertex-pairs, also called the traces,
by T .

Now consider any cut X ⊂ V of nodes in the graph,
such that the a-prior honest node is an element of X . We
are interested in the probability that the vertices in set X
are all honest nodes, given our set of traces T , i.e. P (X =
Honest|T ). Through the application of Bayes theorem we
have an expression of this probability:

P (X = Honest|T ) =
P (T |X = Honest) · P (X = Honest)

Z
,

where Z is the normalization constant given by: Z =
ΣX⊂V P (T |X = Honest) · P (X = Honest). Note that
Z is difficult to compute because it involves the summa-
tion of an exponential number of terms in the size of |V |.
Only being able to compute this probability up to a mul-
tiplicative constant Z is not an impediment. The a-prior
distribution P (X = Honest) can be used to encode any
further knowledge about the honest nodes, or can simply
be set to be uniform over all possible cuts.

Bayes theorem has allowed us to reduce the initial
problem of inferring the set of good nodes X from the set
of traces T , to simply being able to assign a probability
to each set of traces T given a set of honest nodes X , i.e.
calculating P (T |X = Honest). Our only remaining theo-
retical task is deriving this probability, given our model’s
assumptions.

X X

ProbXX

ProbXX

ProbXX ProbXX

(a) A schematic representation of tran-
sition probabilities between honest X
and dishonest X̄ regions of the social
network.
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(b) The model of the probability a short random walk of length
O(log |V |) starting at an honest node ends on a particular honest or
dishonest (Sybil) node. If no Sybils are present the network is fast
mixing and the probability converges to 1/|V |, otherwise it is biased
towards landing on an honest node.

Figure 2. Illustrations of the SybilInfer mod-
els

Note that since the set X is honest, we assume (by as-
sumption (2)) fast mixing amongst its elements, meaning
that a short random walk reaches any element of the sub-
set X uniformly at random. On the other hand a random
walk starting in X is less likely to end up in the dishonest
region X̄ , since there should be an abnormally small cut
between them. (This intuition is illustrated in figure 2(a).)
Therefore we approximate the probability that a short ran-
dom walk of length l = O(log |V |) starts inX and ends at
a particular node in X is given by ProbXX = Π + EXX ,
where Π is the stationary distribution given by 1/|V |, for
some EXX > 0. Similarly, we approximate the proba-
bility that a random walk starts in X and does not end
in X is given by ProbXX̄ = Π − EXX̄ . Notice that
ProbXX > ProbXX̄ , which captures the property that
there is fast mixing amongst honest nodes and slow mix-
ing between honest and dishonest nodes. The approxi-
mate probabilities ProbXX and ProbXX̄ and their likely
gap from the ideal 1/|V | are illustrated in figure 2(b).

Let NXX be the number of traces in T starting in the
honest set X and ending in same honest set X . Let NXX̄
be the number of random walks that start at the honest set
X and end in the dishonest set X̄ . NX̄X̄ and NX̄X are
defined similarly. Given the approximate probabilities of
transitions from one set to the other and the counts of such



transitions we can ascribe a probability to the trace:

P (T |X = Honest) = (ProbXX)NXX · (ProbXX̄)NXX̄ ·
(ProbX̄X̄)NX̄X̄ · (ProbX̄X)NX̄X ,

where ProbX̄X̄ and ProbX̄X are the probabilities a walk
starting in the dishonest region ends in the dishonest or
honest regions respectively.

The model described by P (T |X = Honest) is an ap-
proximation to reality that is suitable enough to perform
Sybil detection. It is of course unlikely that a random walk
starting at an honest node will have a uniform probabil-
ity to land on all honest or dishonest nodes respectively.
Yet this simple probabilistic model relating the starting
and ending nodes of traces is rich enough to capture the
“probability gap” between landing on an honest or dis-
honest node, as illustrated in figure 2(b), and suitable for
Sybil detection.

3.2 Approximating EXX

We have reduced the problem of calculating P (T |X =
Honest) to finding a suitable EXX , representing the ‘gap’
between the case when the full graph is fast mixing (for
EXX = 0) and when there is a distinctive Sybil attack (in
which case EXX >> 0.)

One approach could be to try inferring EXX through a
trivial modification of our analysis to co-estimate P (X =
Honest, EXX |T ). Another possibility is to approximate
EXX or ProbXX directly, by choosing the most likely
candidate value for each configuration of honest nodes X
considered. This can be done through the conductance or
through sampling random walks on the social graph.

Given the full graph G, ProbXX can be approximated

as ProbXX = Σx∈XΣy∈XΠ(x)P l
xy

Π(X) , where P lxy is the prob-
ability that a random walk of length l starting at x ends in
y. This approximation is very closely related to the con-
ductance of the set X and X̄ . Yet computing this measure
would require some effort.

Notice that ProbXX , as calculated above, can also
be approximated by performing many random walks of
length l starting at X and computing the fraction of those
walks that end in X . Interestingly our traces already con-
tain random walks over the graph of exactly the appropri-
ate length, and therefore we can reuse them to estimate a
good ProbXX and related probabilities. Given the counts
NXX , NXX̄ , NX̄X and NX̄X̄ :

ProbXX =
NXX

NXX +NXX̄
· 1
|X|

and

ProbX̄X̄ =
NX̄X̄

NX̄X̄ +NX̄X
· 1
|X̄|

,

and, ProbXX̄ = 1−ProbXX and ProbX̄X = 1−ProbX̄X̄ .

Approximating ProbXX through the traces T provides
us with a simple expression for the sought probability,
based simply on the number of walks starting in one re-
gion and ending in another:

P (T |X = Honest) = (
NXX

NXX +NXX̄
· 1
|X|

)NXX ·

(
NXX̄

NXX̄ +NXX
· 1
|X̄|

)NXX̄ ·

(
NX̄X̄

NX̄X̄ +NX̄X
· 1
|X̄|

)NX̄X̄ ·

(
NX̄X

NX̄X +NX̄X̄
· 1
|X|

)NX̄X ,

This expression concludes the definition of our probabilis-
tic model, and contains only quantities that can be ex-
tracted from either the known set of nodes X , or the set
of traces T that is assigned a probability. Note that we do
not assume any prior knowledge of the size of the honest
set, and it is simply a variable |X| or |X̄| of the model.
Next, we shall describe how to sample from the distri-
bution P (X = Honest|T ) using the Metropolis-Hastings
algorithm.

3.3 Sampling honest configurations

At the heart of our Sybil detection techniques lies a
model that assigns a probability to each sub-set of nodes
of being honest. This probability P (X = Honest|T ) can
be calculated up to a constant multiplicative factor Z, that
is not easily computable. Hence, instead of directly calcu-
lating this probability for any configuration of nodes X ,
we will attempt instead to sample configurations Xi fol-
lowing this distribution. Those samples are used to esti-
mate the marginal probability that any specific node, or
collections of nodes, are honest or Sybil attackers.

Our sampler for P (X = Honest|T ) is based on
the established Metropolis-Hastings algorithm [10] (MH),
which is an instance of a Markov Chain Monte Carlo sam-
pler. In a nutshell, the MH algorithm holds at any point
a sample X0. Based on the X0 sample a new candidate
sampleX ′ is proposed according to a probability distribu-
tion Q, with probability Q(X ′|X0). The new sample X ′

is ‘accepted’ to replace X0 with probability α:

α = min(
P (X ′|T ) ·Q(X0|X ′)
P (X0|T ) ·Q(X ′|X0)

, 1)

otherwise the original sample X0 is retained. It can be
shown that after multiple iterations this yields samples X
according to the distribution P (X|T ) irrespective of the
way new candidate setsX ′ are proposed or the initial state
of the algorithm, i.e. a more likely state X will pop-out
more frequently from the sampler, than less likely states.

A relatively naive strategy can be used to propose can-
didate states X ′ given X0 for our problem. It relies on



simply considering sets of nodesX ′ that are only different
by a single member fromX0. Thus, with some probability
padd a random node x ∈ X̄0 is added to the set to form the
candidate X ′ = X0 ∪ x. Alternatively, with probability
premove, a member of X0 is removed from the set of nodes,
defining X ′ = X0 ∩x for x ∈ X0. It is trivial to calculate
the probabilities Q(X ′|X0) and Q(X ′|X0) based on padd,
premove and using a uniformly at random choice over nodes
in X0, X̄0, X ′ and X̄ ′ when necessary.

A key issue when utilizing the MH algorithm is decid-
ing how many iterations are necessary to get independent
samples. Our rule of thumb is that |V | · log |V | steps are
likely to guarantee convergence to the target distribution
P . After that number of steps the coupon collector’s the-
orem states that each node in the graph would have been
considered at least once by the sampler, and assigned to
the honest or dishonest set. In practice, given very large
traces T , the number of nodes that are difficult to cate-
gorise is very small, and a non-naive sampler requires few
steps to produce good samples (after a certain burn in-
period that allows it to detect the most likely honest re-
gion.)

Finally, given a set of N samples Xi ∼ P (X|T ) out-
put by the MH algorithm it is possible to calculate the
marginal probabilities any node is honest. This is key out-
put of the SybilInfer algorithm: given a node i it is pos-
sible to associate a probability it is honest by calculating:
Pr[i is honest] =

∑
j∈[0,N−1) I(i∈Xj)

N , where I(i ∈ Xj) is
an indicator variable taking value 1 if node i is in the hon-
est sampleXj , and value zero otherwise. Enough samples
can be extracted from the sampler to estimate this proba-
bility with an arbitrary degree of precision.

More sophisticated samplers would make use of a bet-
ter strategy to propose candidate states X ′ for each iter-
ation. The choice of X ′ can, for example, be biased to-
wards adding or removing nodes according to how often
random walks starting at the single honest node land on
them. We expect nodes that are reached often by random
walks starting in the honest region to be honest, and the
opposite to be true for dishonest nodes. In all cases this
bias is simply an optimization for the sampling to take
fewer iterations, and does not affect the correctness of the
results.

4 Security evaluation

In this section we discuss the security of SybilInfer
when under Sybil attack. We show analytically that we
can detect when a social network suffers from a Sybil at-
tack, and correctly label the Sybil nodes. Our assumptions
and full proposal are then tested experimentally on syn-
thetic as well as real-world data sets, indicating that the
theoretical guarantees hold.

4.1 Theoretical results

The security of our Sybil detection scheme hinges on
two important results. First, we show that we can detect
whether a network is under Sybil attack, based on the so-
cial graph. Second, we show that we are able to detect
Sybil attackers connected to the honest social graph, and
this for any attacker topology.

Our first result states that:
THEOREM A. In the absence of any Sybil attack,
the distribution of P (X = Honest|T ), for a given
size |X|, is close to uniform, and all cuts are equally
likely (EXX u 0).

This result is based on our assumption that a random walk
over a social network is fast mixing meaning that, after
log(|V |) steps, it visits nodes drawn from the stationary
distribution of the graph. In our case the random walk is
performed over a slightly modified version of the social
graph, where the transition probability attached to each
link ij is:

Pij =

{
min( 1

di
, 1
dj

) if i→ j is an edge in G

0 otherwise
,

which guarantees that the stationary distribution is uni-
form over all nodes (i.e. Π = 1

|V | ). Therefore we ex-
pect that in the absence of an adversary the short walks
in T to end at a network node drawn at random amongst
all nodes |V |. In turn this means that the number of end
nodes in the set of traces T , that end in the honest set X is
NXX = lim|TX |→∞

|X|
|V | · |TX |, where TX is the number

of traces in T starting within the set |X|. Substituting this
in the equations presented in section 2.1 and 2.2 we get:

ProbXX =
NXX

NXX +NXX̄
· 1
|X|
⇒ (1)

Π + EXX =
NXX

NXX +NXX̄
· 1
|X|
⇒ (2)

1
|V |

+ EXX =
(|X|/|V |) · |TX |

|TX |
· 1
|X|
⇒ (3)

EXX = 0 (4)

As a result, by sufficiently increasing the number of ran-
dom walks T performed on the social graph, we can get
EXX arbitrarily close to zero. In turn this means that our
distribution P (T |X = Honest) is uniform for given sizes
of |X|, given our uniform a-prior P (X = Honest|T ).

In a nutshell by estimating EXX for any sample X re-
turned by the MH algorithm, and testing how close it is
to zero we detect whether it corresponds to an attack (as
we will see from theorem B) or a natural cut in the graph.
We can increase the precision of the detector arbitrarily by
increasing the number of walks T .

Our second results relates to the behaviour of the sys-
tem under Sybil attack:



THEOREM B. Connecting any additional Sybil nodes
to the social network, through a set of corrupt nodes,
lowers the dishonest sub-graph conductance to the
honest region, leading to slow mixing, and hence we
expect EXX > 0.

First we define the dishonest set X̄0 comprising all dis-
honest nodes connected to honest nodes in the graph. The
set X̄S contains all dishonest nodes in the system, includ-
ing nodes in X̄0 and the Sybil nodes attached to them. It
must hold that |X̄0| < |X̄S |, in case there is a Sybil attack.
Second we note that the probability of a transition be-
tween an honest node i ∈ X and a dishonest node j ∈ X̄
cannot increase through Sybil attacks, since it is equal to
Pij = min( 1

di
, 1
dj

). At worst the corrupt node will in-
crease its degree by connecting Sybils which has only the
potential to decrease this probability. Therefore we have
that

∑
x∈X̄S

∑
y 6∈X̄S

Pxy ≤
∑
x∈X̄0

∑
y 6∈X̄0

Pxy . Com-
bining the two inequalities we get that:

∑
y 6∈X̄S

Pxy

|X̄S |
<

∑
x∈X̄0

∑
y 6∈X̄0

Pxy

|X̄0|
⇔ (5)∑

y 6∈X̄S

1
|V |Pxy

|X̄S | 1
|V |

<

∑
x∈X̄0

∑
y 6∈X̄0

1
|V |Pxy

|X̄0| 1
|V |

⇔ (6)∑
y 6∈X̄S

π(x)Pxy
Π(X̄S)

<

∑
x∈X̄0

∑
y 6∈X̄0

π(x)Pxy
Π(X̄0)

⇔ (7)

Φ(X̄S) < Φ(X̄0). (8)

This result signifies that independently of the topology of
the adversary region the conductance of a sub-graph con-
taining Sybil nodes will be lower compared with the con-
ductance of the sub-graph of nodes that are simply com-
promised and connected to the social network. Lower
conductance in turn leads to slower mixing times be-
tween honest and dishonest regions [20] which means that
EXX > 0, even for very few Sybils. This deviation is
subject to the sampling variation introduced by the trace
T , but the error can be made arbitrarily small by sampling
more random walks in T .

These two results are very strong: they indicate that, in
theory, a set of compromised nodes connecting to honest
nodes in a social network, would get no advantage by con-
necting any additional Sybil nodes, since that would lead
to their detection. Sampling regions of the graph with ab-
normally small conductance, through the use of the ran-
dom walks T , should lead to their discovery, which is the
theoretical foundation of our technique. Furthermore we
established that techniques based on detecting abnormali-
ties in the value of EXX are strategy proof, meaning that
there is no attacker strategy (in terms of special adversary
topology) to foil detection.

4.2 Practical considerations

Models and assumptions are always an approximation
of the real world. As a result, careful evaluation is nec-
essary to ensure that the theorems are robust to deviations
from the ideal behaviour assumed so far.

The first practical issue concerns the fast mixing prop-
erties of social networks. There is a lot of evidence that
social networks exhibit this behaviour [18], and previous
proposals relating to Sybil defence use and validate the
same assumption [27, 26]. SybilInfer makes an further
assumption, namely that the modified random walk over
the social network, that yields a uniform distribution over
all nodes, is also fast mixing for real social networks. The
probability Pij = min( 1

di
, 1
dj

), depends on the mutual
degrees of the nodes i and j, and makes the transition to
nodes of higher degree less likely. This effect has the po-
tential to slow down mixing times in the honest case, par-
ticularly when there is a high variation in node degrees.
This effect can be alleviated by removing random edges
from high degree nodes to guarantee that the ratio of max-
imum and minimum node degree in the graph is bounded
(an approach also used by SybilLimit.)

The second consideration also relates to the fast mix-
ing properties of networks. While in theory fast mixing
networks should not exhibit any small cuts, or regions of
abnormally low conductance, in practice they do. This
is especially true for regions with new users that have not
had the chance to connect to many others, as well as social
networks that only contain users with particular charac-
teristics (like interest, locality, or administrative groups.)
Those regions yield, even in the honest case, sample cuts
that have the potential to be mistaken as attacks. This ef-
fect forces us to consider a threshold EXX under which
we consider cuts to be simply false positives. In turn this
makes the guarantees of schemes weaker in practice than
in theory, since the adversary can introduce Sybils into a
region undetected, as long as the set threshold EXX is not
exceeded.

The thresholdEXX is chosen to be α·EXXmax, where
EXXmax = 1

|X| −
1
|V | , and α is a constant between 0

and 1. Here α can be used to control the tradeoff between
false positives and false negatives. A higher value of alpha
enables the adversary to insert a larger number of sybils
undetected but reduces the false positives. On the other
hand, a smaller value of α reduces the number of Sybils
that can be introduced undetected but at the cost of higher
number of false positives.

Given these practical considerations, we can formulate
a weaker security guarantee for SybilInfer:

THEOREM C. Given a certain “natural” threshold
value for EXX in an honest social network, a dis-
honest region performing a Sybil attack will exceed
it after introducing a certain number of Sybil nodes.
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Figure 3. Synthetic Scale Free Topology: SybilInfer Evaluation as a function of additional Sybil
identities (ψ) introduced by colluding entities. False negatives denote the total number of dishon-
est identities accepted by SybilInfer while false positives denote the number of honest nodes that
are misclassified.

This theorem is the result of Theorem B that demonstrates
that the conductance keeps decreasing as the number of
Sybils attached to a dishonest region increases. This in
turn will slow down the mixing time between the hon-
est and dishonest region, leading to an increasingly large
EXX .

Intuitively, as the attack becomes larger, the cut be-
tween honest and dishonest nodes becomes increasingly
distinct, which makes Sybil detection easier. It is impor-
tant to note that as more Sybils are introduced into the
dishonest region, the probability of the whole region be-
ing detected as an attack increases, not only the new Sybil
nodes. This provides strong disincentives to the adver-
sary from performing larger Sybil attacks, since even pre-
viously undetected malicious nodes might be flagged as
Sybils.

4.3 Experimental evaluation using synthetic
data

We first experimentally demonstrate the validity of
Theorem C using synthetic topologies. Our experiments
consist of building synthetic social network topologies, in-
jecting a variable number of Sybil nodes, and applying
SybilInfer to establish how many of them are detected. A
key issue we explore is the number of introduced Sybil
nodes under which Sybil attacks are not detected.

Social networks exhibit a scale-free (or power law)
node degree topology [21]. Our network synthesis al-
gorithm replicates this structure through preferential at-
tachment, following the methodology of Nagaraja [18].
We create m0 initial nodes connected in a clique, and
then for each new node v, we create m new edges to
existing nodes, such that the probability of choosing any

given node is proportional to the degree of that node; i.e.:
Pr[(v, i)] = di∑

j dj
, where di is the degree of node i. In

our simulations, we use m = 5, giving an average node
degree of 10.

In such a scale free topology of 1000 nodes, we con-
sider a fraction f = 10% of the nodes to be compro-
mised by a single adversary. The compromised nodes are
distributed uniformly at random in the topology. Com-
promised nodes introduce ψ additional Sybil nodes and
establish a scale free topology amongst themselves. We
configure SybilInfer to use 20 samples for computing the
marginal probabilities, and label as honest the set of nodes
whose marginal probability of being honest is greater than
0.5. The experiment is repeated 100 times with different
scale free topologies.

Figure 3(a) illustrates the false positives and false neg-
atives classifications returned by SybilInfer, for varying
value of ψ, the number of additional Sybil nodes intro-
duced. We observe that when ψ < 100, α = 0.7 , then all
the malicious identities are classified as honest by Sybil-
Infer. However, there is a threshold at ψ = 100, be-
yond which all of the Sybil identities, including the ini-
tially compromised entities are flagged as attackers. This
is because beyond this point, theEXX for the Sybil region
exceeds the natural threshold leading to full detection, val-
idating Theorem C. The value ψ = 100 is clearly the op-
timal attack strategy, in which the attacker can introduce
the maximal number of Sybils without being detected. We
also note that even in the worst case, the false positives are
less than 5%. The false positive nodes have been misclas-
sified because these nodes are closer to the Sybil region;
SybilInfer is thus incentive compatible in the sense that
nodes which have mostly honest friends are likely not to
be misclassified.
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Figure 4. Scale Free Topology: fraction of
total malicious and Sybil identities as a func-
tion of real malicious entities.

We can also see the effect of varying the threshold
EXX . As α is increased from 0.65 to 0.7, the ψ for the
optimal attacker strategy increases from 70 to 100. This is
because an increase in the threshold EXX allows the ad-
versary to insert more Sybils undetected. The advantage
of increasing α lies in reducing the worst case false pos-
itives. We can see that by increasing α from 0.7 to 0.75,
the worst case false positives can be reduced from 5% to
2%.

Note that for the remainder of the paper, we shall use
α = 0.7.

We also wish to show that the security of our scheme
depends primarily on the number of colluding malicious
nodes and not on the number of attack edges. To this end,
we chose the compromised nodes to have the lowest num-
ber of attack edges (instead of choosing them uniformly
at random), and repeat the experiment. Figure 3(b) illus-
trates that the false positives and false negatives classifica-
tions returned by SybilInfer, where the average number of
attack edges are 500. Note that these results are very simi-
lar to the previous case illustrated in Figure 3(a), where the
number of attack edges is around 800. This analysis in-
dicates that the security provided by SybilInfer primarily
depends on the number of colluding entities. The implica-
tion is that the compromise of high degree nodes does not
yield any significant advantage to the adversary. As we
shall see, this is in contrast to SybilGuard and SybilLimit,
which are extremely vulnerable when high degree nodes
are compromised.

Our next experiment establishes the number of Sybil
nodes that can be inserted into a network given different
fractions of compromised nodes. We vary the fraction of
compromised colluding nodes f , and for each value of f ,
we compute the optimal number of additional Sybil iden-
tities that the attackers can insert, as in the previous exper-
iment.

Figure 4 presents a plot of the maximum Sybil iden-
tities as a function of the compromised fraction of nodes
f . Note that our theoretical prediction (which is strategy-
independent) matches closely with the attacker strategy
of connecting Sybil nodes in a scale free topology. The
adversary is able to introduce roughly about 1 additional
Sybil identity per real entity. For instance, at f = 0.2,
the total number of Sybil identities is 0.37. As we observe
from the figure the ability of the adversary to just include
about one additional Sybil identity per compromised node
embedded in the social network remains constant, no mat-
ter the fraction f of compromised nodes in the network.

4.4 Experimental evaluation using real-world
data

Next we validate the security guarantees provided by
SybilInfer using a sampled LiveJournal topology. A vari-
ant of snowball [9] sampling was used to collect the full
data set data, comprising over 100,000 nodes.

To perform our experiments we chose a random node
and collect all nodes in its three hop neighbourhood. The
resulting social network has about 50,000 nodes. We then
perform some pre-processing step on the sub-graph:

• Nodes with degree less than 3 are removed, to filter
out nodes that are too new to the social network, or
inactive.

• If there is an edge between A → B, but no edge
between B → A, then A → B is removed (to only
keep the symmetric friendship relationships.)

We note that despite this pre-processing nodes all degrees
can be found in the final dataset, since nodes with ini-
tial degree over 3 will have some edges removed reducing
their degree to less than 3.

After pre-processing, the social sub-graph consists of
about 33,000 nodes. First, we ran SybilInfer on this topol-
ogy without introducing any artificial attack. We found a
bottleneck cut diving off about 2, 000 Sybil nodes. It is
impossible to establish whether these nodes are false pos-
itives (a rate of 6%) or a real-world Sybil attack present
in the LiveJournal network. Since there is no way to es-
tablish ground truth, we do not label these nodes as either
honest/dishonest.

Next, we consider a fraction f of the nodes to be com-
promised and compute the optimal attacker strategy, as in
our experiments with synthetic data. Figure 5 shows the
fraction of malicious identities accepted by SybilInfer as
a function of fraction of malicious entitites in the system.
The trend is similar to our observations on synthetic scale
free topologies. At f = 0.2, the fraction of Sybil identities
accepted by SybilInfer is approximately 0.32.
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4.5 Comparison with SybilLimit and Sybil-
Guard

SybilGuard [27] and SybilLimit [26] are state of the art
decentralized protocols that defend against Sybil attacks.
Similar to SybilInfer, both protocols exploit the fact that a
Sybil attack disrupts the fast mixing property of the social
network topology, albeit in a heuristic fashion. A brief
overview of the two systems can be found in the appendix,
and their full descriptions is given in [27, 26].

Figure 6 compares the performance of SybilInfer with
the performance of SybilLimit. First it is worth noting
that the fraction of compromised nodes that SybilLimit
tolerates is only a small fraction of the range within which
SybilInfer provide its guarantees. SybilLimit tolerates up
to f = 0.02 compromised nodes when the degree of at-
tackers is low (about degree 5 – green line), while we have
already shown the performance of SybilLimit for compro-
mised fractions up to f = 0.35 in figure 4. Within the
interval SybilLimit is applicable, our system systemati-
cally outperforms: when very few compromised nodes are
present in the system (f = 0.01) our system only allows
them to control less than 5% of the entities in the system,
versus SybilLimit that allows them to control over 30%
of entities (rendering insecure byzantine fault tolerance
mechanisms that requires at least 2/3 honest nodes) At the
limit of SybilLimit’s applicability range when f = 0.02,
our approach caps the number of dishonest entities in the
system to fewer than 8%, while SybilLimit allows about
50% dishonest entities. (This large fraction renders leader
election or other voting systems ineffective.)

An important difference between SybilInfer and Sybil-
Limit is that the former is not sensitive to the degree of
the attacker nodes. SybilLimit provides very weak guar-
antees when high degree (e.g. degree 10 – red line) nodes
are compromised, and can protect the system only for
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Figure 6. Comparison with related work

f < 0.01. In this case SybilInfer allows for 5% total ma-
licious entities, while SybilLimit allows for over 50%.

This is an illustration that SybilInfer performs an or-
der of magnitude better than the state of the art both in
terms of range of applicability and performance within
that range (SybilGuard’s performance is strictly worse
than SybilLimit’s performance, and is not illustrated.) An
obvious question is: “why does SybilInfer perform so
much better than SybilGuard and SybilLimit?” It is partic-
ularly pertinent since all three systems are making use of
the same assumptions, and a similar intuition, that there
should be a “gap” between the honest and Sybil regions
of a social network. The reason SybilLimit and Sybil-
Guard provide weaker guarantees is that they interpret
these assumptions in a very sensitive way: they assume
that an overwhelming majority of random walks staring in
the honest region will stay in the honest region, and then
bound the number of walks originating from the Sybil re-
gion via the number of corrupt edges. As a result they
are very sensitive to the length of those walks, and can
only provide strong guarantees for a very small number of
corrupt edges. Furthermore the validation procedure re-
lies on collisions between honest nodes, via the birthday
paradox, which adds a further layer of inefficiency to esti-
mating good from bad regions.

SybilInfer, on the other hand, interprets the disruption
in fast-mixing between the honest and dishonest region
simply as a faint bias in the last node of a short random
walk (as illustrated in figures 2(a) and 2(b).) In our ex-
periments, as well as in theory, we observe a very large
fraction of the T walks crossing between the honest and
dishonest regions. Yet the faint difference in the probabil-
ity of landing on nodes in the honest and dishonest regions
is present, and the sampler makes use of it to get good cuts
between the honest and dishonest nodes.



4.6 Computational and time complexity

Two implementations of the SybilInfer sampler were
build in Python and C++, of about 1KLOC each. The
Python implementation can handle 10K node networks,
while the C++ implementation has handled up to 30K
node networks, returning results in seconds.

The implementation strategy for both samplers has fa-
voured a low time complexity over storage costs. The
critical loop performs O(|V | · log |V |) Metropolis Hast-
ings iterations per sample returned, each only requiring
about O(log |V |) operations. Two copies of the full state
are stored, as well as associated data that allows for fast
updating of the state, which requires O(|V |) storage. The
transcript of evidence traces T is also stored, as well as an
index over it, which dominates the storage required and
makes it order O(|V | · log |V |).

There is a serious time complexity penalty associated
with implementing non-naive sampling strategies. Our
Python implementation biases the candidate moves to-
wards nodes that are more or less likely to be part of the
honest set. Yet exactly sampling nodes from this known
probability distribution, naively may raise the cost of each
iteration to be O(|V |). Depending on the differential be-
tween the highest and lowest probabilities, faster sampling
techniques like rejection sampling [15] can be used to
bring the cost down. The Python implementation uses a
variant of Metropolis-Hastings to implement selection of
candidate nodes for the next move, at a computation cost
of O(log |V |). The C++ implementation uses naive sam-
pling from the honest or dishonest sets, and has a very low
cost per iteration of order O(1).

The Markov chain sampling techniques used consider
sequences of states that are very close to each other, dif-
fering at most by a single node. This enables a key
optimization, where the counts NXX , NXX̄ , NX̄X and
NX̄X̄ are stored for each state and updated when the state
changes. This simple variant of self-adjusting computa-
tion [1], allows for very fast computations of the proba-
bilities associated with each state. Updating the counts,
and associated information is an order O(log |V |) opera-
tion. The alternative, of recounting these quantities from
T would cost O(|V | log |V |) for every iteration, leading
to a total computational complexity for our algorithm of
O((|V | log |V |)2). Hence implementing it is vital to get-
ting results fast.

Finally our implementations use a zero-copy strategy
for the state. Two states and all associated information are
maintained at any time, the current state and the candi-
date state. Operations on the candidate state can be done
and undone in O(log |V |) per operation. Accepted moves
can be committed to the current state at the same cost.
These operations can be used to maintain the two states
synchronised for use by the Metropolis-Hastings sampler.
The naive strategy of re-writing the full state would cost

O(|V |) per iteration, making the overall complexity of the
scheme O(|V |2 log |V |).

5 Deployment Strategies

So far we presented an overview of the SybilInfer algo-
rithm, as well as a theoretical and empirical evaluation of
its performance when it comes to detecting Sybil nodes.
The core of the algorithm outperforms SybilGuard and
SybilLimit, and is applicable in settings beyond which
the two systems provide no security guarantees whatso-
ever. Yet a key difference between the previous systems
and SybilInfer is the latter’s reliance on the full friendship
graph to perform the random walks that drive the infer-
ence engine. In this section we discuss how this constraint
still allows SybilInfer to be used for important classes of
applications, as well as how it can be relaxed to accom-
modate peer-to-peer systems with limited resources per
client.

5.1 Full social graph knowledge

The most straightforward way of applying SybilInfer
is using the full graph of a social network to infer which
nodes are honest and which nodes are Sybils, given a
known honest seed node. This is applicable to centralised
on-line services, like free email hosting services, blogging
sites, and discussion forums that want to deter spammers.
Today those systems use a mixture of CAPTCHA [25]
and network based intrusion detection to eliminate mass
attacks. SybilInfer could be used to either complement
those mechanisms and provide additional information as
to which identities are suspicious, or replace those sy-
stems when they are expensive and error prone. One of
the first social network based Sybil defence systems, Ad-
vogato [14], worked in such a centralized fashion.

The need to know the social graph does not preclude
the use of SybilInfer in distributed or even peer-to-peer sy-
stems. Social networks, once mature, are generally stable
and do not change much over time. Their rate of change
is by no means comparable to the churn of nodes in the
network, and as a result the structure of the social network
could be stored and used to perform inference on multiple
nodes in a network, along with a mechanisms to share oc-
casional updates. The storage overhead for storing large
social networks is surprisingly low: a large social network
with 10 billion nodes (roughly the population of planet
earth) with each node having about 1000 friends, can be
stored in about 187Gb of disk space uncompressed. In
such settings it is likely that SybilInfer computation will
be the bottleneck, rather than storage of the graph, for the
foreseeable future.

A key application of Sybil defences is to ensure that
volunteer relays in anonymous communication networks
belong to independent entities, and are not controlled



by a single adversary. Practical systems like Mixmas-
ter [17], Mixminion [5] and Tor [7] operate such a volun-
teer based anonymity infrastructure, that are very suscep-
tible to Sybil attacks. Extending such an infrastructure to
use SybilInfer is an easy task: each relay in the system
would have to indicate to the central directory services
which other nodes it considers honest and non-colluding.
The graph of nodes and mutual trust relations can be used
to run SybilInfer centrally by the directory service, or by
each individual node that wishes to use the anonymizing
service. Currently, the largest of those services, the Tor
network has about 2000 nodes, which is well within the
computation capabilities of our implementations.

5.2 Partial social graph knowledge

SybilInfer can be used to detect and prevent Sybil at-
tacks, using only a partial view of the social graph. In the
context of a distributed or peer-to-peer system each user
discovers only a fixed diameter sub-graph around them.
For example a user may choose to retrieve and store all
other users two or three hops away in the social network
graph, or discover a certain threshold of nodes in a breadth
first manner. SybilInfer is then applied on the extracted
sub-graph to detect potential Sybil regions. This allows
the user to prune its social neighbourhood from any Sybil
attacks, and is sufficient for selecting a set of honest nodes
when sampling from the full network is not required. Dis-
tributed backup and storage, and all friend and friend-
of-friend based sharing protocols can benefit from such
protection. The storage and communication cost of this
scheme is constant and relative to the number of nodes in
the chosen neighbourhood.

In cases where nodes can afford to know a larger frac-
tion of the social graph, they could choose to discover
O(c ·

√
|V |) nodes in their neighbourhood, for some small

integer c. This increases the chances two arbitrary nodes
have to know a common node, that can perform the Sybil-
Infer protocol and act as an introduction point for the
nodes. In this protocol Alice and Bob want to ensure the
other party is not a Sybil. They find a node C that is in the
c ·

√
|V neighbourhood of both of them, and each make

sure that with high probability it is honest. They then con-
tact node C that attests to both of them, given its local
run of the SybilInfer engine, that they are not Sybil nodes
(with C as the honest seed.) This protocol introduces a
single layer of transitive trust, and therefore it is neces-
sary for Alice and Bob to be quite certain that C is indeed
honest. Its storage and communication cost is O(

√
|V |),

which is the same order of magnitude as SybilLimit and
SybilGuard. Modifying this simple minded protocol into
a fully fledged one-hop distributed hash table [13] is an
interesting challenge for future work.

SybilInfer can also be applied to specific on-line com-
munities. In such cases a set of nodes belonging to a cer-

tain community of interest (a social club, a committee, a
town, etc.) can be extracted to form a sub-graph. SybilIn-
fer can then be applied on this partial view of the graph,
to detect nodes that are less well integrated than others in
the group. There is an important distinction between us-
ing SybilInfer in this mode or using it with the full graph:
while the results using the full graph output an “absolute”
probability for each node being a Sybil, applying SybilIn-
fer to a partial view of the network only provides a “rel-
ative” probability the node is honest in that context. It is
likely that nodes are tagged as Sybils, because they do not
have many contacts within the select group, which given
the full graph would be classified as honest. Before ap-
plying SybilInfer in this mode it is important to assess, at
least, whether the subgroup is fast-mixing or not.

5.3 Using SybilInfer output optimally

Unlike previous systems the output of the SybilInfer
algorithm is a probabilistic statement, or even more gen-
erally, a set of samples that allows probabilistic statements
to be estimated. So far in the work we discussed how to
make inferences about the marginal probability specific
nodes are honest of dishonest by using the returned sam-
ples to compute Pr[i is honest] for all nodes i. In our ex-
periments we applied a 0.5 threshold to the probability to
classify nodes as honest or dishonest. This is a rather lim-
ited use of the richer output that SybilInfer provides.

Distributed system applications can, instead of using
marginal probabilities of individual nodes, estimate the
probability that the particular security guarantees they re-
quire hold. High latency anonymous communication sy-
stems, for example, require a set of different nodes such
that with high probability at least one of them is honest.
Path selection is also subject to other constraints (like la-
tency.) In this case the samples returned by SybilInfer
can be used to calculate exactly the sought probability, i.e.
the probability a single node in the chosen path is hon-
est. Onion routing based system, on the other hand are
secure as long as the first and last hop of the relayed com-
munication is honest. As before, the samples returned by
SybilInfer can be used to choose a path that has a high
probability to exhibit this characteristic.

Other distributed applications, like peer-to-peer storage
and retrieval have similar needs, but also tunable param-
eters that depend on the probability of a node being dis-
honest. Storage systems like OceanStore, use Rabin’s in-
formation dispersion algorithm to divide files into chunks
stored and retrieved to reconstruct a file. The degree of
redundancy required crucially depends on the probability
nodes are compromised. Such algorithms can use SybilIn-
fer to foil Sybil attacks, and calculate the probability the
set of nodes to be used to store particular files contains
certain fractions of honest nodes. This probability can in
turn inform the choice of parameters to maximise the sur-



vivability of the files.
Finally a note of warning should accompany any Sybil

prevention scheme: it is not the goal of SybilInfer (or any
other such scheme) to ensure that all adversary nodes are
filtered out of the network. The job of SybilInfer is to
ensure that a certain fraction of existing adversary nodes
cannot significantly increase its control of the system by
introducing ‘fake’ Sybil identities. As it is illustrated by
the examples on anonymous communications and stor-
age, system specific mechanisms are still crucial to ensure
that a minority of adversary entities cannot compromise
any security properties. SybilInfer can only ensure that
this minority remains a minority and cannot artificially in-
crease its share of the network.

Sybil defence schemes are also bound to contain false-
positives, namely honest nodes labeled as Sybils. For this
reason other mechanisms need to be in place to ensure that
those users can seek a remedy to the automatic classifica-
tion they suffered from the system, potentially by making
some additional effort. Proofs-of-work, social introduc-
tion services, or even payment targeting those users could
be a way of ensuring SybilInfer is not turned into an auto-
mated social exclusion mechanism.

6 Conclusion

We presented SybilInfer, an algorithm aimed at detect-
ing Sybil attacks against peer-to-peer networks or open
services, and label which nodes are honest and which are
dishonest. Its applicability and performance in this task is
an order of magnitude better than previous systems mak-
ing similar assumptions, like SybilGuard and SybilLimit,
even though it requires nodes to know a substantial part of
the social structure within which honest nodes are embed-
ded. SybilInfer illustrates how robust Sybil defences can
be bootstrapped from distributed trust judgements, instead
of a centralised identity scheme. This is a key enabler for
secure peer-to-peer architectures as well as collaborative
web 2.0 applications.

SybilInfer is also significant due to the use of machine
learning techniques and their careful application to a secu-
rity problem. Cross disciplinary designs are a challenge,
and applying probabilistic techniques to system defence
should not be at the expense of strength of protection, and
strategy-proof designs. Our ability to demonstrate that the
underlying mechanisms behind SybilInfer is not suscepti-
ble to gaming by an adversary arranging its Sybil nodes in
a particular topology is, in this aspect, a very import part
of the SybilInfer security design.

Yet machine learning techniques that take explicitly
into account noise and incomplete information, as the one
contained in the social graphs, are key to building secu-
rity systems that degrade well when theoretical guarantees
are not exactly matching a messy reality. As security in-
creasingly becomes a “people” problem, it is likely that

approaches that treat user statements beyond just black
and white and make explicit use of probabilistic reasoning
and statements as their outputs will become increasingly
important in building safe systems.
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A An overview of SybilGuard and Sybil-
Limit

A.1 SybilGuard

In SybilGuard, each node first obtains
√
n independent

samples from the set of honest nodes of size n. Since, for

a given honest network size n, the mixing time of the so-
cial network is O(log n), it suffices to use a long random
walk of length w =

√
n · log n to gather those samples.

To prevent active attacks biasing the samples, SybilGuard
performs the random walk over constrained random route.
Random routes require each node to use a pre-computed
random permutation as a one to one mapping from incom-
ing edges to outgoing edges giving them the following im-
portant properties:

• Convergence: Two random routes entering an honest
node along the same edge will always exit along the
same edge.

• Back-traceability: The outgoing edge of a random
route uniquely determines the incoming edge at an
honest node.

Since the size of the set of honest nodes, n is unknown,
SybilGuard requires an estimation technique to figure the
needed length of the random route.

The validation criterion for accepting a node as hon-
est in SybilGuard is that there should be an intersection
between the random route of the verifier node and the sus-
pect node. It can be shown using the birthday paradox
that if two honest nodes are able to obtain

√
n samples

from the honest region, then their samples will have an
non empty intersection with high probability, and will thus
be able to validate each other.

There are cases when the random route of an honest
node ends up within the Sybil region, leading to a “bad”
sample, and the possibility of accepting Sybil nodes as
honest. Thus, SybilGuard is only able to provide bounds
on the number of Sybil identities if such an event is rare,
which translates into an assumption that the maximum
number of attack edges is g = o(

√
n

logn ). To further reduce
the effects of random routes entering the Sybil region (bad
samples), nodes in SybilGuard can perform random routes
along all their edges and validate a node only if a major-
ity of these random routes have an intersection with the
random routes of the suspect.

SybilGuard’s security really depends on the number of
attack edges in the system, connecting honest and dishon-
est users. To intersect a verifier’s random route, a sybil
node’s random route must traverse an attack edge (say A).
Due to the convergence property, the random routes of all
sybil nodes traversing A will intersect the verifier’s ran-
dom route at the same node and along the same edge. All
such nodes form an equivalence group from the verifier’s
perspective. Thus, the number of sybil groups is bounded
by the number of attack edges, i.e. g. Moreover, due to
the back-traceability property, there can be at most w dis-
tinct routes that intersect the verifiers route at a particular
node and a particular edge. Thus, there is a bound on the
size of the equivalence groups. To sum up, SybilGuard
divides the accepted nodes into equivalence groups, with
the guarantee that there are at most g sybil groups whose



maximum size is w.
Unlike SybilInfer, nodes in SybilGuard do not require

knowledge of the complete network topology. On the
other hand, the bounds provided by SybilGuard are quite
weak: in a million node topology, SybilGuard accepts
about 2000 Sybil identities per attack edge! (Attack
edges are trust relations between an honest and a dishon-
est node.) Since the bounds provided by SybilGuard de-
pend on the number of attack edges, high degree nodes
would be attractive targets for the attackers. To use the
same example, in a million node topology, the compro-
mise of about 3 high degree nodes with about 100 attack
edges each enables the adversary to control more than 1/3
of all identities in the system, and thus prevent honest
nodes from reaching byzantine consensus. In contrast, the
bounds provided by SybilInfer depend on the number of
colluding entities in the social network, and not on the
number of attack edges. Lastly, SybilGuard is only able
to provide bounds on Sybil identities when g = o(

√
n

logn ),
while SybilInfer is not bound by any such threshold on the
number of colluding entities.

A.2 SybilLimit

In contrast to SybilGuard’s methodology of using a
single instance of a very long random route, SybilLimit
employs multiple instances (

√
m) of short random walks

(O(log n)) to sample nodes from the honest set, where m
denotes the number of edges amongst the honest nodes. It
can be shown that as long as g = o( n

logn ), then with high
probability, a short random walk is likely to stay within
the set of honest nodes, i.e., the probability of a sample
being “bad” is small. The validation criterion for accept-
ing a node as honest in SybilLimit is that there should be
an intersection amongst the last edge (i.e. the tail) of the
random routes of the verifier and the suspect. Similar to
SybilGuard, it can be shown using the birthday paradox
that two honest nodes will validate each other with high
probability. Note that if a random route enters the sybil
region, then the malicious tail of that route could adver-
tise intersections with many sybil identities. To counter
this attack, a further “balance” condition is imposed that
ensures that a particular intersection cannot validate arbi-
trary number of identities. Sybil identities can induce a
total of g ·w ·m intersections at honest tails. Thus, for ev-
ery attack edge, SybilLimit accepts at most w = O(log n)
sybil identities.

A key shortcoming of SybilLimit is its reliance on the
value of w = O(log n), the length of the short random
walk, without any mechanisms to estimate it. Yet the cor-
rect estimation of this parameter is essential to calculate
the security bounds of the scheme. Underestimating it is
leads to an increase of false positives, while overestimat-
ing it will result in the random walks ending in the Sybil
region, allowing the adversary to fake intersections with

sybil identities.
Assuming there was a way to estimate all parame-

ter required by SybilLimit, our proposal, SybilInfer, pro-
vides an order of magnitude better guarantees. Further-
more these guarantees relate to the number of (real) dis-
honest entities in the system, unlike SybilLimit that de-
pends on number of attack edges. As noted, in com-
parison with SybilGuard, SybilInfer does not assume any
threshold on the number of colluding entities, while Sybil-
Limit can bound the number of sybil identities only when
g = o( n

logn ).


