
The Perils of Unauthenticated Encryption: Kerberos Version 4∗

Tom Yu Sam Hartman Kenneth Raeburn
Massachusetts Institute of Technology

Abstract
Version 4 of the widely deployed Kerberos authentica-

tion protocol encrypts essential information without ade-
quate authentication. We have implemented an efficient
chosen-plaintext attack that uses this design flaw to im-
personate arbitrary principals. Related flaws exist in ver-
sion 5 of the protocol. We discuss the mistakes in the
design of the protocol that contribute to these vulnerabil-
ities, and how to avoid making them. We identify correc-
tive measures taken in the proposed revisions to version 5,
which repair these flaws.

1. Introduction

The dangers of unauthenticated encryption are well
known [6, 7, 8, 13, 20, 22, 39]. Although most cryp-
tographic attacks focus on recovering a plaintext or a key,
a more powerful attack is to forge a ciphertext that de-
crypts to a desired plaintext, particularly when attacking
an authentication system. This sort of forgery is often
far more dangerous than a breach of confidentiality; it is
far more useful tobecomesomeone than to merely know
what someone said once.

Consider a transaction in a hypothetical banking proto-
col in which Alice instructs her bank to send $100 to Bob.
An eavesdropper Eve will probably not be that interested
in reading such a message. On the other hand, Eve will
probably find it much more useful to modify the message
so that Alice appears to have instructed the bank to send
$100 to Eve. Even more devastating is for Eve to have the
capability to impersonate Alice, so that Eve need not mod-
ify an existing message that Alice sends. Authentication
is usually more important than confidentiality.

Kerberos version 4 [28, 37] has a critical authentication
vulnerability which allows an attacker to impersonate ar-
bitrary principals. This vulnerability results from multiple
design errors. Additional flaws in MIT’s implementation
of version 4 enable additional attacks. The current spec-
ification of Kerberos version 5, Internet RFC 1510 [23],
fixes some flaws in version 4, though it too has some

∗An unauthorized copy of an earlier version of this paper appeared
on full-disclosure@lists.netsys.com in March 2003.

vulnerabilities. Ongoing work on the specification of ver-
sion 5 repairs even those flaws. Despite the progress made
in updating the Kerberos protocol, version 4 remains in
widespread use, and that fact illustrates that protocols have
a longer life than their designers might anticipate.

Kerberos version 4 uses unauthenticated encryption for
essential authentication information. This allows an at-
tacker to forge credentials impersonating arbitrary prin-
cipals by using an adaptive chosen-plaintext attack as an
encryption oracle. We have successfully implemented a
startlingly efficient attack based on this oracle:O(n) or-
acle queries are needed to forge a credential ciphertextn
blocks long. The attack is sufficiently inexpensive that its
successful execution may go completely undetected.

The use of unauthenticated encryption is one of sev-
eral design errors in version 4. Other mistakes include
a failure to explicitly identify the role of encryption and
a failure to sufficiently abstract the encryption scheme.
Though RFC 1510 corrects some of the mistakes of ver-
sion 4, it too has deficiencies. The MIT implementation’s
use of identical keys between versions 4 and 5 allows
a cross-protocol attack, which we describe later. Ongo-
ing revisions to version 5 remedy the existing flaws in
RFC 1510, and implement current best practices in au-
thenticated encryption.

Protocol designers should clearly identify the role of
encryption in their protocols. The designers of Kerberos
version 4 failed to explicitly identify an important assump-
tion: nonmalleability. The unauthenticated encryption
used in version 4 constitutes a lack of nonmalleability,
leading to the attack we describe. If a protocol requires
nonmalleable encryption, which is more likely than not,
clearly state so in the specification, and ensure that the
encryption scheme actually achieves this requirement.

Designers should sufficiently abstract the use of en-
cryption from the contents of the protocol messages, so
that the exact form and layout of the protocol messages
do not compromise the efficacy of the encryption. The
designers of version 4 assumed that the message layout
itself would enhance the security properties of the en-
cryption scheme. The resulting confusion creates cross-
dependencies between details of protocol layout and the
security of the encryption scheme, further enabling the

attack that we describe.
One reason why our attack succeeds is because the

encryption scheme in Kerberos version 4 is deterministic.
An attacker can use a predictable mapping from plaintext
to ciphertext to assemble an efficient encryption oracle,
which can then be used to forge new ciphertexts. Kerberos
version 5 thwarts the creation of an encryption oracle.

Designers should ensure that attackers cannot use
ciphertext surgery to subvert message authentication
schemes in a protocol. Though designers should not
allow an attacker to implement an encryption oracle at
all, they should also ensure that an attacker cannot use
an encryption oracle to attack the message authentication
schemes. As we show later, encrypted plaintext check-
sums, specified in RFC 1510, can be subverted. The
proposed revisions to the specification of version 5 rem-
edy this flaw by improving the authentication scheme for
encrypted messages.

Despite its known shortcomings, Kerberos version 4
remained in widespread use until the discovery of this
vulnerability. The inherent difficulties in deploying a se-
curity architecture appear to create resistance to change
unless a clear and present danger exists. Security pro-
tocols could therefore benefit from conservative design,
and users would also do well to evaluate whether appar-
ently theoretical vulnerabilities may be indicative of more
serious problems.

2. Kerberos history

Kerberos is a trusted-third-party authentication protocol
based on the Needham-Schroeder symmetric-key protocol
[33], modified to use timestamps [18] to mitigate replay at-
tacks. Kerberos originated in MIT’s Project Athena, where
version 4 [28, 37] was deployed for quite some time. The
current specification of Kerberos version 5, RFC 1510
[23], corrects many known flaws in version 4, and is un-
dergoing standardization in the Internet Engineering Task
Force (IETF). Proposed revisions to version 5 [34, 36]
remedy vulnerabilities present in RFC 1510.

Kerberos version 4 was widely deployed; the use of
Kerberos version 4 as the authentication infrastructure of
CMU’s Andrew File System (AFS) led to the widespread
adoption of Kerberos at large universities and corpora-
tions by virtue of their adoption of AFS. Although AFS
was commercialized by Transarc and IBM, release of an
open-source version, OpenAFS, led to even wider adop-
tion. Difficulties inherent in the design of the AFS proto-
col discouraged the implementation of Kerberos version 5
support in AFS. Our discovery of the chosen-plaintext at-
tack on version 4 finally prompted rapid implementation
of version 5 support in AFS. Similar scenarios have doubt-
less occurred with other protocols which have been built

on top of Kerberos version 4.
Some researchers have performed formal analyses

[2, 3, 14] regarding the correctness and secrecy of Ker-
beros version 4, but they make assumptions (often im-
plicit) about its use of encryption, and largely ignore
possible vulnerabilities in the actual Kerberos encryption
scheme. Although others have noted shortcomings in the
Kerberos encryption scheme [12, 38], none are quite as
serious as the vulnerabilities we have discovered. Lowe
[27] demonstrates some related encryption-oracle attacks
against several other protocols, but unlike Lowe’s attacks,
ours involves the blockwise forgery of complete cipher-
texts.

Kerberos continues to evolve. RFC 1510 fixes some
of the flaws in version 4, and ongoing work in the IETF
to revise the specification of version 5 and its encryption
schemes [34, 36] further repair cryptographic flaws. The
strategies used in these revisions are similar to those pro-
posed in recent work [6] on the Secure Shell (SSH) pro-
tocol.

3. Design shortcomings of Kerberos

Kerberos version 4 has some serious shortcomings in its
abstract design principles, in addition to fatal problems in
its concrete design choices. Some of the concrete design
choices may have seemed justifiable at the time they were
made, however, they are hardly excusable today.

Demillo and Merritt [17] advise explicitly stating cryp-
tographic assumptions during the design of a protocol.
Abadi and Needham [1] echo this sentiment, pointing
out some apparent confusion in the Kerberos protocol’s
use of encryption. The designers of version 4 clearly
did not make all their cryptographic assumptions explicit;
among other things, they unwittingly inherited the assump-
tion of nonmalleable cryptography from the underlying
Needham-Schroeder protocol.

Dolev, Dwork, and Naor [19] observe that the origi-
nal Needham-Schroeder protocol implicitly requires non-
malleable encryption. Roughly, nonmalleable encryption
prevents an attacker, given a ciphertext, from producing
a different ciphertext whose plaintext is meaningfully re-
lated to the plaintext of the original ciphertext. This is
precisely the guarantee that Kerberos version 4 fails to
provide, by inadequately authenticating its messages. The
designers did not consider nonmalleability, probably be-
cause the concept was not well-developed then.

The specific design choices in version 4 are not much
better. The protocol uses the Data Encryption Standard
(DES) [31], now known to have an insufficient key size,
in the nonstandardpropagating cipher block chaining
(PCBC) mode. This cipher mode is slightly different
from the more usualcipher block chaining(CBC) [30]

mode. Although DES was the standard at the time, the
use of a non-standard mode of operation seems unwise,
particularly in hindsight: PCBC has some odd properties,
such as ciphertext block swaps being undetectable without
additional integrity checking.

The design document for version 4 [28] implicitly (and
incorrectly) assumes that the error propagation properties
of PCBC mode will cause ciphertext errors to scramble
the plaintext following the manipulated ciphertext, and
even suggests that certain fields near the end of a ticket,
e.g., principal names and timestamps, be used for integrity
checking. While it isusually true that modification of a
PCBC ciphertext propagates errors through the remainder
of the decrypted plaintext, this assumption only holds for
random transmission errors. The willful manipulations
of an attacker with an encryption oracle hardly constitute
random transmission errors. Relying on PCBC mode itself
to ensure integrity against active attackers utterly fails.

The dependency between integrity and message layout
in Kerberos version 4 betrays a lack of sufficient abstrac-
tion between the encryption scheme and the rest of the
protocol, leading to the sort of subtle vulnerabilities that
we have discovered. Bellovin and Merritt [12] empha-
size the importance of applying this separation to future
revisions to the Kerberos protocol. The security of the
encryption should not depend on the details of the packet
layout of the protocol.

The security assumptions of version 4 do not include
an attacker with an encryption oracle. Many security anal-
yses applied to version 4 assume an attacker capable of
intercepting messages, but fail to include chosen-plaintext
attacks. Voydock and Kent [40] identify a chosen-plaintext
attack against CBC mode with a fixed initialization vec-
tor (IV), of which the designers of version 4 appear to
have been unaware. The designers of version 5 [24] came
very close to identifying the attack we describe, noting
the possible consequences of chosen-plaintext attacks in
version 4. These concerns were dismissed with the argu-
ment that in version 4, the first ciphertext block contains a
random session key, frustrating a chosen-plaintext attack.
This is true for the KDC’s encrypted reply to the client
[15], but not for the ticket itself [16], which is more inter-
esting to attack. Once again, this sort of logic reveals an
unhealthy lack of abstraction of the encryption scheme.

4. Kerberos version 4 (simplified)

A simplified description of version 4 of the protocol
follows. The trusted third party in Kerberos is called the
Key Distribution Center (KDC). Fundamental to Kerberos
is the concept of aticket. A ticket issued to a client
A for a serviceB is encrypted in the long-term keykb

shared between the KDC and the serviceB. The ticket

contains information identifying the clientA, the service
B, as well as a session keykab. A ticket alone is not
sufficient to authenticate to a service; proof of knowledge
of the session key is also required. The ticket, along with
the associated session key, constitute acredential.

4.1. Kerberos protocol exchanges

There are two conceptual services embodied in the
KDC. One of these services is theauthentication service
(AS); the other is theticket granting service(TGS). The
AS exchange is used to obtain credentials encrypted with
the client’s long-term keyka, while the TGS exchange
treats the TGS itself as a special service used for obtain-
ing additional credentials. The TGS enables a client to
avoid typing a password for each credential obtained. A
typical Kerberos login session begins with the client using
the AS exchange to obtain credentials for the TGS:1

A→ S : A,S

S→ A : {kas,S,{A,S, ts,kas}ks}ka,

where ts is the KDC’s timestamp and{M}kx denotesM
encrypted with the keykx. A is the client’s name, andS is
the name of the TGS. For clarity, we omit some additional
information included in the tickets, such as lifetimes and
network addresses. The ticket is

{A,S, ts,kas}ks.

kas is the session key shared between the clientA and the
TGS.

The client may then use thisticket-granting ticket
(TGT) to obtain credentials for other services. The TGS
exchange for the clientA obtaining credentials for the
serviceB is

A→ S : {A,S, ts,kas}ks,{A, ta}kas,B

S→ A : {kab,B,{A,B, ts,kab}kb}kas,

where
{A, ta}kas

is theauthenticator, andta is the client’s timestamp. The
authenticator assures the TGS that the client has recent
knowledge of the session keykas, since values ofta too far
removed from the current time will cause the TGS to reject
the authenticator. The entire scheme relies upon close
synchronization of clocks; we will not further discuss that
issue here.

1The superfluous superencryption of the ticket, both here and in
the TGS exchange, is only present in version 4; it has been eliminated
in version 5, at the expense of introducing a delayed denial-of-service
attack. Ongoing work on the specification of version 5 is investigating
countermeasures for this denial of service.

To actually use the service ticket

{A,B, ts,kab}kb,

the client sends the message

A→ B : {A,B, ts,kab}kb,{A, ta}kab.

As in the TGS exchange, the authenticator

{A, ta}kab

proves to the serviceB that the client has recent knowledge
of the session keykab.

4.2. Kerberos names

The structure of names in Kerberos version 4 has some
implications for the execution of the attack, as we show
later. A version 4 principal name is a three-tuple

{primaryname, instance, realm}.

The usual way of displaying principal names to users is
“primaryname. instance@realm”. The period between the
instance and primary name is usually omitted if the in-
stance is empty. Therealm indicates which authentication
domain the principal belongs to; generally, one KDC (or
replicated set of KDCs) functions to authenticate princi-
pals of only one realm to each other. In order to authenti-
cate principals of one realm to principals of another realm,
shared keys must be established between the two realms.
These are in the form of specialized TGS principals.

The normal TGS principal name for a realm is
“krbtgt. realm@realm”. A TGS principal name used
for cross-realm authentication takes a different form: the
TGS principal name, as received from a foreign princi-
pal by the local realm’s KDC, is “krbtgt. localrealm
@foreignrealm”. The local realm KDC ensures that each
cross-realm TGT originating from a foreign realm has
its client principal name’srealm component matching the
name of the foreign realm. This normally ensures that the
local realm’s KDC cannot be tricked by foreign realm’s
KDC into issuing a ticket for an incorrect client principal
realm. As we demonstrate later, design flaws in the Ker-
beros version 4 encryption scheme allow for this measure
to be circumvented.

As originally designed in version 4, sharing a cross-
realm key with a foreign realm only implies a trust that the
foreign realm will truthfully authenticate principals in its
realm. There was no reason that compromise of a foreign
realm could compromise principals in the local realm,
so realm administrators tended to freely exchange cross-
realm keys. Compromise of a foreign realm’s KDC would
only render principals in the foreign realm untrustworthy;

administrators in the local realm can limit the damage
from an untrustworthy foreign realm merely by refusing to
grant any privileges to principals from that realm. As we
demonstrate, cryptographic flaws in version 4 invalidate
these trust assumptions.

5. A block-encryption oracle

An essential component of the attack on Kerberos ver-
sion 4 is a block-encryption oracle based on chosen plain-
text. The oracle takes advantage of the structure of the
CBC or the PCBC mode. CBC mode is defined as

Ci+1 = k(Pi+1⊕Ci)
Pi+1 = k−1(Ci+1)⊕Ci ,

whereC0,C1, . . . ,Cn are the ciphertext blocks;P0,P1, . . . ,
Pn are the plaintext blocks;k(x) denotes the encryption of
the blockx with the keyk; k−1(x) denotes decryption of
the blockx with the keyk; andx⊕y denotes the bitwise
exclusive-OR ofx with y.

PCBC mode is defined as

Ci+1 = k(Pi+1⊕Ci ⊕Pi)
Pi+1 = k−1(Ci+1)⊕Ci ⊕Pi .

It is useful to generalize these cipher modes as block-
feedback modes by considering the input block of the
block cipher to consist of the exclusive-OR of a plaintext
block with a feedback block:

Ci = k(Pi ⊕Fi)
Pi = k−1(Pi)⊕Fi ,

whereFi represents thei-th feedback block, which is not
necessarily transmitted. For CBC mode,Fi+1 = Ci , while
for PCBC mode,Fi+1 = Ci ⊕Pi . For these cipher modes,
F0 is known as theinitialization vector(IV).

Assume that an attacker can cause the production of
some ciphertextC0,C1, . . . ,Cj , . . . ,Cn with the contents of
the feedback blockFj known in advance and with its
corresponding plaintext blockPj chosen by the attacker.
To obtain the ciphertextX of an arbitrary plaintext block
M under the block cipher, the attacker can choosePj =
M⊕Fj . The resulting ciphertext block is

Cj = k(Pj ⊕Fj)
= k(M⊕Fj ⊕Fj)
= k(M) = X.

In a well-designed protocol, an attacker should have
significant difficulty assembling such an oracle, sinceFj

should not be known in advance. This is not the case in
version 4 of the Kerberos protocol.

6. Constructing the desired ciphertext

To construct a complete ciphertext that will decrypt to
a desired plaintext, it is necessary to proceed one block
at a time, taking into account the feedback block of the
constructed ciphertext each time. If the desired cipher-
text consists of the blocks{Xi}, and the desired plaintext
consists of the blocks{Mi}, then the relation

Xi = k(Mi ⊕Φi),

whereΦi indicates the feedback block related toXi , may
be used to choose plaintext blocks for encryption by the
encryption oracle. The only difficulty is if the initial-
ization vectorΦ0 is unknown. In the case of Kerberos
version 4,Φ0 is the actual key, which will not be known
to the attacker. There are chosen-ciphertext attacks that
can recover the IV from a chaining mode [21], but they
are of little practical importance here. To produce aX0

that decrypts to a desired valueM0, the attacker must be
able to directly submit the desiredM0 as the first block
of a plaintext to be encrypted under the keyk. This does
not usually pose a significant difficulty in Kerberos ver-
sion 4, though it does place some limitations on which
client principal names can be forged.

7. Ticket ciphertext as oracle

The predictable plaintext of a version 4 ticket enables
an attacker to create a block-encryption oracle by manip-
ulating a portion of the plaintext of a ticket, preferably
part of the client principal name, as it occurs earliest
in the ticket plaintext. The easiest way to perform this
chosen-plaintext attack is by exploiting the cross-realm
authentication exchange, as it allows nearly any principal
name to be fabricated. It is also possible to implement
a chosen-plaintext attack on the AS exchange, which can
be done by creating principals in the target realm, among
other ways.

The plaintext of a Kerberos version 4 ticket [16] prior
to encryption is:

1 byte flags namely,HOST_BYTE_ORDER
string pname client’s name
string pinstance client’s instance
string prealm client’s realm
4 bytes paddress client’s address
8 bytes session session key
1 byte life ticket lifetime
4 bytes timesec KDC timestamp
string sname service’s name
string sinstance service’s instance
≤ 7 bytes null null pad to 8 byte multiple

The fields labeled “string” are NUL-terminated ASCII
strings, each limited to 40 characters (including the ter-
minal NUL). Theflagsbyte has only one meaningful bit,

HOST_BYTE_ORDER; this flag indicates the byte order of
the KDC issuing the ticket. An attacker can usually pre-
dict the value of this bit without difficulty. The following
example of encryption oracle construction assumes that
the attacker variesP1 to encrypt a desired plaintext block
into C1. It may be generalized to assume manipulation of
an arbitraryPj , though.

We initially describe the attack based on the TGS ex-
change, as it is reasonably easy to implement. Assume
that the attacker controls a realmA, the target realm is
B, and that these two realms share a cross-realm TGS
key. The attacker knows the key for the TGS principal
krbtgt.B@A , which has the same key askrbtgt.A@B
in the realmB. Using the known cross-realm TGS key,
the attacker can fabricate a cross-realm ticket having the
unusual-looking client principal

a234567XXXXXXXX@A,

where “a234567 ” is an arbitrary string held constant
between iterations of the attack, and “XXXXXXXX” is a
block P1 chosen to produce the encryption of a desired
plaintext block. (The client principal’s realm must be
A, because the target KDC will verify that the requested
client principal’s realm corresponds to that of the issuing
realm.)

The attacker then uses the fabricated cross-realm ticket
to perform a TGS exchange with the KDC ofB to obtain a
service ticket for the service being attacked, for example,
krbtgt.B@B (for maximum damage).2

The target KDC, when issuing the service ticket, copies
the client principal name from the fabricated cross-realm
ticket into the plaintext of the service ticket. It then en-
crypts the plaintext using the target service’s long-term
key. This results in a ciphertext whose plaintext is par-
tially controlled by the attacker. Note that while the ses-
sion key, timestamp, etc., may not be known to the attacker
before encryption, these unknown values do not affect the
ciphertext blocks of interest.

The fixed string “a234567 ”, appended to the one-
byte flagsfield, becomes the first plaintext blockP0. This
means that chosen plaintext string “XXXXXXXX” is the
entirety of the second plaintext blockP1. C0 will be a fixed
value, given the fixed string, since the first 7 characters of
the principal name, the IV, and the key all remain fixed.
Likewise, F1 will not change, since it is based on fixed
values (F1 =C0⊕P0, assuming PCBC mode). The attacker
merely has to choose the variable string “XXXXXXXX”,
which is P1, to be M⊕F1, whereM is the block that is
to be encrypted using the oracle. TheC1 in the resulting
ticket will then be the encryption of the desired block.
The attacker can obtain the initial fixed value ofF1 by

2The ticket-granting principal in the target realm may only be
attacked by virtue of an implementation design flaw, described later.

performing one iteration of the attack with the chosenP0

to acquireC0.
If a particularP1 in an iteration of the attack needs to

contain one NUL character, the value ofP1 will be split be-
tween thepnameandpinstancefields of the ticket, rather
than being completely contained within thepnamefield.
This does not pose a problem. However, if two or more
NUL characters3 need to appear inP1, the target KDC
will probably not create a useful ticket, so the attacker
must change the previously fixed string appearing inP0 in
order to obtain a value ofF1 which does not require more
than one NUL character to appear inP1. Similarly, the
attacker may also permuteP0 such that the complete client
principal name will not need to contain any “suspicious”
characters,e.g., non-alphanumeric characters, though this
practice will increase the number of iterations needed to
complete the attack.

Almost none of this attack is specific to the particular
cipher mode (CBC or PCBC), provided that the mode is
of the general block-feedback form. The scenario of a
compromised realm sharing a key with the target realm is
not farfetched; it is not uncommon for a realm to set up a
shared key with a less-secure realm for testing purposes.
As mentioned earlier, this practice would not constitute
a security exposure if it were not for this cryptographic
attack.

The attacker need not control a cross-realm key shared
with the target realm; knowledge of a sufficient number
of keys in the target realm enables the use of the AS
exchange, instead of the TGS exchange, as an oracle.
This is particularly easy if the attacker has privileges to
adaptivelycreateprincipals in the target realm’s database,
in which case the required number is not large at all.

For example, the MIT implementation provides a facil-
ity for allowing a less-privileged administrator (typically
one responsible for deploying server hosts) to create or
change a key associated with a host-based service. Typi-
cally, site policy limits the principal names to forms such
as “rcmd. hostname@realm”; the rcmd keys are used for
authenticating remote logins to a host. If thehostname
portion of these principals is not restricted to the set of
characters typically valid for use as hostnames, this at-
tack may require the creation of as few asn principals
to forge a ticket that isn ciphertext blocks long. Tighter
constraints,e.g., character set restrictions, on the form
of the principal names that the administrator is permitted
to create will cause the required number of principals to
increase. Regardless, this approach is not useful in a ver-
sion 4-only environment, as the interesting client principal
names to impersonate rarely begin with “rcmd ”; the at-
tacker must somehow obtain (possibly by packet-sniffing)

3Actually, if the second NUL character appears at the end of the
first block, it is not a problem.

an initial ciphertext block of a ticket issued to the target
client principal. This limitation can be circumvented by
the cross-protocol attack, which we describe later.

Controlling a cross-realm key is merely one of the
most efficient methods of attack, and it is the only attack
variant that we have implemented so far. Our implemen-
tation of the attack only requires about one oracle query
per forged ciphertext block, needing slightly more queries
when too many NUL characters would have to appear in
the relevant plaintext block.4 This sort of attack might
go completely unnoticed by all but the most vigilant ad-
ministrators, allowing the attacker to surreptitiously com-
promise the realm. As noted above, but not implemented
by us, the attacker can utilize a larger number of queries
to avoid using principal names containing “suspicious”
characters, making the attack even less detectable.

8. Forging arbitrary tickets

Given the encryption oracle, an attacker may construct
an arbitrary Kerberos version 4 ticket, subject to certain
conditions. The attacker must usually obtain the cipher-
text of the counterfeit ticket one block at a time, since the
feedback block corresponding to a particular ciphertext
block is generally not known in advance. Optimizations
may exist which permit multiple ciphertext blocks to be
produced and spliced together at once, but the length con-
straints inherent in version 4 principal names, as well as
the use of NUL-terminated strings in the tickets, limit
these optimizations somewhat.

To forge a ticket ciphertext{Xi : Xi = k(Mi ⊕Φi)} that
decrypts to the plaintext{Mi}, the attacker iterates through
eachMi , determining the correspondingΦi , and submit-
ting Mi ⊕Φi to the encryption oracle to receiveXi . The
use of the key as the IV in Kerberos version 4 introduces
a slight difficulty in forging the initial ciphertext block,
X0; the attacker must cause the TGS to encryptM0 as the
first block of a ticket. The attacker cannot use the oracle
to directly produceX0 because the feedback blockΦ0 is
secret.

This property ofX0 places some constraints on the
set of client principal names that an attacker may forge.
In particular, if the target client principal’sprimaryname
andinstancecomponents total less than 7 bytes, including
terminating NUL characters, the target realm must share
an initial substring with the attacking realm. This initial
substring requirement arises from the TGS’s checking for
a match between the client realm and the realm issuing
the cross-realm ticket. The length limitation on the target
principal name may be circumvented by copying the first
ciphertext block of a legitimate ticket issued to the target

4This complication occurs with probability∼ 2−11, assuming that
all possible feedback block contents are equally likely.

principal, e.g., by sniffing the network while the target
principal is using the ticket to authenticate to a service.

9. Implementation flaws

The MIT implementations of Kerberos version 4 have
a few design flaws which enable more widespread dam-
age than would be possible if the implementation were
better designed. We emphasize that these additional flaws
are not flaws in the protocol, but rather are flaws in the
implementation. Even the most secure protocol is use-
less if the implementation is insecure, and we encourage
specifiers of cryptographic protocols to identify particular
pitfalls that implementors may encounter.

In the MIT implementation of version 4, a poorly de-
signed lineage check for cross-realm authentication allows
an attacker to compromise realms other than the initial
target realm. Also, the MIT implementation of version 5
uses identical keys for encrypting version 4 and version 5
tickets for the same service principal, enabling a cross-
protocol attack against version 5. These flaws are believed
to exist in non-MIT implementations of the Kerberos pro-
tocols as well.

9.1. Realm hopping

The MIT implementation of the Kerberos version 4
KDC attempts to prevent client principals from transiting
or “hopping” between realms,i.e., a client principal ac-
cessing a service in a foreign realm must have its local
realm directly share a key with the foreign realm. The
KDC implementation does not enforce this policy by pre-
venting the issuance of a cross-realm ticket to a foreign
principal; it instead relies on the receiving KDC to deny
further tickets based on that cross-realm ticket. For ex-
ample, if a client principalclienta@A obtains a ticket
for krbtgt.B@A , it may subsequently obtain a ticket for
krbtgt.C@B . The KDC for theC realm is responsible
for denying the client principalclienta@A further tick-
ets in theC realm. For similar reasons, it is also possible
for that client to obtain a ticket forkrbtgt.B@B . While
the client fromA may obtain the ticketkrbtgt.B@B ,
it will normally be unable to obtain further tickets inB
using that ticket.

Unfortunately, these restrictions are not sufficient to
prevent an attacker from using the chosen-plaintext attack
to attack the TGS principal inB, or, for that matter, any
cross-realm TGS principals inB. This flaw permits an at-
tacker to recursively compromise an entire authentication
network comprising numerous realms, even though tran-
siting through multiple realms is normally not permitted
in Kerberos version 4. Hopping through realms is expen-
sive: O(cn) tickets must be forged to compromise a realm
n hops away.

9.2. Cross-protocol attack

The reuse of a key for multiple cryptographic purposes
can also lead to a vulnerability. The MIT implementation
of version 5 has a backwards compatibility mode that al-
lows the KDC to issue version 4 tickets. A single database
is used for handling both version 4 and version 5 requests,
and the KDC uses the same key to encrypt both version 4
and version 5 tickets for a given service principal. An
attacker can use the version 4 encryption oracle to attack
the version 5 protocol. This enables a wider attack than
would be possible against version 4 alone.

Tickets in Kerberos version 5 also consist of a string of
encrypted data, although, unlike version 4, the version 5
encryption scheme performs some encoding on the data
prior to encryption. The format of the encoded plaintext
in version 5 immediately prior to encryption is

{confounder,checksum,data,pad}.

The confounder is one block of random bytes. The Ker-
beros version 5 specification [23] chooses the block ci-
pher as DES, which is used in CBC mode, and allows
the checksum to be CRC-32, MD4, or MD5. None of
these checksums is keyed. This lack of keying enables
the cross-protocol attack from version 4 to version 5.

For DES with MD4 (des-cbc-md4) and DES with MD5
(des-cbc-md5), the IV of the encryption is a block of zeros.
For DES with CRC-32 (des-cbc-crc), the IV is the key.
The checksum is computed over the entire concatenated
plaintext, with the checksum field zeroed out. This frus-
trates ciphertext generation via chosen-plaintext manipula-
tion if the attacker has no knowledge of the confounder; an
adversary will find it difficult, if not impossible, to create
an encryption oracle by manipulating version 5 tickets.

For des-cbc-md4 and des-cbc-md5, an attacker can sim-
ply fabricate any desired confounder using the version 4
encryption oracle, since the IV is known and constant. For
des-cbc-crc, the attack is somewhat more difficult, since
the IV is the key and not known to the attacker. For this
particular attack, it is necessary to obtain the ciphertext
block C0 corresponding to the desired confounder, possi-
bly by the same method that can be used for theC0 attack
on PCBC in version 4,i.e., by forcing the KDC to en-
crypt an initialP0 with the attacked key (which generally
requires control of a realm sharing a key with the target
realm).

10. The evolution of Kerberos encryption

The original specification of Kerberos version 5, while
it makes significant improvements on version 4, still con-
tains some flaws. In particular, it attempts to provide
authenticated encryption, but remains vulnerable to at-
tacks based on encryption oracles. Work continues on

Kerberos encryption schemes; the proposed changes rem-
edy the cryptographic vulnerabilities in both version 4
and RFC 1510, and eliminate the oracle-based attacks we
describe.

10.1. Kerberos version 5

Kerberos version 5 adds checksums to the encoded
plaintext. This provides some protection against simple
attacks, but it is not sufficient to prevent the chosen-
plaintext attacks we describe. Given an encryption oracle,
an attacker can simply fabricate a valid checksum as part
of the desired plaintext. An unforgeable signature,e.g., a
keyed hash whose creation requires knowledge of a secret,
will thwart an attacker equipped with an encryption ora-
cle, assuming that the attacker does not have a signature
oracle.

Version 5 alone would prevent an encryption oracle
by its use of random confounders. An attacker cannot
predict the ciphertext corresponding to a chosen plaintext
block, and is therefore unable to create an oracle. The
MIT implementation’s sharing of version 4 and version 5
keys enables the cross-protocol attack against version 5,
by allowing an attacker to use the encryption oracle of
version 4 to forge ciphertexts for version 5.

The confounder in version 5 also prevents a cut-and-
paste attack against the TGS exchange. The version 5
TGS exchange permits a client to submit arbitrary plain-
text for the KDC to encrypt in a ticket, in the form of
the AuthorizationDatafield. If it were not for the con-
founder, an attacker could submit the plaintext of a de-
sired forged ticket asAuthorizationDatain a legitimate
TGS request and obtain the desired ticket’s ciphertext as
a substring of the actual ticket returned by the TGS [11].
Others [9, 38] have previously noted the weaknesses of
encrypted checksums against cut-and-paste attacks. The
presence of a checksummed confounder in the ticket pre-
vents an attacker from predicting the feedback block for
the initial ciphertext block of the forged ticket. If the con-
founder were not checksummed with the plaintext, the at-
tack would still be possible, as the receiving service would
discard the confounder without verifying its integrity.

10.2. Upcoming revisions to Kerberos

The upcoming revision [34] to the Kerberos ver-
sion 5 protocol specification repairs many of the flaws
in RFC 1510. This revision moves the encryption speci-
fication [36] to a distinct document, which increases the
separation between encryption and protocol recommended
by Bellovin and Merritt [12]. Ciphers stronger than single-
DES, e.g., triple-DES or the Advanced Encryption Stan-
dard (AES) [32, 35], may now be used. The revised en-
cryption specification recommends that a ciphertext output

format of

{encrypt(ke,plaintext),HMAC(kc,plaintext)},

whereencryptis the encryption function,e.g., triple-DES
in CBC mode, or AES in CTS mode;HMAC is a keyed
hash [26]; andplaintext is

{confounder,data,pad}.

ke is a key used only for performing encryption, andkc

is a key only used for creating keyed hashes. Both keys
are derived from the underlying key exchanged in the
protocol.

The use of HMAC prevents an attacker from construct-
ing a valid ciphertext without access to the signature key
kc, thus precluding many chosen-plaintext attacks. This
feature of HMAC improves upon the weak scheme used
in the original version 5 protocol, where an attacker could
easily construct a valid ciphertext using an encryption ora-
cle. The updated protocol derives the keyske andkc from
the actual shared key via a one-waykey derivationfunc-
tion. The new encryption specification also recommends
using key derivation to produce separate keys for each
possible use of a shared key, thus restricting the actual
quantity and type of plaintext encrypted with each key.
This practice makes chosen-plaintext attacks even more
difficult.

Bellare and Namprempre [7], as well as Krawczyk [25],
analyze the composition of encryption and authentication
primitives. Krawczyk determines that the “Encrypt-and-
Authenticate” scheme (called “Encrypt-and-MAC plain-
text” by Bellare and Namprempre) is insecure in the gen-
eral case. The independent encryption and HMAC of the
revised Kerberos version 5 encryption scheme appears to
fall into this category, but could be better identified as an
“Encode-then-E&M” scheme, into which Bellareet al. [6]
classify the SSH encryption scheme.

Bellare et al. [6] recall that the SSH protocol’s pre-
dictable chained IVs make it insecure against a chosen-
plaintext attack. One of their proposed fixes adds random
padding as part of an encoding step prior to encrypting
and MACing the plaintext, and uses randomized IVs for
each separate ciphertext packet. Kerberos version 5 uses
a similar strategy, though Kerberos doesn’t specify the
use of a keyed hash until the recent revision of the en-
cryption specification. Bellovin and Merritt [12] note that
version 5’s random confounder is equivalent to a random
IV, though they criticize the use of the former.

The work of Bellareet al. on the SSH encryption
scheme shows that the unmodified “Encode-then-E&M”
scheme is not sufficient if it has predictable IVs. While
Kerberos version 4 effectively has predictable (and con-
stant!) IVs, version 5’s use of random confounders pre-
vents an attacker from predicting the relationships between

plaintext and ciphertext. The revisions to the version 5 en-
cryption scheme [36] add a MAC, which further prevents
various attacks.

11. Conclusions

The lack of authenticated encryption in Kerberos ver-
sion 4 leads to a very serious attack. This deficiency is one
of several errors in version 4. Though the existing ver-
sion 5 specification (RFC 1510) is an improvement over
version 4, it too has vulnerabilities. Ongoing revisions to
version 5 remedy the existing flaws in RFC 1510.

Protocol designers should clearly identify the role of
encryption in their protocols. If the protocol requires non-
malleable encryption, clearly state so in the specification,
and ensure that the encryption scheme actually achieves
this requirement. The use of unauthenticated encryption
in version 4 violates the implicit requirement of nonmal-
leability, with dramatic results.

Designers should abstract the use of encryption away
from the layout of the protocol messages. The design-
ers of version 4 erroneously assumed that the message
layout itself would enhance the security properties of the
encryption scheme. Such cross-dependencies complicate
analysis of the protocol, leading to security vulnerabilities.

CBC and related cipher modes have weaknesses when
used with deterministic IVs. In particular, if a fixed plain-
text encrypts to a fixed ciphertext, an attacker can build
an encryption oracle. Even if a protocol does not allow an
encryption oracle, message authentication schemes should
be robust against encryption oracles. As we have shown,
encrypted plaintext checksums are insufficient protection.

Using a single key for multiple purposes allows weak-
nesses in one system to compromise another, as illustrated
by the cross-protocol attack. The revisions to version 5
specify using key derivation to produce different keys for
different cryptographic purposes.

Protocols have a longer life than their designers might
anticipate. Despite its age, and weaknesses related to its
age, e.g., its use of single-DES, Kerberos version 4 re-
mains in widespread use. Even published criticisms about
the security of version 4 have not significantly diminished
its use. It has taken the revelation of a cryptographic
flaw of this magnitude to encourage users to finally begin
moving away from the protocol.

Acknowledgments

We thank Steve Bellovin, Mark Eichin, Radia Perl-
man, Amy Yu, and the anonymous referees for reading
and providing useful commentary on earlier versions of
this paper. We also thank Steve Bellovin, Matt Blaze,
Love Hörnquist-̊Astrand, Jeff Hutzelman, Perry Metzger,

Jeff Schiller, and Ted Ts’o for useful discussions and ad-
vice. Steve Dorner brought to our attention a ciphertext-
corrupting application bug that inspired us to discover the
attack. We thank Marshall Vale and the rest of the MIT
Kerberos Development Team for their ongoing support.

References

[1] M. Abadi and R. Needham. Prudent engineering practice
for cryptographic protocols.IEEE Transactions on
Software Engineering, 22(1):6–15, January 1996.

[2] G. Bella and L. C. Paulson. Kerberos version IV:
Inductive analysis of the secrecy goals. InProceedings
of the 5th European Symposium on Research in
Computer Security, pages 361–375. LNCS 1485,
Springer-Verlag, 1998.

[3] G. Bella and E. Riccobene. Formal analysis of the
Kerberos authentication system.Journal of Universal
Computer Science, 3(12):1337–1381, 1997.

[4] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
concrete security treatment of symmetric encryption. In
Proceedings of the 38th Symposium on Foundations of
Computer Science, pages 394–403. IEEE, 1997.

[5] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
concrete security treatment of symmetric encryption.
Available from http://www.cs.ucsd.edu/
users/mihir/papers/sym-enc.html , 2000.

[6] M. Bellare, T. Kohno, and C. Namprempre.
Authenticated encryption in SSH: Provably fixing the
SSH binary packet protocol. InProceedings of 9th ACM
Conference on Computer and Communications Security.
ACM, November 2002.

[7] M. Bellare and C. Namprempre. Authenticated
encryption: Relations among notions and analysis of the
generic composition paradigm. InAdvances in
Cryptology – ASIACRYPT 2000, pages 531–545.
LNCS 1976, Springer-Verlag, 2000.

[8] M. Bellare and C. Namprempre. Authenticated
encryption: Relations among notions and analysis of the
generic composition paradigm. Available from
http://www.cs.ucsd.edu/users/mihir/
papers/oem.html , 2000.

[9] S. M. Bellovin. Problem areas for the IP security
protocols. InProceedings of the Sixth USENIX UNIX
Security Symposium. USENIX, July 1996.

[10] S. M. Bellovin. Cryptography and the internet. In
Advances in Cryptology – CRYPTO ’98, pages 46–55.
LNCS 1462, Springer-Verlag, 1998.

[11] S. M. Bellovin and D. Atkins. Private communications,
1999.

[12] S. M. Bellovin and M. Merritt. Limitations of the
Kerberos authentication system. InUSENIX Conference
Proceedings, pages 253–267, Dallas, TX, Winter 1991.
USENIX.

[13] J. Black and H. Urtubia. Side-channel attacks on
symmetric encryption schemes: The case for
authenticated encryption. InProceedings of the 11th
USENIX Security Symposium. USENIX, August 2002.

[14] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication.Proceedings of the Royal Society of
London, Series A, Mathematical and Physical Sciences,
426(1871):233–271, 1989.

[15] cr_ciph.c . Source code of Kerberos version 4 library,
MIT, 1986.

[16] cr_tkt.c . Source code of Kerberos version 4 library,
MIT, 1985.

[17] R. DeMillo and M. Merritt. Protocols for data security.
Computer, 16(2):39–50, February 1983.

[18] D. E. Denning and G. M. Sacco. Timestamps in key
distribution protocols.Communications of the ACM,
24(8):533–536, August 1981.

[19] D. Dolev, C. Dwork, and M. Naor. Nonmalleable
cryptography.SIAM Journal on Computing,
30(2):391–437, 2000.

[20] N. Ferguson and B. Schneier.Practical Cryptography.
Wiley, 2003.

[21] A. M. Iley. Kerberos ivec attack. Web page, now
defunct.

[22] A. Joux, G. Martinet, and F. Valette. Blockwise-adaptive
attackers. InAdvances in Cryptology – CRYPTO 2002,
pages 17–30. LNCS 2442, Springer-Verlag, 2002.

[23] J. Kohl and C. Neuman. The Kerberos network
authentication service (v5). Internet Request for
Comments 1510, Internet Engineering Task Force, 1993.

[24] Messages exchanged on the
krb-protocol@athena.mit.edu email list, April
1989.

[25] H. Krawczyk. The order of encryption and authentication
for protecting communications (or: How secure is SSL?).
In Advances in Cryptology – CRYPTO 2001, pages
310–331. LNCS 2139, Springer-Verlag, 2001.

[26] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-hashing for message authentication. Internet
Request for Comments 2104, Internet Engineering Task
Force, 1997.

[27] G. Lowe. Some new attacks upon security protocols. In
Proceedings of the 9th Computer Security Foundations
Workshop. IEEE, 1996.

[28] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H.
Saltzer. Kerberos authentication and authorization
system. Project Athena technical plan, section E.2.1,
Massachusetts Institute of Technology, 1987.

[29] J. H. Moore. Protocol failures in cryptosystems.
Proceedings of the IEEE, 76(5):594–602, May 1988.

[30] National Institute of Standards and Technology. DES
modes of operation. FIPS publication 81, U.S.
Department of Commerce, December 1980.

[31] National Institute of Standards and Technology. Data
encryption standard. FIPS publication 46-3, U.S.
Department of Commerce, October 1999.

[32] National Institute of Standards and Technology.
Advanced encryption standard. FIPS publication 197,
U.S. Department of Commerce, November 2001.

[33] R. M. Needham and M. D. Schroeder. Using encryption
for authentication in large networks of computers.
Communications of the ACM, 21(12):993–999, December
1978.

[34] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The
Kerberos network authentication service (v5). Internet
Draft draft-ietf-krb-wg-kerberos-
clarifications-04.txt , 2003.

[35] K. Raeburn. AES encryption for Kerberos 5. Internet
Draft
draft-raeburn-krb-rijndael-krb-05.txt ,
2003.

[36] K. Raeburn. Encryption and checksum specifications for
Kerberos 5. Internet Draft
draft-ietf-krb-wg-crypto-06.txt , 2003.

[37] J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos:
An authentication service for open network systems. In
Proceedings of the USENIX Winter Conference, pages
191–202, February 1988.

[38] S. G. Stubblebine and V. D. Gligor. On message integrity
in cryptographic protocols. InProceedings of the 1992
IEEE Computer Society Symposium on Research in
Security and Privacy, pages 85–104. IEEE, May 1992.

[39] S. Vaudenay. Security flaws induced by CBC padding –
Applications to SSL, IPSEC, WTLS InAdvances in
Cryptology – EUROCRYPT 2002, pages 534–545.
LNCS 2332, Springer-Verlag, 2002.

[40] V. L. Voydock and S. T. Kent. Security mechanisms in
high-level network protocols.Computing Surveys,
15(2):135–171, June 1983.

