
ProScript TLS:
Building a TLS 1.3 Implementation
with a Verifiable Protocol Model

Karthikeyan Bhargavan
Nadim Kobeissi
Bruno Blanchet

miTLS: reference implementation of TLS 1.0-1.2

flexTLS: specification-based testing for TLS

Goal: get developers to run light-weight analysis

A reference implementation of TLS in JavaScript

•  Not a cryptographic proof!

Current implementation status

Current verification status

Draft 11 specification

Complex key schedule

Client knows S’s
semi-static key gs

Client auth block

0-RTT data

Server Auth Block

Server Semi-Static

1.5-RTT Data

Client auth block (again)

1-RTT Data

Composite Data Stream

Handshake messages processed in flights

Client Server
send_client_hello recv_client_hello
recv_server_hello send_server_finished
recv_server_finished recv_client_finished
write_data write_data
read_data read_data

Add new features,
implement attacks

Deconstruct TLS source

Extract, verify in ProVerif

Analysis:
Weaknesses in

0-RTT Client Auth

Security Goals:

0-RTT data is not forward secret if s is leaked

0-RTT data + client auth is replayable

In draft >= 8,
1-RTT server

does not prove
posession of s

In draft 7,
auth context did
not include certS

Attacker knows s

Inject data after
authentication

If client ephemeral x is leaked,
attacker can forward 0-RTT client auth forever

If attacker knows x,
it can reuse

client’s auth block
any number of times

•  0-RTT Auth is replayable
and amplifies attacks on 0.5-RTT responses

•  0-RTT Auth is not forward-secure if s leaks
•  0-RTT Auth is vulnerable to KCI if s leaks
•  0-RTT Auth leaks signature capability if x leaks

Analysis:
Mixing PSK with

Signatures

Multiple modes and key sources

PSK + certificate-based authentication

No Ephemerals

Server sig covers
pskid, but not psk

Impersonating Servers over Pure PSK

Impersonating 0-RTT Clients over Static PSK

Certificate does not authenticate PSK,
although PSK does authenticate certificate

Solution: add more PSK-related info to context

Alternative: switch CertificateVerify and Finished

Verifying models derived from code is effective

0-RTT Client Auth is fragile against compromise

PSK + signatures do not mix easily

0-RTT replay is a source of headaches

Key schedule can potentially be simplified

•  Coming Soon

