On the Security of TLS 1.3 (and QUIC) Against Weaknesses in PKCS#1 v1.5 Encryption

<u>Tibor Jager</u>, Jörg Schwenk, Juraj Somorovsky
Horst Görtz Institute for IT Security
Ruhr-University Bochum

TRON 1.0 Workshop 2016 21 February 2016 San Diego, CA, USA

RSA-PKCS#1 v1.5 Encryption

- Most frequently used key transport mechanism in TLS before v1.3
 - "Textbook-RSA encryption" with additional randomized padding
 - A ciphertext is "valid", if it contains a correctly padded message

RSA-PKCS#1 v1.5 Encryption

- Most frequently used key transport mechanism in TLS before v1.3
 - "Textbook-RSA encryption" with additional randomized padding
 - A ciphertext is "valid", if it contains a correctly padded message
- **Deprecated** in TLS 1.3
 - Vulnerable: Bleichenbacher's attack (CRYPTO `98)
 - Sufficient to protect against its weaknesses?

Bleichenbacher's Attack

(CRYPTO 1998)

Bleichenbacher's Attack

(CRYPTO 1998)

- Oracle usually provided by a server:
 - Error message if ciphertext is invalid
 - Other side channels, like timing

Bleichenbacher's Attack

(CRYPTO 1998)

- Oracle usually provided by a server:
 - Error message if ciphertext is invalid
 - Other side channels, like timing
- Allows to perform RSA secret key operation
 - Decrypt RSA-PKCS#1 v1.5 ciphertexts
 - Compute digital RSA signatures

Bleichenbacher attacks over and over

- Bleichenbacher (CRYPTO 1998)
- Klima et al. (CHES 2003)
- Jager et al. (ESORICS 2012)
- Degabriele et al. (CT-RSA 2012)
- Bardou et al. (CRYPTO 2012)
- Zhang et al. (ACM CCS 2014)
- Meyer et al. (USENIX Security 2014)
- •

Assumption: Bleichenbacher-like attacks remain a realistic threat

Many different techniques to construct the required oracle

Typical use of TLS 1.3 in practice

Typical use of TLS 1.3 in practice

TLS 1.3 may be vulnerable to Bleichenbacher's attack, even though PKCS#1 v1.5 encryption is not used!

Practical Impact

- Practical impact on TLS 1.3 is rather limited
 - Typical Bleichenbacher-attacks take hours or days
 - Would Lisa wait that long?
 - Machine-to-machine communication?

Practical Impact

- Practical impact on TLS 1.3 is rather limited
 - Typical Bleichenbacher-attacks take hours or days
 - Would Lisa wait that long?
 - Machine-to-machine communication?
- Nevertheless:
 - Backwards compatibility must be considered
 - Cf. Jager, Paterson, Somorovsky (NDSS 2013)
 - Future improvements of Bleichenbacher's attack?

Attack on the QUIC protocol Google

Attack on the QUIC protocol Google

- A can run Bleichenbacher's attack **before** Lisa connects to S
- One signature is equivalent to the secret key of S
- **Practical,** even if attack takes weeks!

Limited Impact on TLS 1.3

- A can impersonate S only in a **single** TLS session
- Only practical with very fast Bleichenbacher attack

The difficulty of preventing such attacks (example)

The difficulty of preventing such attacks (example)

The difficulty of preventing such attacks (example)

Further difficulties

- Key separation not supported by major server implementations
- Certificates cost money (extended validation)
- X.509 supports "sign/encrypt-only" certs
 - "Sign-only" keys for TLS >= 1.3
 - "Encrypt-only" keys for TLS <= 1.2</p>
 - No Forward Secrecy for versions <= 1.2 ⊗
 - Do browsers really check this?

Summary and recommendations

- Removing RSA-PKCS#1 v1.5 from TLS is an excellent decision
 - Not sufficient to protect completely against weakness
- TLS 1.3 is more "robust" than QUIC
 - But not immune
 - Signing ephemeral values is a good idea
- Recommendation for future TLS versions:
 promote key separation
 - Talk to X.509 and software developers