
OPTLS and TLS 1.3

Hugo Krawczyk, Hoeteck Wee

1

TRON Workshop

2/21/2016

Plan

 Explain OPTLS approach and modes (handshake only)

 Highlight protocol concept and simplicity

 Common logic to all protocol modes (helps analysis and maintenance)

 Important feature: No new/fancy crypto, just careful engineering!

(boring is good)

 Show how OPTLS modes translate into TLS 1.3 handshake modes

 How the structure and approach (and analysis) of OPTLS still underlie

TLS 1.3 and why this is a good thing.

 Mention the “key freshness” principle and why we should keep it

 Time permitting: Discuss KDF, Client authentication, SNI encryption

2

Motivating Requirements

 Forward secrecy, 0-RTT, ECC-centric (DH-based design)

 Simplicity, uniformity (minimize code flows, use KDF to drive modes),

allow for performance optimizations

 Amenable to analysis: Uniform logic across different modes

 DH and MAC-centric

 Easy to extend and maintain (“design robustness”)

 Note: We only deal with the handshake protocol in this talk and ignore

handshake encryption for now

 It was “without loss of generality” till a few days ago and an annoying nuisance now

(but not a game changer for this presentation)

 3

 C-Hello, gx

OPTLS Starting Point (DH certs)

4

 S-Hello, gy,

S C

 S-Finished = PRF(gxs ; transcript); gxs defined via gs (gs to be defined)

nonces, gy, …

S-Finished

 C-Hello, gx , [C-EarlyData]

OPTLS Starting Point (DH certs)

5

 S-Hello, gy,

S C

 S-Finished = PRF(gxs ; transcript); gxs defined via gs (gs to be defined)

 DH-cert: Server’s identity, key gs, CA signature on gs and identity

 DH-cert can be omitted if client has cached key gs

 Caching enables 0-RTT: C-EarlyData = Enc(gxs ; early-data)

 Omitted for now (as not essential for basic KE security):

 DH-cert encryption and client’s Finish (added later as important enhancers)

 [DH-cert], S-Finished

OPTLS with Online Signatures

6

 C-Hello, gx, [C-EarlyData]

S-Hello, gy, [gs, sig] , S-Finished

S C

 DH-cert replaced by (gs, sig) where sig = S-cert + SigS(gs, nonces, …)

 Nonces Signature is fresh

 DH-cert logic applied here too but with fresh online signatures

(instead of CA/offline ones)

 Transcript authentication via S-Finish (sig gs Finish Transcript)

OPTLS with Ephemeral gs

7

 C-Hello, gx, [C-EarlyData]

S-Hello, gy, [gs, sig] , S-Finished

S C

 DH-cert replaced by (gs, sig) where sig = S-cert + SigS(gs, nonces, …)

 Observation: If gs is ephemeral (used once) then protocol is still secure

 Identifying gs with gy we get a mode without server’s static key

 gy, SigS(gy, nonces), S-Finished = PRF(gxy; transcript) (“use-once static”)

 Original DH-cert logic still applies (“uniform logic across modes”)

 Transcript authent’n via S-Finished (sig gy ≡ gs Finish Transcript)

.

 C-Hello, gx, [C-EarlyData]

C-EarlyData: Enc(gxs ; early-data)

[gs, sig]: gs, S-cert, SigS(gs, nonces)

S-Finished: PRF(gxs ; transcript)

8

S-Hello, gy, [gs, sig], S-Finished

S C

 Cached modes derive keys from both gxs and gxy, ephemeral only from gxy

 Cached 1-RTT: Basic protocol only; Cached gs; no early data

 Cached 0-RTT: Basic + C-EarlyData; Cached gs; early data

 Ephemeral 1-RTT: Basic + [gs, sig]; No caching; gs gy

 Optimal performance (TLS 1.3 “sacrifices” optimality with added signatures)

 Not in TLS 1.3: DH certs (DH-cert instead of [gs, sig]) or its “offline sig” variant

Summary: OPTLS Modes

(0 sig, 2 exp)

(0 sig, 2 exp)

(1 sig, 1 exp)

OPTLS Extension for PSK Modes

 PSK = Pre-shared key mode, with and without PFS, and a basis for

the session resumption mode:

 Simply replace gxs with PSK; PSK Finish Transcript

 The benefit of uniformity and Finished-based authentication

9

Uniformity: Server Authentication

 0-RTT: cached gs Finish Transcript

 1-RTT: sig gs / gy Finish Transcript

 PSK: PSK Finish Transcript

 (DH-cert: cert gs Finish Transcript)

10

OPTLS in TLS 1.3

 Same modes as OPTLS augmented with:

 Signatures in all non-PSK modes (including cached modes)

 Added for uniformity of specification and implementation

 Not essential for basic KE security but adds value:

 Shows continuous possession of signing key by server;

 Helps against cross protocol attack [Jager et al] (RSA key dual use)

 Costs extra signature in cached modes (cheap for ECDSA expensive
for RSA)

 Client Finished: Key confirmation (esp. to identify 0-RTT replay); UC security

 KDF inputs: Minimalist(OPTLS), Maximalist in TLS 1.3 (robustness)

 Finished key computed based on both gxs and gxy (requires tweak to analysis)

11

OPTLS in TLS 1.3 Handshake

 In spite of additions, the OPTLS underlying design is preserved

 Particularly, the uniform logic (as well as the KDF)

 Important: OPTLS analysis still applicable to TLS 1.3

 Even though TLS 1.3 now looks very signature oriented, OPTLS shows

some of these signatures to be non-essential

 “TLS 1.3 handshake = OPTLS in (signature) disguise”

 Recent debate: Handshake traffic key = application traffic key ?

 Breaks key freshness/indistinguishability principle (not a generic KE)

 Important to keep modularity for design, analysis, maintanance

 Would not change OPTLS applicability to TLS 1.3 but analysis needs to
be adjusted (key exchange guarantee is weakened)

12

Beyond TLS 1.3

 OPTLS can inform future variants/changes/extensions/optimizations

 Potential TLS 1.3 extensions supported through OPTLS approach:

 A simple DH-cert solution

 With DH-based client auth’n, enables very efficient HMQV-like protocols

 “Offline signature solution”

 Server’s DH cert replaced w/ signature cert plus (offline) signature on gs

 Post-quantum transition: Static QR encryption + ephemeral ECC DH

 Cool SNI encryption solution

13

Concluding Remarks

 OPTLS unifying logic design, analysis, extensions, maintenance

 Directly relevant to TLS 1.3 in spite of added signatures

 KDF at the service of streamlined code: Modes defined via key

derivation (+HKDF: yet another unifying tool)

 Future: Will we see a simple DH-cert based solution implemented?

 Present: Will we go back to “key freshness”?

 Client authentication: Do we care about deniability?

 Avoid signing the server’s identity (requires care)

 “SIGMAC Compiler”

14

Final Remark

 Ban proof-less crypto (though crypto with proofs is not failure-proof;

need to be as robust as possible to misuse – the simpler the better)

 Bottom Up vs Top Down analysis

 Bottom up (reductionist) approach: great “proof-driven” design tool and

foundation for protocol logic; informs other tools; but “human-intensive”

(prone to mistakes and can’t handle high complexity) OPTLS

 Top down (automated) approach: Build on bottom up designs but can deal

with more complexity and, most importantly, with the soundness of

comprehensive specification and implementation miTLS, Tamarin, …

 Both approaches instrumental in ensuring a secure design

 OPTLS not intended as full design, or full analysis, of TLS 1.3 but to

inform its core crypto design (much left out; e.g. mode composition)

15

Thanks!

16

OPTLS: http://eprint.iacr.org/2015/978

Notes on KDF

 KDF: Not covered here (would need another ½ hour)

 But a fundamental piece in OPTLS and TLS 1.3 design (driver for

different modes – a uniform derivation path, via value setting)

 The ultimate example of HKDF design rationale:

 It uses the full range of functionalities: Extraction, Expand, PRF, RO

 All under the same primitive and flexible for different analyses (e.g. RO)

 Example: master_secret = KDF(salt=gxs, source=gxy)

 If gxs secure then HMAC as PRF, if gxs leaked then HMAC as Extractor

 Compare with master_secret = H(gxs) xor H(gxy) when gxs=gxy

17

SIGMAC: Privacy-Friendly
Client Authentication

 A compiler from unilateral-to-mutual authentication

 Applicable to client authentication in TLS 1.3 (including post-handshake)

 Avoids signing the server’s identity (by the client)

 Raises some unexpected subtleties (need for including S-Finished

under client’s signature is one of them)

 Follows the SIGMA (“SIGn-and-Mac”) approach

 SIGMAC: Add the following to a server-authenticated KE:

 Signature: Client signs parts of the transcript (complier tells you what),

without including the server identity

 MAC: Include under client’s Finished the client’s and server’s identities

18

SNI Encryption using OPTLS

19

C
 C-Hello, gx, Enc(gxs ; SNI) C-Hello, gx, gxs

S-Hello, gy, S-Finish

G

gs s

W

 y

 C can compute key material since it knows x, gs, gy;

 W can compute it since it knows gx, y, gxs

 G cannot read traffic as it does not have y

TLS handshake and session continues as usual b/w C and W

Decrypts
SNIW

