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Abstract

We provide a largely automated system for verifying Clark-
Wilson interprocess information-flow integrity. Information-flow
integrity properties are essential to isolate trusted processes from
untrusted ones, but system misconfiguration can easily create in-
secure dependences. For example, an untrusted user process may
be able to write to sshd config via a cron script. A useful no-
tion of integrity is the Clark-Wilson integrity model [7], which al-
lows trusted processes to accept necessary untrusted inputs (e.g.,
network data or print jobs) via filtering interfaces that sanitize
the data. However, Clark-Wilson has the requirement that pro-
grams undergo formal semantic verification; in practice, this kind
of burden has meant that no information-flow integrity property
is verified on most widely-used systems. We define a weaker ver-
sion of Clark-Wilson integrity, called CW-Lite, which has the same
interprocess information-flow guarantees, but which requires less
filtering, only small changes to existing applications, and which
we can check using automated tools. We modify the SELinux user
library and kernel module in order to support CW-Lite integrity
verification and develop new software tools to aid developers in
finding and enabling filtering interfaces. Using our toolset, we
found and fixed several integrity-violating configuration errors in
the default SELinux policies for OpenSSH and vsftpd.

1 Introduction

1.1 Motivation and Goals

While operating systems provide isolation through sepa-
rate memory spaces, processes still interact via files, pipes,
network connections, shared memory, and other mecha-
nisms. We say that there is an information flow between a
process A and a process B if A can write to some resource
(e.g., a file or pipe) on which B depends. (We do not con-
sider side-channel attacks in this paper.) The information-
flow integrity verification problem is to prove that a security-
critical, or high integrity, process does not depend on infor-
mation flows from untrusted, or low integrity, processes.

Let us consider an example. If an untrusted user
can write to the trusted OpenSSH configuration file,
sshd config, that is a violation of information-flow in-
tegrity and a clear security breach. Transitive flows must
also be checked: if an untrusted user can run a cron job
that writes sshd config, there is obviously still an in-
tegrity violation. Merely setting file permissions does not
prevent attacks that operate via, say, pipes or shared mem-
ory: we must consider all kinds of inputs. In general, if
a trusted program depends on untrusted inputs, an attacker
may be able to gain escalated privilege or compromise the
system. To maintain information-flow integrity, a system
must be properly configured, i.e., its set of permissions must
be such that illegal flows from untrusted processes to trusted
ones are not possible. Such is the approach taken by the
Biba [2] model, where the trusted process is said to depend
on a resource merely by reading it. That is, no untrusted
inputs were allowed to trusted processes.
This picture is complicated by the fact that many trusted

processes must accept some untrusted input to function.
We say that each open() call (or equivalent, such as
connect() or accept) in the program constitutes an in-
put interface, or simply an interface. Network daemons
must accept some input, such as HTTP requests or ses-
sion logins, from the network. Input to network interfaces
may be controlled by an attacker. The programs running on
system must perform sanitization or filtering of inputs that
come from untrusted sources. By using filtering interfaces,
the program can read from an untrusted resource, while con-
trolling the extent to which it depends on that resource.
In short, information-flow integrity requires a combina-

tion of two elements: (1) proper configuration, which en-
sures that inputs that a program trusts (like config files) can-
not be written by untrusted users, and (2) filtering code,
which ensures that inputs that a program does not trust
(like network input) are checked for well-formedness and
application-specific restrictions. Without the ability to com-
municate with trusted processes except by very narrow in-
terfaces, untrusted users’ attack options, and therefore po-
tential exploits, are limited.



The Clark-Wilson integrity model [7] covers both as-
pects and is a good match for current trusted processes,
requiring that all of processes’ inputs be filtered or san-
itized. However, Clark-Wilson is, like Biba, relatively
heavyweight, requiring formal verification for programs.
These and other integrity models were developed at a time
when deep, complete program analysis for security was
thought to be coming in the near future. That vision has not
been realized and, as a result, most systems in widespread
use operate without any kind of information-flow integrity
verification: this long-identified problem is not solved in
practice.

Our goal in this paper is to change that; to do so, we
define a lighter-weight version of Clark-Wilson integrity,
which we term CW-Lite, that retains the same interpro-
cess dependency semantics but omits the requirement that
programs undergo full formal verification. We then show
how a combination of new and existing tools allows prac-
tical verification of CW-Lite. These tools address both as-
pects of integrity verification: they help administrators to
find and fix configuration errors, and application developers
to find and annotate interfaces that require input sanitiza-
tion. Verifying CW-Lite is largely automated: administra-
tors must only make manual decisions when violations are
found, and developers must only annotate untrusted input
interfaces, which are identified with our tools, with a sim-
ple macro. Naturally, developers must implement filtering
code on these interfaces in any case; the annotation serves
to allow static verification of CW-Lite.

Rather than have a tool that simply says that a system
has violations, we have tried where possible to make resolv-
ing the problems easier as well. We demonstrate the effec-
tiveness of our tools—and thus, the feasibility of achiev-
ing Clark-Wilson-style information-flow guarantees—by
applying them to privilege-separated OpenSSH, which in-
teracts with many system objects, and has the challenge
of containing trusted and untrusted components within one
application. We also analyze vsftpd to illustrate the gen-
eral applicability of our approach. We found several secu-
rity policy configuration errors that permitted unnecessary,
possibly insecure flows. We also determined that certain
other programs, such as rlogind and xdm, caused inse-
cure flows, and should not be run on systems that desire
information-flow integrity guarantees. Indeed, one of the
benefits of checking information flows on a system is that
it makes the formerly implicit TCB of the system explicit,
and highlights programs whose presence on the system can
cause insecure flows. Although not every insecure infor-
mation flow leads to an exploitable hole, by eliminating all
such flows, we eliminate all related exploits as well.

1.2 Contributions

In this work, we make the following contributions:

• We develop an information-flow integrity property,
CW-Lite, which captures the interprocess dependency
semantics of Clark-Wilson integrity, but is verifiable
on real systems using tools and only a modest amount
of manual effort;

• We develop a suite of tools as well as modifications to
SELinux to support CW-Lite enforcement;

• We apply our approach to OpenSSH and vsftpd, and
find several integrity-violating permissions in their de-
fault SELinux policies;

• In short, we have demonstrated practical verification of
Clark-Wilson interprocess information-flow integrity.

1.3 Roadmap

Section 2 contains a high-level overview of the CW-Lite
model and its verification process. In Section 3, we define
CW-Lite formally, starting with the Clark-Wilson model
and weakening certain requirements. Section 4 describes
our system modifications and the algorithm used to verify
the CW-Lite of a trusted application. In Section 5 we ap-
ply our approach to OpenSSH and vsftpd on Linux with
SELinux, describing how we used our tools to (1) identify
filtering interfaces necessary to handle low integrity inputs;
and (2) resolve potentially harmful information flows that
would not be filtered. We discuss related work in Section 6
and summarize our findings and future work in Section 7.

2 Overview of CW-Lite and its Verification

There are two motivating observations behind CW-Lite.
The first is that because the Clark-Wilson model contains a
formal verification requirement in addition to an interpro-
cess data flow model, it has proven too heavyweight for
widespread use. However, the two goals are separable, and
we may profitably try to solve the latter goal independently.
The second observation is that Clark-Wilson requires filter-
ing of all interfaces, but most trusted programs only need to
open untrusted interfaces at a small number of locations.
The first observation led us to focus our work here on a

concrete solution to the first Clark-Wilson goal: securing in-
terprocess information flows in an application-independent
way. Accordingly, CW-Lite duplicates the interprocess
information-flow semantics of Clark-Wilson. Full formal
verification of the programs themselves is a separate and
difficult problem; also, verifying semantic correctness is an



application-specific task. Obviously this kind of verifica-
tion is very useful and can prevent other kinds of integrity
compromises (e.g., those resulting from buffer overflows),
but we believe that separating the two problems will allow
simpler, more flexible solutions to each.

Verifying CW-Lite means ensuring that no unfiltered in-
formation flows exist from untrusted processes to trusted
ones. To do this, we must first identify all possible inter-
process information flows. We do so by using a mandatory
access-control (MAC) system that interposes access checks
on all interprocess flows; with a fine-grained MAC, we can
make meaningful statements about which flows are and are
not possible. In this paper, we use the SELinux [23] module
for Linux, a fine-grained MAC system for Linux that imple-
ments Role-Based Access Control with Type Enforcement.
SELinux is now a standard part of Fedora Core Linux and
is being integrated into many other Linux distributions.

Our second observation led us to extend the MAC sys-
tem, so developers would not have to filter on trusted in-
puts. In order to enforce least privilege for both trusted
(non-filtering) interfaces and untrusted (filtering) interfaces
in one process, the MAC must distinguish between the two
kinds of interfaces, allowing only trusted flows to trusted
interfaces but allowing additional, untrusted, inputs to the
others. By modifying SELinux to associate two security
contexts, or subject types, with each process instead of one,
we can allow only inputs from trusted processes by default,
while enabling a special context, a filtering subject type, for
filtering interfaces that allows necessary kinds of untrusted
inputs as well. This separation reduces the burden on the de-
veloper relative to Clark-Wilson by requiring filtering only
of untrusted inputs, which they must do in any case. The
only requirements are that developer annotate filtering inter-
faces with a simple macro and put relevant permissions in
the filtering subject type. To facilitate this process, we also
developed a tool that enables developers to identify which
inputs should be annotated filtering interfaces, based on the
extra permissions they need. These small changes to the
development process and SELinux are also what enable au-
tomatic verification by administrators on end systems.

Now that we have isolated the trusted interfaces into a
separate subject type, we need a way for administrators to
detect illegal flows to it from untrusted sources, i.e., verify
the CW-Lite property on their systems. In previous work,
we developed the Gokyo tool [14, 15], which can deter-
mine information flows from an SELinux policy by look-
ing at read-type and write-type permissions, then flag illegal
ones when supplied with the system’s TCB (assuming other
kinds of processes are untrusted). We leverage Gokyo here
by having it ignore flows to the filtering subject type for
the target application, reporting information-flow violations
only for the base subject type.

3 CW-Lite

In this section, we state the CW-Lite model more for-
mally. As we noted previously, CW-Lite is a weakened ver-
sion of the Clark-Wilson [7] integrity model, but the focus
is on controlling interprocess information flows, rather than
formal verification of the programs themselves (which is a
separate, important problem). In particular, we do not dis-
cuss the application-specific task of verifying the semantic
correctness of filtering interfaces in this paper. That is, we
seek to provide assurance that filtering code has not been
omitted, but not assurance of that code’s semantic correct-
ness.

3.1 Basic Information-Flow Integrity

In basic information-flow integrity models, dependence
on low integrity data is defined in terms of information
flows. Such models require that no low integrity informa-
tion flows may be input to a high integrity subject.
We start with a definition of information flow based on

two standard operators, modify and observe where: (1)
mod(s, o) is the modify operator where a subject (e.g., a
process or user) with subject label swrites to an object (e.g.,
a file or socket) with object label o and (2) obs(s, o) is the
observe operator where a subject of subject label s reads
from an entity of object label o. We use S to refer to the set
of all subjects.

Definition 1 (Basic information flow) flow(s1, s2) spec-
ifies that information flows from subject s1 to subject s2.

flow(s1, s2) := ∃o : mod(s1, o) ∧ obs(s2, o)

Next, the operator int(x) defines the integrity level of x
where it may be either a subject or an object. In informa-
tion flow integrity models, integrity levels are related by a
lattice [8] where int(x) > int(y) means that y may depend
on x, but not vice versa. For our purposes, this means that
trusted processes may not depend on untrusted ones.

Definition 2 (Biba integrity) Biba integrity [2] is pre-
served for a subject s if (1) all high integrity objects meet
integrity requirements initially and (2) all information flows
to s be from subjects of equal or higher integrity:

∀si ∈ S, flow(si, s) ⇒ (int(si) ≥ int(s)).

Some information-flow based integrity models, such
as LOMAC [12], operate differently but have the same
information-flow integrity semantics as Biba.



A note on transitivity. We note that while information
flow is transitive in general, only intransitive information
flows need to be examined to detect a Biba integrity vio-
lation. Suppose that A and B are untrusted and X and Y
are trusted. If we have a transitive information flow from
A → B → X → Y , only the flow fromB toX is needed to
trigger a Biba integrity violation, i.e., there is always some
flow that crosses boundary between untrusted and trusted.
It does not impact Biba integrity further that information
can flow from A to B. While we find Biba too restrictive,
we want to preserve the need only to check flows indepen-
dently.

3.2 Clark-Wilson Integrity

The Clark-Wilson integrity model [7] provides a differ-
ent view of dependence. Security-critical processes may
accept low integrity information flows (unconstrained data
items or UDIs), but the program must either discard or up-
grade all the low integrity data from all input interfaces. The
key to eliminating dependence on low integrity informa-
tion flows is the presence of filtering interfaces that imple-
ment the discarding or upgrading of low integrity data. The
Clark-Wilson integrity model does not distinguish among
program interfaces, but treats the entire security-critical
program as a highly assured black box. As a result, all in-
terfaces must be filtering interfaces.
In the original Clark-Wilson model, trusted processes are

known as transformation procedures (TPs), typically oper-
ate on CDIs (trusted inputs), but may also accept UDIs if it
is assured to filter all its inputs. Thus, our notion of trusted
applications maps closely to Clark-Wilson’s transformation
procedures. Clark-Wilson also defined special trusted pro-
cesses, called integrity verification procedures (IVPs), that
check the integrity of CDIs by performing appropriate in-
tegrity checks on each data item. These are used to estab-
lish systemwide integrity at the start of operation; we do not
specifically consider such programs in our model.
We now define information flow in terms of a connec-

tion between subject labels and their program interfaces.
For this we need a more precise obs operator: obs(s, I, o)
means that the subject s reads an object of type o on inter-
face I . An interface for a subject is a distinct input informa-
tion channel, and is created by, e.g., a particular open()
call in a program.

Definition 3 (Interface information flow) flow(si, s, I)
specifies that information flows from subject si to subject s
through an interface I in a program running as subject s.

flow(si, s, I) := mod(si, o) ∧ obs(s, I, o)

We also define the predicate filter(s, I) to mean that a
subject s filters or sanitizes input on an interface I .
We are now ready to state the Clark-Wilson property.

Definition 4 (Clark-Wilson integrity) Clark-Wilson in-
tegrity is preserved for a subject s if (1) all high integrity
objects meet integrity requirements initially; (2) the behav-
ior of the programs of subject S are assured to be correct;
and (3) all interfaces filter (i.e., upgrade or discard) low
integrity information flows:

∀si ∈ S, flow(si, s, I) ⇒ filter(s, I).

While the Clark-Wilson model does not require separate
multi-level secure processes for upgrading, as does Biba, it
requires a significant assurance effort. An important point
to note is that since a Clark-Wilson application programmer
does not know the system’s information flows in advance,
all interfaces must be assured to be filtering interfaces. In
practice, often only a small number of interfaces actually
need to capable of filtering in the context of a real system.
This set can be derived from analyzing the system’s security
policy; that is, by using system knowledge in application
development (since the developer can ship a security policy
with the application), we can reduce the filtering burden on
the developer. We use this observation in developing CW-
Lite.

3.3 CW-Lite

Definition 5 (CW-Lite) CW-Lite is preserved for a subject
s if: (1) all high integrity objects meet integrity require-
ments initially; (2) all trusted code is identifiable as high
integrity (e.g., from its hash value as for NGSCB [11]);
and (3) all information flows are from subjects of equal or
higher integrity unless they are filtered:

flow(si, s, I) ∧ ¬filter(s, I) → (int(si) ≥ int(s))

That is, CW-Lite requires that the application’s infor-
mation flows either adhere to classical integrity or that un-
trusted (low-integrity) inputs are handled by a filtering inter-
face. Note that this provides equivalent integrity to Clark-
Wilson, since the only flows not being filtered come from
trusted sources. Recall that CW-Lite also does not provide
for formal verification of filtering interfaces; it simply re-
quires the developer to mark them as such so they can be
handled correctly by the MAC system.

4 Developing CW-Lite-Compliant Systems

In this section, we tackle the CW-Lite tasks implied by
the previous section. Recall that the CW-Lite property is
one that is verified for a particular target application run-
ning on a particular system. Application developers must
enable verification with small changes to their programs and
security policies, while the administrators perform the ac-
tual verification on their systems. (See Figures 1 and 2 for



Identify filtering interfaces
(may use settraceonerror())

Add DO_FILTER() annotation
to filtering interfaces

Add filtering subject type
to default security policy;

policy ships with application

Figure 1. Application developer tasks re-
quired to enable CW-Lite verification. Fil-
tering interfaces are those that accept in-
puts from untrusted sources, and must
sanitize, or filter the input. An interface
is marked by a distinct call to open(),
accept(), or other call that enables data
input. The DO FILTER() annotation on
an interface tells the access-control sys-
tem to grant additional permissions al-
lowed by the filtering subject type to that
interface. The default subject type, used
on all other input interfaces, only allows
inputs from the the system TCB.

Config
Errors?

Yes

Done

Choose a TCB
(one time for all apps)

Run Gokyo on app security 
policy (from developer)

Fix Errors: remove perms
or increase TCB

No

Figure 2. System Administrator tasks re-
quired to verify CW-Lite. The system ad-
ministrator decides on a system TCB ini-
tially. Then, when she wants to verify
CW-Lite for a particular trusted applica-
tion, she runs Gokyo on its security pol-
icy. If no errors are reported, CW-Lite
integrity is verified. If it reports an illegal
flows, the offending permissionsmust be
removed, or the TCB expanded to include
the source of the illegal flows.

flowcharts of these tasks.) For our discussion, we use the
term TCB (trusted computing base) to indicate the set of
subjects that must be trusted on the system in order to trust
the set of target applications (e.g., sshd, Apache, bind).
An application developer must:

1. Assuming some TCB and application configuration,
identify untrusted inputs to the program and imple-
ment filtering interfaces for each. This may be done
using the process in Section 4.4.

2. Annotate those interfaces with the DO FILTER() an-
notation. These annotations are used by the access
control system as described in Section 4.2.

3. (Possibly in conjunction with a distribution main-
tainer:) Construct a default security policy for the ap-
plication that has two subject types: the default only
allows inputs from the TCB, and the other, for filtering
interfaces, allows required types of untrusted inputs as
well.

Since application developers should be sanitizing their un-
trusted inputs anyway, this represents only a small amount
of additional work to enable system-level integrity verifica-
tion.
A system administrator must:

• One time only, choose a system TCB. (A TCB may
be chosen per-application for a multilevel trust model,
but this is not necessary or common. In this scenario,
each target app would be associated with only the set
of subjects on which it depended, independent of other
applications.)

• Run the security policy analysis tool for the target ap-
plication as described in Section 4.3.

• If no integrity-violating permissions are detected, then
skip the next step.

• Classify each integrity-violating permission found by
the tool to decide how to remove the illegal flow. See
Section 4.5 for details on how to do this.



Note that verifying the CW-Lite property is done automat-
ically using Gokyo; it is only resolution of problems that
requires manual intervention. In addition, our approach al-
lows each sysadmin to decide which applications trust on
her system. She can evaluate the risk of running a particular
application in terms of what must be trusted in order to run
it.
In the remainder of this section, we will first describe the

SELinux access control system, then show how we modi-
fied SELinux to support filtering interfaces and, therefore,
CW-Lite verification. We continue by addressing the devel-
oper and sysadmin tasks above, including performing policy
analysis and finding filtering interfaces.

4.1 SELinux

The SELinux module [23] is a Linux Security Mod-
ule (LSM) [26] that provides fine-grained, comprehen-
sive MAC enforcement. It ships standard with Fedora
Linux, among others, and it is quickly becoming standard
to include attendant SELinux policies with applications.
SELinux implements an extended form of Type Enforce-
ment (TE) [4] with domain transitions that enables expres-
sion of policies covering over 30 different kinds of objects
with about 10 operations each. SELinux is comprehen-
sive because it aims to control all programs’ accesses to
all security-relevant system objects. In this paper, we do
not examine verifying that the SELinux/LSM implementa-
tion is a correct reference monitor. Previous work verified
the LSM reference monitor interface [27], but verifying the
correctness of the SELinux implementation properties re-
mains.
Key notions in SELinux are those of subject types and

object types. A process’ security context is determined
by its subject type, much as the security context of an or-
dinary UNIX process is determined by its effective UID.
Likewise, non-process objects like files are associated with
an object type. Permissions are attached to a subject
type in policy files; if an Apache process has the subject
type apache t, and its configuration file has object type
apache config t, we might say something like

allow apache_t apache_config_t:file
{stat read}

to allow Apache to call stat() on or read from its config-
uration file. SELinux does not include a “deny” operation;
all permissions are denied by default.
Although there are several access control concepts in the

SELinux policy model besides allow permissions by sub-
jects on objects, only one other is relevant to information
flow. The relabel operations1 enable a subject to change

1A subject needs the relabelfrom and relabelto permissions to imple-
ment a relabel.

the object label of an object. This enables information flow
from the old object label to the new one.
While it allows us great control and flexibility, such fine-

grained, comprehensive control results in very large and
complex access control policies. Frank Mayer describes
the SELinux policy model as an “assembler level” policy.
In the August 19, 2004 release, the default build results in
a 500 KB compiled policy file. There are over 5,000 per-
mission assignment (allow) rules in the policy itself (in the
file policy.conf). Note that this policy contains just the base
subjects; the complete policy, including policies for all ship-
ping applications, is about ten times greater in size. As a re-
sult, understanding the higher-level properties that a policy
implies, such as information flow, cannot be done manually.

4.2 Supporting filtering interfaces in the MAC
Policy

SELinux cannot distinguish among input interfaces in a
single process. Some interfaces may only have to process
high integrity data, such as the interface that reads a config-
uration file. Others have to be able to validate and upgrade
certain types of low-integrity data such as network input:
these are filtering interfaces. In order to support filtering in-
terfaces (and therefore to check CW-Lite), we modified the
SELinux user space library and kernel module to support
two subject types per process instead of one. The default
subject type is used for ordinary operation and allows inputs
only from subjects in the application’s TCB; this is enforced
by the Gokyo policy analysis in Section 4.3. The new filter-
ing subject type, with additional permissions, is used for
interfaces with the appropriate DO FILTER() source code
annotation.

DO_FILTER(interface creation code) :=
use_filtering_subject_type();
interface creation code
use_default_subject_type();

The annotation serves as a contract with the programmer,
who stipulates that input from the interface is filtered. Our
macro-like approach is deliberate, to discourage running a
large amount of code with higher privilege. Typically, only
a single open()-type call requires the permissions. An
example of the required changes to the program and the se-
curity policy for filtering interfaces is given in Figure 4.2.
Note that the accept() system call is still constrained

by the MAC policy for the filtering subject type. For exam-
ple, the filtering subject type permissions for the application
might allow accepting connections from one network card,
but not another.



Before After

Source Code Source Code
conn = accept() DO FILTER(conn = accept())
// accept() fails // accept() succeeds
get http request sanitized(conn) get http request sanitized(conn)

Security Policy (default DENY) Security Policy (default DENY)
Apache: ALLOW read httpd.conf Apache: ALLOW read httpd.conf
// Problem: network (∈ TCB! // network officially (∈ TCB
Apache: ALLOW accept Apache-filter: ALLOW accept

Figure 3. Supporting filtering interfaces. Initially, the program above is not allowed to accept network
input, because the network is not in the TCB. In order to accept such input, the source codemust filter
it and the programmer must supply an annotation indicating that the interface is filtered. Then the
policy must be modified to allow the network input only for the filtering interface. The DO FILTER()
macro tells the MAC system to use the filtering subject type permissions for the enclosed operations.
We annotate accept() (which implies a read/write socket), rather than subsequent socket read/write
operations, because that is where the MAC system performs access checks. This is analogous to
how file access checks, including read/write permission checks, are performed once on open(), not
for every read() or write() call.

4.3 MAC Policy Analysis

Once the target application’s untrusted inputs have been
isolated into its filtering subject types, we need only check
that there are no untrusted inputs to the application’s default
subject type s.
We employ the Gokyo tool to compute information flows

from an SELinux policy [14]. Gokyo represents access con-
trol policies as graphs where the nodes are the SELinux sub-
ject types and permissions, and the edges are assignments
of permissions to subject types. Based on whether the per-
mission allows a mod operation, an obs operation, or both,
Gokyo computes all information flows to s. That is, it com-
putes the set of subject types

F = {s′ : mod(s′, o) ∧ obs(s, o), o is an object type}.

Gokyo also correctly handles flows implied by object rela-
beling; see the Appendix for details.
Some of the non-target subjects may be designated as

trusted subjects, and they form the system’s TCB. The
TCB includes subjects such as those that bootstrap the sys-
tem (e.g., kernel and init), define the MAC policy (e.g.,
load policy), and do administration (e.g., sysadm).
Given the set of information flows and the TCB, the un-

trusted subjects with flows to s are given by

U = F ∩ ¬TCB.

If this set is empty, then CW-Lite holds for the target appli-
cation. If not, Gokyo outputs the set of permission assign-
ments P that need to be examined, i.e., those that allow the

offendingmod and obs operations:

P = {p : flow(u, s), p ⇒ mod(u, o) ∨ p ⇒ obs(s, o)}

where p is a permission assignment, u ∈ U , and o is some
object type.

4.4 Finding filtering interfaces

Although we modified SELinux to support mediation for
filtering interfaces separately from other interfaces (Sec-
tion 4.2, above), the developer still needs to make annota-
tions to tell SELinux whether a given interface performs fil-
tering or not. As part of this process, the developer needs to
determine which interfaces require filtering. Some may be
obvious, but there may be permissions to access untrusted
data that are used in a subtle way. The developer can find
these by running the security policy analysis on the default
policy and analyzing all integrity-violating permissions for
the application.
The problem of determining where in a program a per-

mission is used is outside the scope of SELinux’s goals,
so we implemented our own mechanism. We defined a
new operation in SELinux called settraceonerror us-
ing the sysfs interface and made appropriate changes to
both SELinux’s user library and its kernel module. When
settraceonerror(true) is called from user space,
our modified SELinux kernel module signals the process
whenever a violation of the SELinux policy is found. The
user library catches the signal and traps the process into a



separate xterm debugger (gdb). If the process forks, addi-
tional xterm windows with debuggers on the child processes
are launched. Once in the debugger, it is much easier, using
stack traces and data inspection, to determine where and
why a permission error occurred and take appropriate ac-
tion, either removing the offending operation or implement-
ing a filtering interface. If the permission is never actually
needed, then it can simply be removed from the policy.
Some filtering interfaces may not need to actually fil-

ter the incoming data contents, since some interfaces do
not interpret the incoming data. For example, logrotate en-
ables automatic rotation of log files, but does not depend
on the data in the files. Likewise, the cp utility copies
files, but does not consider their contents. In these cases,
a DO FILTER() annotation is still appropriate, rather than
allowing the program to accept all inputs. This is because
(1) filtering based on metainformation (like input length)
may still be needed; and (2) the kinds of inputs may need to
be restricted (for example, disallowing copies from named
pipes). Naturally, if the program semantics change later to
include interpretation of the untrusted data, the programmer
should implement additional filtering code.
One may wonder why we use a dynamic approach to

finding filtering interfaces. A simple example is revealing:
consider the interface fd = open(filename). In or-
der to decide statically if filtering is required, we would
need to know the value of filename. This may be par-
tially addressed with a program analysis, though of course it
is undecidable and may come from dynamic data, say from
the system’s configuration. The mapping of filename to ob-
ject type (which is what matters for integrity) is also system
dependent, and each administrator may keep files in differ-
ent locations. Our approach works well enough in practice,
since the number of filtering interfaces is usually relatively
small; while it may have the coverage problem of dynamic
analysis, it does not have the scalability and decidability
problems of static analysis.

4.5 Handling illegal information flows

If a sysadmin’s invocation of the policy analysis tool de-
tects illegal information flows implied by a set of permis-
sions, one of a few actions is required. Some such per-
missions are simply unneeded and may be removed. Some
information flows may be generated by programs that are
untrusted, but optional to the system. An easy way to re-
move this information flow is to exclude the offending code
and subject types from the system. Some permissions are
needed by optional components of the target app; the op-
tions may be disabled, and the permissions removed. If the
permission is used by the core application, then either the
sysadmin may be assuming a smaller TCB than the devel-
oper or the developer has not added a DO FILTER() an-

notation. The sysadmin can either not run the target appli-
cation or get the developer to write and annotate additional
filtering interfaces.

5 Example: CW-Lite Integrity Verification

5.1 Goal

So far, we have defined CW-Lite and shown in gen-
eral how applications can be constructed to satisfy its re-
quirements. We have several goals in applying CW-Lite to
our primary example application, OpenSSH, and to vsftpd.
First, we want to see how easy it is to build applications to
meet CW-Lite in practice. Since OpenSSH is a very pop-
ular, complex, and security-critical program that has been
architected to preserve the integrity of its privileged compo-
nents, verifying a useful integrity property can be of value
to of millions of systems and validate the security efforts of
its developers. vsftpd is a somewhat simpler example, and
illustrative of a common case. Second, we want to see how
close the default SELinux policy is to enabling satisfaction
of CW-Lite. Third, if either application (with the standard
shipping policy) does not initially meet CW-Lite integrity,
we want to see why it fails and how difficult it is modify the
application or policy to enable success.

5.2 Setup

Provos et al. decomposed the server-side daemon of
OpenSSH into privileged and unprivileged components in
order to minimize the amount of code that needs to run
with privilege. The privileged component exports a narrow
interface to the unprivileged components, such that only
specific operations in a specific order may be requested,
which reduces the risk of the privileged component be-
ing compromised by a hijacked unprivileged component.
Privilege-separation has been added as an option to the main
OpenSSH distribution.
The process graph for privilege-separated OpenSSH is

shown in Figure 4. One privileged component, listen, lis-
tens for new connections via port 22 and forks a new
privileged component, priv, per connection. This priv
component performs the privileged operations required by
OpenSSH: authentication of the remote user, creation of
pseudo-terminals, and transition to a particular, authenti-
cated userid. The priv component in turn spawns unpriv-
ileged components to handle various types of user interac-
tion. The net component is used to perform the remote in-
teraction part of the authentication phase, which has in the
past been subject to compromise; it uses the priv compo-
nent as a privileged server to handle secret data operations.
After successful authentication, priv spawns a shell or other
process requested by the user in that user’s security context.



Figure 4. Process structure of privilege separated OpenSSH. The listen process simply processes new
connection requests, forking a priv process to handle each one. The priv process forks a net process
to perform the network portion of user authentication, providing a narrow interface to privileged
operations necessary to complete authentication. After net completes its task, priv spawns the
authenticated user’s requested process, in our example a bash shell.

vsftpd is the FTP server included with Fedora Core
Linux. It too employs separate trusted and untrusted pro-
cesses, though its policy treats both the same. We do not
discuss its analysis in as much detail, but give a summary
of the analysis and the results.
For testing, we used OpenSSH 3.6 and vsftpd 2.1.3 on an

Intel x86 platform with the Linux 2.6 kernel installed. We
use SELinux (see Section 4.1) as our MAC system, using
the strict (not targeted) policy configuration for Fedora Core
4.

5.3 Roadmap for OpenSSH

The problem of verifying CW-Lite for privilege-
separated OpenSSH is addressed by ensuring that all infor-
mation flows into the privileged components (listen or priv)
either contain only high integrity data or discard/upgrade
the data via declared filtering interfaces.
Enabling OpenSSH to satisfy CW-Lite requires work by

the application developer to modify OpenSSH to find where
filtering interfaces are necessary, build acceptable filtering
interfaces, and declare the presence of the filtering inter-
faces to SELinux. Then, the administrator of the SELinux
system needs to configure an SELinux policy that enables
satisfaction of CW-Lite. Recall that this policy will have a
base set of permissions (subject type) allowing only trusted
input for normal interfaces and additional subject type to
accept requires types of untrusted input at the filtering in-
terfaces.
The first step is to use the Gokyo policy analysis tool

to identify the illegal information flows to priv and listen.
The next task is to determine whether the remaining low
integrity flows can be handled by filtering interfaces. We
use our tools (see Section 4.4) to find the interfaces that
accept low integrity data in the privileged components and

add the DO FILTER() annotation.

5.4 Inter-process Flow Analysis

Given the new SELinux policy for the OpenSSH com-
ponents and the remainder of the SELinux example policy
for the rest of the system, we are ready to use Gokyo to find
low integrity information flows to the privileged OpenSSH
components priv and listen and revise the policy to remove
any unnecessary flows. Gokyo computes the information
flows in the SELinux policy that violate the policy analysis
constraints given the sets of trusted subjects, excluded sub-
jects, and filter rules. A short introduction to Gokyo is in
Section 4.3.
We define a TCB including the system bootstrap com-

ponents, such as bootloader, kernel and init, and compo-
nents that modify the SELinux policy itself (e.g., checkpol-
icy, load policy, setfiles, etc.) or other objects upon which
the system integrity depends (e.g., administrative subjects
sysadm, staff, rpm, etc.).
We then run Gokyo and identify several information flow

conflicts shown in Table 1. The table shows each instance
where the target subjects (priv and/or listen) have a read
permission on an object that may be modified by untrusted
source subjects (write-up subjects); some objects may be
written to by many write-up subjects. The problem then is
to find a resolution that prevents the target subjects from
being dependent on the write-up subjects. For each entry,
one of these resolutions is applied in the following order
of precedence: (1) we can EXCLUDE the write-up sub-
ject from the system if it is not required on the system (2)
we can identify that the permission does not actually result
in a data dependency (FILTER NO DEP), which requires a
lightweight filtering interface that prevents only metainfor-
mation attacks like buffer overflows; (3) we can FILTER the



Target Permission Source Subjects Resolution
Subject (object:class) (names or count)

Resolutions requiring primarily system knowledge
priv, listen, ftpd devlog:sock privlog FILTER NO DEP
priv lastlog:file 6 FILTER NO DEP
priv, ftpd etc runtime:file xdm, hotplug EXCLUDE
listen initrc var run:file 7 (includes rlogind) EXCLUDE
listen, ftpd net conf:file dhcpc EXCLUDE
priv, ftpd wtmp:file 7 (includes rlogin) EXCLUDE

Resolutions requiring application knowledge
listen sshd listen:tcp (accept()) [network] FILTER
listen userpty:chr file 7 FILTER
priv sshd priv:unix sshd net FILTER
ftpd ftp port t:tcp (accept()) [network] FILTER
listen sshd listen:tcp (read()) [network] REMOVE
priv xserver port:tcp 165 REMOVE
priv, listen devtty:chr file 200 REMOVE (This row used for a sample walkthrough.)
priv,listen port type:tcp [network] REMOVE
listen sshd listen:unix unpriv userdomain REMOVE
listen sshd listen devpts:chr file 5 REMOVE
priv sshd tmp:file (staff/sysadm/user)ssh REMOVE
priv sshd tmp:lnk (staff/sysadm/user)ssh REMOVE
priv sshd tmp:sock (staff/sysadm/user)ssh REMOVE
priv sshd tmp:fifo (staff/sysadm/user)ssh REMOVE
priv system chkpwd:fd 27 REMOVE
priv, listen unpriv domain:fd 33 REMOVE
ftpd ftp port t:tcp (read()) [network] REMOVE*
ftpd nfs t/cifs t:file 27 REMOVE*
ftpd user home:file 4 REMOVE*

FILTER = The permission is necessary, but requires a filtering interface. It should be put in the filtering subject type.
FILTER NO DEP = Necessary permissions that requires a filtering interface, but no semantic filtering is needed since the input is not
interpreted. The filtering subject type is still needed to properly handle metainformation and enforce least privilege for other trusted
inputs.
EXCLUDE = Exclude the source subject from the SELinux policy, as it causes insecure flows; any associated programs must not be
run on the system. This is a judgment call; sysadmins may instead decide to add the source subject to the TCB.
REMOVE = Remove the permission assignment from the target subject, breaking the information flow.
* = The vsftpd policy did not fully reflect its process structure; see Section 5.6 for details.
Walkthough for shaded row: “priv, listen” indicates that the illegal flows were inputs to both the priv and listen components of
OpenSSH. The object that they have permission to read from is devtty:chr file, that is, a TTY from /dev/tty. Two hundred untrusted
subjects have permission to write to that object. The illegal flows are broken by removing the read permissions, since they are not
necessary: the TTY is actually read only by the net component, which handles remote user input.

Table 1. Information flows to our target subjects (priv and listen for OpenSSH and ftpd for vsftpd) that may
lead to integrity problems. The permissions leading to these flows were identified by the Gokyo tool.
The top half of the table indicates conflicts resolved based on system knowledge. The bottom half
required examining the behavior of the target application using the tools described in Section 4.4.
Each target subject was analyzed independently.



use of the permission via a filtering interface; or (4) we can
REMOVE the permission assignment from the target sub-
ject or the write-up subject if not required by the subject.
The table groups the resolutions into two categories: (1)

resolutions based on information flow only and (2) reso-
lutions based on application configuration and information
flow. The decision between removal of permission assign-
ments and filtering generally requires application knowl-
edge; some permissions are needed to support optional
components of the application and some are needed for core
operation. An administrator would need to decide which
options were required on her system and trust the corre-
sponding inputs. 14 of the 20 conflicts require some un-
derstanding of the needs of the OpenSSH application.
Next, we recognize that the use of devlog and lastlog

does not result in any form of dependence. They manipulate
log data which is not interpreted, for example by rotating
log files.
Finally, we exclude a few write-up subjects from the sys-

tem if they cause illegal flows to OpenSSH. This is a judg-
ment call; a sysadmin may decide to trust these subjects
instead. If they are trusted, then they must implement ap-
propriate filtering interfaces. dhcpc is an example of this
as some vulnerabilities have been found for it. Dynamic
system extension via hotplug is not necessary in our envi-
ronment, so our judgment is to simplify administration and
exclude it. We also eliminate the untrusted subjects that
write to the login records of wtmp, such as rlogind.
Only 3 of the 15 remaining read-type permissions are

actually needed in our OpenSSH configuration: the per-
missions identified by Provos et al for creating the pseudo-
terminal; initiating OpenSSH connections (by listen); and
processing user commands via the socket from net to priv.
We remove the 10 unnecessary permission assignments. We
note that the port type:tcp permission which permits access
to most systems sockets is much coarser-grained than nec-
essary. listen only needs access to sshd listen:tcp on port
22. We note that the replication of some permissions for
listen and priv was unnecessary. For example, there is no
need for listen to accept requests from net.
Figure 1 shows how challenging it can be to get the per-

mission assignments correct for a given system. The hand-
constructed SELinux policy shipped with Fedora Core 4
contained several permissions that needed to be removed.
(Our hand-distribution of OpenSSH permissions to net,
priv, and listen did not impact these.) Some, such as for
sshd tmp, enable actions that we do not want in our config-
uration (e.g., user administration). Others, though, are sim-
ply mistakes that enable information flows that could com-
promise the integrity of our privileged components. While
investigating the source of these errors, we found that, of-
ten, large blocks of permission assignments were made us-
ing SELinux convenience macros when only a subset were

actually needed. SELinux policies only allow assignment
of permissions, not their removal, so we urge policy writers
to be careful in their use of such macros.

5.5 OpenSSH Filtering Interfaces

We now describe how we identified which permission
assignments to classify as FILTER. First, the OpenSSH ap-
plication developer needs to find where filtering interfaces
are necessary. A filtering interface is necessary where low
integrity data may be input. For OpenSSH, the interfaces
where listen receives connection requests from the network
and where priv receives commands from net are the two ob-
vious cases. However, other interfaces may also require fil-
tering in OpenSSH. To find all filtering interfaces, an analy-
sis of the SELinux policy is necessary to see if low integrity
inputs may be used by other OpenSSH interfaces.
We use the settraceonerror mechanism described

in Section 4.4 to test our configuration against the default
SELinux policy to determine if other interfaces besides the
two above require filtering interfaces. We located one: the
userpty pseudo terminal used by priv to communicate with
the user shell process.
Next, the application developer must construct effective

filtering interfaces. It is the application developer’s task
to build the filtering interfaces and prove effectiveness to
the community. For OpenSSH, the construction of a filter-
ing interface for priv to read commands from net is one of
the main tasks in the privilege-separation done by Provos et
al [21]. The interface to accept connections in listen does
not have any special filtering per se, as the connection is not
interpreted by listen. Also, the userpty pseudo terminal in
priv is only used to pass data to the remote user from the
shell process with an encryption step; the contents are not
examined.
Finally, once filtering interfaces are found, they must be

declared to SELinux in order to use the low integrity per-
missions. We use the DO FILTER() annotation to declare
such interfaces as described in Section 4.2.

5.6 Verifying vsftpd

We applied the same approach to verifying vsftpd; the
results are in Table 1. One difference is that the SELinux
policy did not reflect the nature of the FTP daemon, which
forks per-connection helper processes in a manner very sim-
ilar to OpenSSH. Instead, there was one subject type for all
processes. The child processes do drop Linux privileges
(versus than SELinux ones), so they are still largely con-
fined (if a permission is denied in either model, it is de-
nied to the process). The three starred permissions in the
table are those that should belong to the unprivileged child
processes only, not to the trusted server process, which is



why we specify their disposition vis-a-vis the trusted sub-
ject type as “REMOVE”. The interface between the two is
a filtered domain socket. The additional violating permis-
sions were eliminated by excluding some of the same ex-
cluded subjects as for OpenSSH, like rlogind and xdm.

6 Related Work

6.1 Integrity Models

System integrity has been a difficult problem for secu-
rity researchers over the years. Most work on integrity has
focused on information flow models, supplemented by high
assurance (i.e., formal, validation of program correctness,
such as Common Criteria EAL7 evaluation).
The Biba integrity model [2] is essentially a dual of the

Bell-LaPadula secrecy model [1], where information flows
from low integrity subjects to high integrity subjects are
prohibited. Like Bell-LaPadula, high assurance compo-
nents are required to overcome restrictions, but unlike the
case for secrecy, illegal (low-to-high) integrity information
flows are common (e.g., user requests).
Attempts in subsequent models have not grappled with

the fundamental problem that low-to-high integrity flows
are common. Denning’s work on secure information flow
models [8] models information flows between subjects of
different labels as a lattice, but models illegal flows as any
flow that violates the lattice structure. The LOMAC (low
watermark) integrity model also prevents high integrity sub-
jects from acting on low integrity information flows, in this
case by downgrading the level of a high integrity subject
upon receipt of a low integrity information flow [12]. The
Clark-Wilson model acknowledges that interfaces are re-
quired that can sanitize (or discard) low integrity data, but
all interfaces must be capable of sanitization (or discard)
and the basis for trusting these interfaces is still high as-
surance [7]. We are significantly influenced by the Clark-
Wilson model’s view of requirements on interfaces of high
integrity processes, though. Lastly, the recent Caernarvon
model allows subjects to span multiple integrity levels such
that a subject (i.e., process running with an integrity label
range) may be able to read from lower integrity data within
its integrity range securely while writing to higher integrity
data within its integrity range [22]. Unfortunately, the in-
tegrity ranges must be justified by assurance, where signif-
icantly broad ranges will still require high assurance. Even
after 25 years, we cannot escape the requirement for high
assurance, which places too high a burden on too many ap-
plications to be practical.
More recent work by Li and Zdancewic [18] present a

formal type system that captures intraprogram labeled in-
formation flow, with provisions for downgrading of data;
type-checking may be used to ensure information-flow se-

curity. One may imagine applying their method to interpro-
cess flow, which is controlled by a security policy rather
than program source. The DO FILTER() primitive we
present may be seen as a downgrading operation in this con-
text.

6.2 Static Analysis

Several access control policy analysis tools have
emerged, particularly in the context of SELinux. While the
early tools mainly supported query handling, recent tools,
such as Gokyo [14], SLAT [13], and Apol [25], now sup-
port different kinds of information flow analysis. For ex-
ample, SLAT enable verification of particular information
flow policies, and Gokyo identifies and enables resolution
of illegal information flows [16]. Understanding informa-
tion flows is key to achieving CW-Lite integrity.
Static analysis has also been used to separate trusted and

untrusted code in other ways. The Privtrans system [5] uses
source code analysis to try to automate privilege separation,
dividing a program into trusted and untrusted processes.

6.3 Whole-system Analysis

While there is widespread agreement that whole-system
analysis is desirable, there have been relatively few efforts
that actually do so on widely-used operating systems. Re-
cently, Chow et al. used hardware-level simulation on a vir-
tual machine in order to perform a dynamic cross-process
taint analysis [6]. By contrast, our work focuses on static
analysis to prove certain properties about applications’ in-
formation flow rather than infer them dynamically. Thus,
we see our approach as complementary to theirs.

7 Conclusion and Future Work

Maintaining information-flow integrity is an old and im-
portant problem, but as yet an unsolved one in practice:
most administrators have not verified that untrusted users
cannot compromise inputs to trusted programs on their sys-
tems. In this paper, we have developed a way to automati-
cally verify a meaningful information-flow integrity prop-
erty with very small changes to existing trusted applica-
tions. We call this property CW-Lite, since it has the same
interprocess dependency semantics as the well-established
Clark-Wilson model, but does not address Clark-Wilson’s
whole-program formal verification requirement. CW-Lite
requires filtering only for untrusted input interfaces, as de-
termined by the system’s security policy, and just simple
annotations to existing applications to enable least-privilege
enforcement and automatic verification. Only conflict reso-
lution requires manual effort by the sysadmin. We modified
the SELinux access control system to enforce CW-Lite and



developed tools that support the implementation of compat-
ible program. We verified the practicality of our tools by
analyzing privilege-separated OpenSSH and vsftpd, finding
and fixing several integrity-violating configuration errors in
the shipping SELinux policy.
The main future work is to extend CW-Lite to the entire

software trusted computing base of the system. In addition,
a natural extension to our model would be a way to prove
statically that filtering interfaces’ upgrade/discard operation
is semantically correct, an application-specific check that
may be tractable if the types of allowed filtering are re-
stricted.
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Appendix: Gokyo support for SELinux object
relabeling

Because the SELinux policy model also permits object
relabeling, we must consider information flows caused by
modifying an object and relabeling it to another object
type. The relabel(s, obj, o, o′) operation enables subject s
to change an object obj’s label from o to o′. Since relabeling
does not change the contents of an object, we do not really
care who does the relabel, just that it can occur. Also, it does
not matter which specific object can be relabeled, since all
objects of the same object type are equivalent from an infor-
mation flow perspective. Thus, we use a refined predicate
relabel(o, o′).
Next, we consider successive relabeling operations o1 →

o2 → ... → oi. The transitive closure of the relabel oper-
ation is defined by relabel(o1, oi). The relabel information

flow rule states that

mod(s1, o1) ∧ relabel(o1, oi) ∧ obs(si, I, oi)

→ flow(s1, si, I).

Gokyo accounts for information flows due to arbitrary rela-
beling.


