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The Network Data Sanitization Problem

m  Anonymize a packet trace or flow log s.t.:
1. Researchers gain maximum utility

2. Adversaries w/ auxiliary information do not learn
sensitive information
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Methods of Sanitization

m Pseudonyms for IPs
m Strict prefix-preserving [FXAMO4]
m Partial prefix-preserving [PAPLOG]
m Transaction-specific [OBAO5]

m Other data fields anonymized in reaction to
attacks

m e.g., time stamps are quantized due to clock skew
attack [KBCO5]




Notable Attacks

m Several active and passive attacks exist...

= Active probing [BAO5, BAOO05,KAAO6]
= Host profiling [CWCMRO07,RCMTO08]
= ldentifying web pages [KAAO6, CCWMRO07]



The Underlying Problem

m Attacks can be generalized as follows:

1. ldentifying information is encoded in the
anonymized data
« Host behaviors for profiling attacks

2. Adversary has external information on true
identities
* Public information on services offered by a host

3. Adversary maps true identities to pseudonyms



Our Goals

1. FInd objects at risk of deanonymization

2. Compare anonymization systems and
policies
3. Model hypothetical attack scenarios

m  Focus on ‘natural’ sources of information leakage



Related Work

m Definitions of Anonymity
= k-Anonymity [SS98], ~Diversity [MGKV05], and
t-Closeness|[LLVO07]

m Information theoretic metrics
= Analysis of anonymity in mixnets [SD02][DSCP02]

m An orthogonal method for evaluating network
data [RCMTOS]



Outline

m Adversarial Model

m Defining Objects

m Auxiliary Information

m Calculating Anonymity
m Evaluation



Adversarial Model

m Adversary’s goal: map an anonymized
object to its unanonymized counterpart
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Defining Objects

m Consider network data as a database
® N rows, m columns
m Each row is a packet (or flow) record
m Each column is a data field (e.qg., source port)

m Fields can induce a probability distribution
m Sample space defined by values in the field
m Represented by random variables in our analysis
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Defining Objects

ID|| Local IP LF?Q(_:S' Remote IP Rgg_ﬁi_
1 10001 | 80 | 192.168.25 | 1052

2 10.002 [[3069 | 10.0.1.5 80

3|l 10.00.1 || 80 |192.168.2.10| 4059

41 10,001 || 21 |192.168.6.11| 5024
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Defining Objects
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Defining Objects

m Combinations of fields can leak information even If
the fields are indistinguishable in isolation

m A real-world adversary has a directed plan of attack on a
certain subset of fields

m Our analysis must consider a much larger set of potential
fields

m Use feature selection methods based on mutual
Information to find related fields

= Limits computational requirements
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Defining Objects

m A feature Is a group of correlated fields
m Calculate normalized mutual information
m Group into pairs if mutual information > t
m Merge groups that share a field in to a feature

m A feature distribution is the joint distribution
over the fields in the feature
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Defining Objects

Dl Local 1P | £9¢@ || Remote 1p | REMOtE
Port Port

11l 10001 | 80 |l192.168.25 | 1052

21l 10.0.0.2 | 3069 || 10.0.1.5 80

31/ 10.00.1 | 80 [|[192.168.2.10| 4059

41 10001 | 21 [[192.168.6.11| 5024

15



Defining Objects

Local IP L:gratll
10.0.0.1 80
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Defining objects

m An object Is a set of feature distributions over
records produced due its presence

m e.d., host objects — feature distributions induced
by records sent from or received by a given host
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Defining Objects

D | Local 1P | “°¢@ | Remote 1p | REMoOtE
Port Port

1 | 10.0.0.1 80 192.168.2.5 1052

2 | 10.0.0.2 | 3069 10.0.1.5 80

3 | 10.0.0.1 80 |[192.168.2.10| 4059

4 | 10.0.0.1 21 [192.168.6.11| 5024
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Defining Objects

Dl Local 1P | £9¢@ || Remote 1p | REMOtE
Port Port
1 110001| 80 | 19216825 | 1052
3 110001 | 80 |192.168.2.10| 4059
4 | 10001 | 21 |192.168.6.11| 5024
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Defining Objects

10.0.0.1

D | Local 1P | 9@ || Remote 1p | REMOtE
Port Port
1 110001 80 ||192.16825 | 1052
3 110001 | 80 |lo2.168.2.10| 4059
4 | 10001 | 21 |lo2.1686.11]| 5024
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Adversarial Model
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Adversarial Model
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Auxiliary Information

m Auxiliary information captures the
adversary’s external knowledge

= Initially, adversary only has knowledge obtained
from meta-data

m As adversary deanonymizes objects, new
knowledge is gained

m Used to iteratively refine mapping between
anonymized and unanonymized objects
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Auxiliary Information

Anonymized
Values

50.20.2.1

50.20.2.2

50.20.2.3

Local IP:

Prefix-Preserving

Unanonymized
Values

{10.0.0.1, ..., 10.0.0.255)

{10.0.0.1, ..., 10.0.0.255}

{10.0.0.1, ..., 10.0.0.255}
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Auxiliary Information

Local IP:

Prefix-Preserving

Anonymized Unanonymized

Values

50.20.2.1

50.20.2.2

{10.0.0.2, 10.0.0.3}

50.20.2.3

{10.0.0.2, 10.0.0.3}
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Adversarial Model
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Adversarial Model
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Adversarial Model
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Calculating Anonymity

m Compare each feature distribution of
anonymized object against all unanonymized
objects

m Use L1 similarity measure as a count to
approximate a probability distribution

m Use information entropy of the distribution as
object anonymity with respect to the feature

m Auxiliary information dictates how the features
are compared
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Calculating Anonymity

= Sum of entropy across all features gives us the
overall object anonymity

= Assuming features are independent due to mutual
Information correlation criterion

m  Calculate conditional anonymity of an object via
a greedy algorithm

1. Choose lowest entropy object and assume it has been
deanonymized

Reverse anonymization to learn mappings

3. Recalculate object anonymity with new auxiliary
iInformation
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Evaluation

m Capture flow logs at the edge of the JHUISI network
m 24 hours of data
m 27,753 flows
m 237 hosts on three subnets
m Anonymized with tcpmkpub [PAPLOG]

m Analysis of Host Objects
m Defined by unique Local IPs

m 19 features generated from the fields:

« Start time, end time, local IP, local port, local size, remote IP,
remote port, remote size, and protocol
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Evaluation

m CDF of Overall Entropy:

Percent of Hosts
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Evaluation

m CDF of three worst features:

Percent of Hosis
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Evaluation

m Comparison of prefix-preserving schemes
using conditional anonymity:
m CryptoPANn [FXAMO4] — if n bits of a prefix are

shared in the unanonymized IP, n bits will be
shared in the anonymized IP

m Pang et al [PAPLO6] — use pseudorandom
permutation to anonymize host and subnet
portions separately
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Evaluation

m CryptoPAnN vs. Pang et al:

Average Entropy (bits)

Maximum Entropy
JHUISI - Pang et al.
JHUISI - CryptoPAn

50 100

Number of Deanonymizations

150
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Evaluation

m Conditional anonymity can also be used to
evaluate the impact of known attacks

m Simulate the behavioral profiling attack
CWCMRO07]

m Determine the hosts that are susceptible

m Determine the impact of deanonymizing those
nosts on those that remain
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Conclusion

m Privacy risks are due to information encoded
within the anonymized network data

m Provide one of the first methods for evaluating
anonymized data for information leakage

m Discover objects at risk of deanonymization
m Compare anonymization policies and techniques
m Simulate hypothetical attack scenarios
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Calculating Anonymity

Local IP, Local Port Feature

Anonymized Object: 50.20.2.1 Unanonymized Object: 10.0.0.1
1 1
0.9 A 0.9
0.8 ~ 0.8 ~
0.7 A 0.66 0.7 A 0.66
0.6 - 0.6
0.5 A 0.5 +
0.4 1 0.33 0.4 1 0.33
0.3 0.3
0.2 A 0.2
0.1 A 0.1 -
0 50202110 00.20.2.1, 50 0 10001230 - 10.0.0.1, 21

Unanon. Object 10.0.0.1
Similarity 2.0 38




Calculating Anonymity

Local IP, Local Port Feature

Anonymized Object: 50.20.2.1 Unanonymized Object: 10.0.0.2
1 1
0.9 - 0.9 -
0.8 ~ 0.8 ~
0.7 - 0.66 0.7 -
0.6 - 0.6 -
05 | 05 | 0.5 0.5
0.4 - 0.33 0.4 -
0.3 0.3
0.2 A 0.2
0.1 A 0.1 -
0 yate Al ot 20.20.2.1, 50 0 +O-O-02=05 OO 2=

Unanon. Object 10.0.0.1 10.0.0.2
Similarity 2.0 1.66 39




Calculating Anonymity

Local IP, Local Port Feature

Anonymized Object: 50.20.2.1 Unanonymized Object: 10.0.0.100

1 1
0.9 - 0.9 -
0.8 A 0.8 -
0.7 - 0.66 0.7 -
0.6 - 0.6 -
0.5 - 0.5 - 0.45
0.4 - 0.33 0.4 1 0.30
0.3 - 0.3 - 0.25
0.2 - 0.2 -
0.1 - 0.1~

0 0

5O OrdrdepdeQemd 50.20.2.1, 50 10.0.0.100, 8¢ 30.0.0.100, 2p [L0.0.0.100, 21

Unanon. Object 10.0.0.1 10.0.0.2 10.0.0.100
Similarity 32.% 32.866 29.2% 40
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