
OPTLS and TLS 1.3

Hugo Krawczyk, Hoeteck Wee

1

TRON Workshop

2/21/2016

Plan

 Explain OPTLS approach and modes (handshake only)

 Highlight protocol concept and simplicity

 Common logic to all protocol modes (helps analysis and maintenance)

 Important feature: No new/fancy crypto, just careful engineering!

(boring is good)

 Show how OPTLS modes translate into TLS 1.3 handshake modes

 How the structure and approach (and analysis) of OPTLS still underlie

TLS 1.3 and why this is a good thing.

 Mention the “key freshness” principle and why we should keep it

 Time permitting: Discuss KDF, Client authentication, SNI encryption

2

Motivating Requirements

 Forward secrecy, 0-RTT, ECC-centric ( DH-based design)

 Simplicity, uniformity (minimize code flows, use KDF to drive modes),

allow for performance optimizations

 Amenable to analysis: Uniform logic across different modes

 DH and MAC-centric

 Easy to extend and maintain (“design robustness”)

 Note: We only deal with the handshake protocol in this talk and ignore

handshake encryption for now

 It was “without loss of generality” till a few days ago and an annoying nuisance now

(but not a game changer for this presentation)

 3

 C-Hello, gx

OPTLS Starting Point (DH certs)

4

 S-Hello, gy,

S C

 S-Finished = PRF(gxs ; transcript); gxs defined via gs (gs to be defined)

nonces, gy, …

S-Finished

 C-Hello, gx , [C-EarlyData]

OPTLS Starting Point (DH certs)

5

 S-Hello, gy,

S C

 S-Finished = PRF(gxs ; transcript); gxs defined via gs (gs to be defined)

 DH-cert: Server’s identity, key gs, CA signature on gs and identity

 DH-cert can be omitted if client has cached key gs

 Caching enables 0-RTT: C-EarlyData = Enc(gxs ; early-data)

 Omitted for now (as not essential for basic KE security):

 DH-cert encryption and client’s Finish (added later as important enhancers)

 [DH-cert], S-Finished

OPTLS with Online Signatures

6

 C-Hello, gx, [C-EarlyData]

S-Hello, gy, [gs, sig] , S-Finished

S C

 DH-cert replaced by (gs, sig) where sig = S-cert + SigS(gs, nonces, …)

 Nonces  Signature is fresh

 DH-cert logic applied here too but with fresh online signatures

(instead of CA/offline ones)

 Transcript authentication via S-Finish (sig  gs  Finish  Transcript)

OPTLS with Ephemeral gs

7

 C-Hello, gx, [C-EarlyData]

S-Hello, gy, [gs, sig] , S-Finished

S C

 DH-cert replaced by (gs, sig) where sig = S-cert + SigS(gs, nonces, …)

 Observation: If gs is ephemeral (used once) then protocol is still secure

 Identifying gs with gy we get a mode without server’s static key

 gy, SigS(gy, nonces), S-Finished = PRF(gxy; transcript) (“use-once static”)

 Original DH-cert logic still applies (“uniform logic across modes”)

 Transcript authent’n via S-Finished (sig  gy ≡ gs  Finish  Transcript)

.

 C-Hello, gx, [C-EarlyData]

C-EarlyData: Enc(gxs ; early-data)

[gs, sig]: gs, S-cert, SigS(gs, nonces)

S-Finished: PRF(gxs ; transcript)

8

S-Hello, gy, [gs, sig], S-Finished

S C

 Cached modes derive keys from both gxs and gxy, ephemeral only from gxy

 Cached 1-RTT: Basic protocol only; Cached gs; no early data

 Cached 0-RTT: Basic + C-EarlyData; Cached gs; early data

 Ephemeral 1-RTT: Basic + [gs, sig]; No caching; gs  gy

 Optimal performance (TLS 1.3 “sacrifices” optimality with added signatures)

 Not in TLS 1.3: DH certs (DH-cert instead of [gs, sig]) or its “offline sig” variant

Summary: OPTLS Modes

(0 sig, 2 exp)

(0 sig, 2 exp)

(1 sig, 1 exp)

OPTLS Extension for PSK Modes

 PSK = Pre-shared key mode, with and without PFS, and a basis for

the session resumption mode:

 Simply replace gxs with PSK; PSK  Finish  Transcript

 The benefit of uniformity and Finished-based authentication

9

Uniformity: Server Authentication

 0-RTT: cached gs  Finish  Transcript

 1-RTT: sig  gs / gy  Finish  Transcript

 PSK: PSK  Finish  Transcript

 (DH-cert: cert  gs  Finish  Transcript)

10

OPTLS in TLS 1.3

 Same modes as OPTLS augmented with:

 Signatures in all non-PSK modes (including cached modes)

 Added for uniformity of specification and implementation

 Not essential for basic KE security but adds value:

 Shows continuous possession of signing key by server;

 Helps against cross protocol attack [Jager et al] (RSA key dual use)

 Costs extra signature in cached modes (cheap for ECDSA expensive
for RSA)

 Client Finished: Key confirmation (esp. to identify 0-RTT replay); UC security

 KDF inputs: Minimalist(OPTLS), Maximalist in TLS 1.3 (robustness)

 Finished key computed based on both gxs and gxy (requires tweak to analysis)

11

OPTLS in TLS 1.3 Handshake

 In spite of additions, the OPTLS underlying design is preserved

 Particularly, the uniform logic (as well as the KDF)

 Important: OPTLS analysis still applicable to TLS 1.3

 Even though TLS 1.3 now looks very signature oriented, OPTLS shows

some of these signatures to be non-essential

 “TLS 1.3 handshake = OPTLS in (signature) disguise”

 Recent debate: Handshake traffic key = application traffic key ?

 Breaks key freshness/indistinguishability principle (not a generic KE)

 Important to keep modularity for design, analysis, maintanance

 Would not change OPTLS applicability to TLS 1.3 but analysis needs to
be adjusted (key exchange guarantee is weakened)

12

Beyond TLS 1.3

 OPTLS can inform future variants/changes/extensions/optimizations

 Potential TLS 1.3 extensions supported through OPTLS approach:

 A simple DH-cert solution

 With DH-based client auth’n, enables very efficient HMQV-like protocols

 “Offline signature solution”

 Server’s DH cert replaced w/ signature cert plus (offline) signature on gs

 Post-quantum transition: Static QR encryption + ephemeral ECC DH

 Cool SNI encryption solution

13

Concluding Remarks

 OPTLS unifying logic  design, analysis, extensions, maintenance

 Directly relevant to TLS 1.3 in spite of added signatures

 KDF at the service of streamlined code: Modes defined via key

derivation (+HKDF: yet another unifying tool)

 Future: Will we see a simple DH-cert based solution implemented?

 Present: Will we go back to “key freshness”?

 Client authentication: Do we care about deniability?

 Avoid signing the server’s identity (requires care)

 “SIGMAC Compiler”

14

Final Remark

 Ban proof-less crypto (though crypto with proofs is not failure-proof;

need to be as robust as possible to misuse – the simpler the better)

 Bottom Up vs Top Down analysis

 Bottom up (reductionist) approach: great “proof-driven” design tool and

foundation for protocol logic; informs other tools; but “human-intensive”

(prone to mistakes and can’t handle high complexity)  OPTLS

 Top down (automated) approach: Build on bottom up designs but can deal

with more complexity and, most importantly, with the soundness of

comprehensive specification and implementation  miTLS, Tamarin, …

 Both approaches instrumental in ensuring a secure design

 OPTLS not intended as full design, or full analysis, of TLS 1.3 but to

inform its core crypto design (much left out; e.g. mode composition)

15

Thanks!

16

OPTLS: http://eprint.iacr.org/2015/978

Notes on KDF

 KDF: Not covered here (would need another ½ hour)

 But a fundamental piece in OPTLS and TLS 1.3 design (driver for

different modes – a uniform derivation path, via value setting)

 The ultimate example of HKDF design rationale:

 It uses the full range of functionalities: Extraction, Expand, PRF, RO

 All under the same primitive and flexible for different analyses (e.g. RO)

 Example: master_secret = KDF(salt=gxs, source=gxy)

 If gxs secure then HMAC as PRF, if gxs leaked then HMAC as Extractor

 Compare with master_secret = H(gxs) xor H(gxy) when gxs=gxy

17

SIGMAC: Privacy-Friendly
Client Authentication

 A compiler from unilateral-to-mutual authentication

 Applicable to client authentication in TLS 1.3 (including post-handshake)

 Avoids signing the server’s identity (by the client)

 Raises some unexpected subtleties (need for including S-Finished

under client’s signature is one of them)

 Follows the SIGMA (“SIGn-and-Mac”) approach

 SIGMAC: Add the following to a server-authenticated KE:

 Signature: Client signs parts of the transcript (complier tells you what),

without including the server identity

 MAC: Include under client’s Finished the client’s and server’s identities

18

SNI Encryption using OPTLS

19

C
 C-Hello, gx, Enc(gxs ; SNI) C-Hello, gx, gxs

S-Hello, gy, S-Finish

G

gs s

W

 y

 C can compute key material since it knows x, gs, gy;

 W can compute it since it knows gx, y, gxs

 G cannot read traffic as it does not have y

TLS handshake and session continues as usual b/w C and W

Decrypts
SNIW

