
Trust Negotiation with Hidden Credentials, Hidden Policies, and Policy Cycles∗

Keith B. Frikken Jiangtao Li Mikhail J. Atallah
Department of Computer Science, Purdue University, West Lafayette, Indiana

{kbf, jtli, mja}@cs.purdue.edu

Abstract

In an open environment such as the Internet, the decision
to collaborate with a stranger (e.g., by granting access to a
resource) is often based on the characteristics (rather than
the identity) of the requester, via digital credentials: Access
is granted if Alice’s credentials satisfy Bob’s access policy.
The literature contains many examples where protecting the
credentials and the access control policies is useful, and
there are numerous protocols that achieve this. In many of
these schemes, the server does not learn whether the client
obtained access (e.g., to a message, or a service via an e-
ticket). A consequence of this property is that the client can
use all of her credentials without fear of “probing” attacks
by the server, because the server cannot glean information
about which credentials the client has (when this property is
lacking, the literature uses a framework where the very use
of a credential is subject to a policy specific to that creden-
tial). The main result of this paper is a protocol for negoti-
ating trust between Alice and Bob without revealing either
credentials or policies,when each credential has its own ac-
cess policyassociated with it (e.g., “a top-secret clearance
credential can only be used when the other party is a gov-
ernment employee and has a top-secret clearance”). Our
protocol carries out this privacy-preserving trust negotia-
tion between Alice and Bob, while enforcing each creden-
tial’s policy (thereby protecting sensitive credentials). Note
that there can be a deep nesting of dependencies between
credential policies, and that there can be (possibly over-
lapping) policy cycles of these dependencies. Our result
is not achieved through the routine use of standard tech-
niques to implement, in this framework, one of the known
strategies for trust negotiations (such as the “eager strat-
egy”). Rather, this paper uses novel techniques to imple-
ment a non-standard trust negotiation strategy specifically
suited to this framework (and in fact unusable outside of this
framework, as will become clear). Our work is therefore

∗Portions of this work were supported by Grants IIS-0325345,IIS-
0219560, IIS-0312357, and IIS-0242421 from the National Science Foun-
dation, Contract N00014-02-1-0364 from the Office of Naval Research, by
sponsors of the Center for Education and Research in Information Assur-
ance and Security, and by Purdue Discovery Park’s e-enterprise Center.

a substantial extension of the state-of-the-art in privacy-
preserving trust negotiations.

1 Introduction

Whereas in the past access decisions were based on the
identity of the entity requesting a resource, in open systems
such as the Internet, this approach is ineffective when the re-
source owner and the requester belong to different security
domains that are controlled by different authorities, possi-
bly unknown to each other. One alternative is to usedigital
credentialsfor satisfying access control policies [3, 12, 21].
Digital credentials are digitally signed assertions aboutthe
credential owner by a credential issuer. Each digital cre-
dential contains an attribute (or set of attributes) about the
owner. The decision to grant access to a resource is based on
the attributes in the requester’s credentials, such as citizen-
ship, security clearance, employment, group membership,
credit status, etc.

A typical scenario for accessing a resource using digital
credentials is for the requester, Alice, to send her requestto
the resource owner, Bob. Bob then responds with the policy
that governs access to that resource. If Alice’s credentials
satisfy Bob’s policy, she sends the appropriate credentials to
Bob. After Bob receives the credentials and verifies them,
he grants Alice access to the resource. Observe that, in this
scenario, Alice learns Bob’s policy and Bob learns Alice’s
credentials. Such a strategy is straightforward and efficient,
however it is unacceptable if the credentials or the access
control policies are considered to be sensitive information.

Clearly, it is advantageous for the requester to protect her
credentials, as revealing them may violate her personal pri-
vacy. The motivation for hiding the policy is not necessarily
protection from an evil adversary. It could simply be the de-
sire to prevent legitimate users from “gaming” the system
– e.g., changing their behavior based on their knowledge
of the policy (which can render an economically-motivated
policy less effective). This is particularly important forpoli-
cies that are not incentive-compatible in economic terms
(e.g., they suffer from perverse incentives in that they re-

1

ward the wrong kinds of behavior, such as free-loading). Or
it could be that the policy is a commercial secret – e.g., Bob
has pioneered a novel way of doing business, and knowl-
edge of the policy would compromise Bob’s strategy and
invite unwelcome imitators. Finally, a process that hides Al-
ice’s credentials from Bob is ultimately not only to Alice’s
advantage but also to Bob’s: Bob no longer needs to worry
about rogue insiders in his organization illicitly leakingor
selling Alice’s private information, and may even lower his
liability insurance rates as a result. Privacy-preservation is
a win-win proposition, one that is appealing even if Alice
and Bob are honest and trustworthy entities.

For these and other similar reasons, there has been a sub-
stantial amount of recent work [17, 6, 14] on performing
this type of attribute-based access control while protect-
ing Alice’s credentials and Bob’s policies. One assump-
tion of these schemes is that the resource owner does not
learn whether the requester obtained access. When this is
the case, the requester can use all of her credentials without
regard to their sensitivity level, as these schemes do not leak
the requester’s credentials to the service provider. However,
this “resource owner does not learn” property may not hold
in practice for the following two reasons:

1. In many scenarios, the server grants access to services
rather than messages. Thus, for certain types of ser-
vices, the server has to know whether the client got
access to the services. In fact there are audit and ac-
counting requirements that cause many organizations
to require learning whether access took place.

2. Even if the server offers messages rather than services,
message requests are not independent in most systems.
For example, suppose a client requests messageM1,
which contains a hyperlink to messageM2, and that
same client subsequently requestsM2 a few minutes
later; although the server does not learn for certain that
the client successfully obtainedM1, inferences can be
made.

For the above reasons, the server could learn whether the
client obtained access. This may seem like an insignificant
bit of information, but since the server can set his policy to
be an arbitrary function, this enables the server to probe the
client for sensitive credentials. For example, the server may
intentionally set his access control policy to be “only people
with top-secret clearance can access the resource”. When
the client obtains access, the server learns immediately that
the client has a top-secret clearance credential.

This Sensitive CredentiAl Leakage Problem (SCALP)is
not due to any flaw or weakness in the previous protocols
(e.g., [17, 6, 14]) but rather exists in any situation where the
server can link transactions to the same client and has ar-
bitrary freedom when creating the access control policy. In

such situations, the client may understandably have legiti-
mate concerns about using credentials that she deems sensi-
tive – in fact the client may be required to protect certain
credentials (e.g., a top-secret clearance credential). This
poses a problem for the previous schemes, which require
the client’s ability to use all of her credential set. There-
fore, there is a need for a trust negotiation system that can
mitigate these concerns.

In traditional trust negotiation [30, 32, 25, 34, 33, 29]
the notion of sensitive credential protection has been well
studied (see Section 3). In these schemes, each sensitive
credential has an access control policy – a credential is used
(or revealed) only when the other party satisfies the policy
for that credential. This does not prevent SCALP, but it does
allow the user to control the potential leakage of her creden-
tials. The schemes in [14, 17, 6] did not reveal credentials
but could not handle policies for credentials (i.e., they dealt
with the easier special case where each credential’s access
control policy was unconditionally “true”). The present pa-
per is the first to combine the techniques for hidden cre-
dentials with the notion of policies for sensitive credentials.
These credential policies have to be considered sensitive as
well, because otherwise the server (or client) can game the
system in many ways. For example, if the client knows the
access control policies for the server’s credentials then she
will know the path of least resistance to unlock certain cre-
dentials and thus she will be able to probe more easily.

The rest of this paper is organized as follows. We begin
with a detailed description of our contributions in Section2.
We review trust negotiation and propose a new definition of
trust negotiation that supports policy cycles in Section 3.
Next, we formally introduce our approach to trust negotia-
tion in Section 4, and then we review some cryptographic
tools in Section 5. We present our protocol for privacy-
preserving trust negotiation in Section 6. We give efficiency
improvements for our base scheme in section 7. We give a
sketch of the proof of security in Section 8. We discuss the
related work in Section 9, and we conclude in Section 10.

2 Our Contributions

We introduce a protocol for privacy-preserving trust ne-
gotiation, where the client and server each input a set of
credentials along with an access control policy for each of
their credentials. The protocol determines the set of usable
credentials between the client and the server, and then will
process the resource or service request based on the client’s
usable credentials. A credential isusableif its access con-
trol policy has been satisfied by the other party. Our proto-
col is complicated by the fact that: (1) the policies for sen-
sitive credentials may themselves be sensitive and therefore
cannot be revealed, (2) the client should not learn informa-
tion about which of her credentials or the server’s creden-

tials are usable, and (3) the server should not learn informa-
tion about which of his credentials or the client’s credentials
are usable. The rationale for requirement (1) was given in
the previous section. Requirements (2) and (3) are because,
if the client or server were to learn which of its credentials
are usable, then this would reveal more information about
the other party’s credential set and thus facilitate probing
attacks. The technical contributions of this paper include:

1. We develop a new privacy-preserving trust negotiation
protocol and several novel cryptographic protocols for
carrying it out. One of the challenges is the distinction
between having a credential and being able to use that
credential (when its access control policy has been sat-
isfied), while requiring that “not having” a credential
be indistinguishable from “having but being unable to
use” a credential.

2. We propose areverse eager trust negotiation strat-
egy (denoted asRE strategy) that handles arbitrary
policy cycles, whereas the existing traditional trust-
negotiation strategies (such as the eager strategy [30])
are inherently unable to handle such cycles (even if
these strategies were properly implemented in this
framework).

3 Trust Negotiation: Review and Discussion

In trust negotiation [30, 32, 25, 34, 28, 33, 29], the dis-
closure of a credentials is controlled by an access con-
trol policy ps that specifies the prerequisite conditions that
must be satisfied in order for credentials to be disclosed.
Typically, the prerequisite conditions are a set of creden-
tials C ⊆ C, whereC is the set of all credentials. As
in [30, 32, 25, 34, 33], the policies in this paper are mod-
eled using propositional formulas. Each policyps takes
the form s ← φs(c1, . . . , ck) wherec1, . . . , ck ∈ C and
φs(c1, . . . , ck) is a normal formula consisting of literals
ci, the Boolean operators∨ and ∧, and parentheses (if
needed). In this paper,s is referred to as the target ofps,
andφs(c1, . . . , ck) is referred to as the policy function of
ps.

Given a set of credentialsC′ ⊆ C and a policy function
φs(c1, . . . , ck), we denoteφs(C

′) as the value of the normal
formulaφs(x1, . . . , xk) wherexi = 1 if and only if ci ∈ C

′

(otherwisexi = 0). For example, ifφs = (c1 ∧ c2) ∨ c3,
thenφs({c1, c2, c4}) = 1 and φs({c1, c4}) = 0. Policy
ps is satisfiedby a set of credentialsC′ ⊆ C if and only
if φs(C

′) = 1. During trust negotiation, one can disclose
credentials if φs(C

′) = 1 whereC′ is the set of credentials
that she has received from the other party.

A trust negotiation protocol is normally initiated by a
client requesting a resource from a server. The negotiation

consists of a sequence of credential exchanges. Trust is es-
tablished if the initially requested resource is granted and
all policies for disclosed credentials are satisfied [30, 32].
In this case, the negotiation between the client and server
is asuccessfulnegotiation, and otherwise, it is afailed ne-
gotiation. We give the formal definition for traditional trust
negotiation as follows:

Definition 1 (Traditional Trust Negotiation) Let CS and
PS (CC andPC) be the sets of credentials and policies pos-
sessed by a negotiating server (client). The negotiation is
initiated by a request fors ∈ CS 1 from the client. The
goal of trust negotiation is to find acredential disclosure
sequence(c1, . . . , cn = s), whereci ∈ CS ∪ CC , and such
that for eachci, 1 ≤ i ≤ n, the policy forci is satisfied by
the credentials already disclosed, i.e.,φci

(
⋃

j<i cj) = 1. If
the client and server find a credential disclosure sequence,
the negotiation succeeds, otherwise, it fails.

The sequence of disclosed credentials depends on the
decisions of each party; these decisions are referred to as
a strategy. A strategy controls which credentials are dis-
closed, when to disclose them, and when to terminate a ne-
gotiation [34]. Several negotiation strategies are proposed
in [30, 32, 34]. For example, in the eager strategy [30],
two parties take turns disclosing a credential to the other
side as soon as the access control policy for that credential
is satisfied. For the reader unfamiliar with the eager strat-
egy, we describe it in more detail in Appendix A. Although
the cryptographic contributions of this paper will make it
possible to implement the eager strategy in the framework
considered, we do not pursue this approach because it fails
to handle policy cycles. In fact, if there is a policy cycle,
the trust negotiation will fail under Definition 1. We now
propose a new definition of trust negotiation that supports
policy cycles.

Definition 2 (Cycle-Tolerant Trust Negotiation) Let CS
andPS (CC andPC) be the sets of credentials and policies
possessed by a negotiating server (client). The negotiation
is initiated by a request fors ∈ CS from the client. The
negotiation between the client and server succeeds if there
exists usable credential setsUS ⊆ CS andUC ⊆ CC for
the server and client respectively, such that (1)s ∈ US , (2)
∀c ∈ US , φc(UC) = 1, and (3)∀c ∈ UC , φc(US) = 1.
Otherwise, the negotiation fails.

Note that the above definition allows for many possible
UC ,US solution pairs, and does not capture any notion of
minimality for such pairs: Some solution pair may be a
proper subset of some other pair, and either of them is con-
sidered acceptable. This is fine in the framework of this pa-
per, because at the end of the negotiation nothing is revealed

1For simplicity, we model services as a credential. In order to obtain
s, the client has to have credentials that satisfyφs.

about the specificUC ,US pair, i.e., neither party can distin-
guish which pair was responsible for access or whether that
pair was minimal or not.It also implies that the trust negoti-
ation strategy we design need not make any particular effort
at zeroing in on a particular pair (e.g., a minimal one).

Example 1 Suppose the client and server have the follow-
ing policies:

Client Server
pc1

: c1 ← s2 ps : s← c5 ∨ (c2 ∧ c4)
pc2

: c2 ← s2 ∧ s3 ps1
: s1 ← c6

pc3
: c3 ← s6 ps2

: s2 ← c1

pc4
: c4 ← true ps3

: s3 ← c4

wheres denotes the server’s service,{s, s1, s2, s3} denote
the set of server’s credentials,{c1, c2, c3, c4} denotes the
set of the client’s credentials. Under Definition 1, the nego-
tiation between the client and server would fail as there is
a policy cycle betweenc1 ands2, and there exists no cre-
dential disclosure sequence ending withs. However, under
Definition 2, the negotiation succeeds, asUC = {c1, c2, c4}
andUS = {s, s2, s3} is a solution pair.

Clearly, if the trust negotiation between the client and
server can succeed in Definition 1, it will also succeed in
Definition 2, but not vice-versa (e.g., see Example 1). In the
next section, we describe a reverse eager (RE) strategy that
efficiently determines whether the negotiation can succeed
(under Definition 2) givenCS , PS , CC , andPC . Then, we
will give a privacy-preserving trust negotiation protocolthat
securely implements theRE strategywithout revealingCS
andPS to the client andwithout revealingCC andPC to
the server.

4 Our Approach

We begin this section with an intuitive, informal presen-
tation of our approach. The eager strategy for trust negotia-
tions can be thought of as one of “progressively increment-
ing the usable set”: The set of usable credentials is initially
set to the unconditionally usable credentials, and each iter-
ation adds to it credentials that have just (in that iteration)
become known to be usable. It is, in other words, a con-
servative approach, whose motto is thata credential is not
usable unless proved otherwise: The iterative process stops
when no more credentials are added to the usable set. This
conservatism of the eager approach is also why using that
strategy would lead us to deadlock on cycles. Our over-
all strategy is the opposite, and can be viewed as a “reverse
eager” strategy: Initially all credentials are temporarily con-
sidered to be usable, and each iterationdecreasesthe set of
usable credentials (of course the decrease is achieved im-
plicitly, so as not to violate privacy – more on these imple-
mentation details is given in the next section). Note that,

because of the “optimism” of theRE strategy (in that a cre-
dential is tentatively usable, until proven otherwise), cycles
no longer cause a problem, because a “self-reinforcing” cy-
cle’s credentials will remain usable2 (whereas it deadlocked
in the eager strategy). ThisRE strategy (the details of which
are given later) is made possible by the fact that we carry out
the iterative process in a doubly blinded form, so thatnei-
ther party learns anything(not only about the other party’s
credentials, but also about their use policies for these cre-
dentials). TheRE strategy and blinded evaluations work
hand in hand: The former is useless without the latter, and
it should not be used outside of this particular framework.

The rest of this section gives a more precise presentation
by first introducing the notation that will be used throughout
the rest of the paper, then defining our problem and giving
a more detailed overview of our approach.

4.1 Notation and Definitions

Before describing the details of our approach, it is nec-
essary to give a more formal notation than the intuitive ter-
minology of the previous section.

• We uses to denote the server’s service or resource
that the client requests. Without loss of generality, we
models as a credential.

• We useCC (resp.,CS) to denote the set of the client’s
(resp., the server’s) hidden credentials. We usenC

andnS to denote the size ofCC andCS , respectively.
Referring to Example 1,CC = {c1, c2, c3, c4} and
nC = 4.

• We usePC (resp.,PS) to denote the set of the client’s
(resp., server’s) policies.

• We useR(pi) to denote the set of credentials relevant
to (i.e., that appear in) the policy function of the policy
pi. For example, if the policy function forpi takes the
form of φi(c1, . . . , ck), thenR(pi) = {c1, . . . , ck}.

• We useR(PC) (resp. R(PS)) to denote the union
of all the R(pi)’s over all pi in PC (resp. PS), i.e.,
R(PC) =

⋃
pi∈PC

R(pi). We usemC andmS to de-
note the size ofR(PC) andR(PS), respectively. Re-
ferring to Example 1,R(PS) = {c1, c2, c4, c5, c6} and
mS = 5.

• We useUC (resp.,US) to denote the set of the client’s
(resp., the server’s) credentials whose policiesare
presumed to have been satisfied(i.e., these are the
currently-believed usable credentials); as stated earlier,
these sets will decrease from one iteration to another.
Initially, UC = CC andUS = CS , and throughout the
iterative process we haveUC ⊆ CC andUS ⊆ CS .

2See Section 4.4 for proof

4.2 Problem Definition

The goal of this paper is to develop a solution such that
the client and server are able to learn whether trust can be
established without either party revealing to the other party
anything about their own private credentials and policies
(other than, unavoidably, what can be deduced from the
computed answer). We formalize theprivacy-preserving
trust negotiationproblem as follows.

Problem 1 The server inputsCS andPS and the client in-
putsCC , PC , and a request for the server’s services. In the
end, both the client and server learn whether the client’s ac-
cess tos can be granted based on their credentials and poli-
cies, without revealing their sensitive credentials and poli-
cies to the other party. In other words, they want to know
whether the trust negotiation between the client and server
succeeds under Definition 2 without leaking other informa-
tion, except fornC , nS , mC , andmS .

Having stated the problem, we will now discuss the in-
formation revealed by the protocol. The valuesnC andnS

reveal the number of credentials that the client and server
respectively have and the valuesmC and mS reveal the
size of all policies for all credentials for the client and the
server. We do not view this as a problem because the parties
can pad their list or their policies with dummy credentials.
We now list the security properties required of a solution (a
more detailed version is given in Section 8).

1. Correctness: If trust can be successfully negotiated,
then both the client and server should outputtrue with
overwhelming probability if they follow the protocol.

2. Robustness against malicious adversaries: If the trust
negotiation fails, then both the client and server should
outputfalse even if one of the participants is malicious
(i.e., behaves arbitrarily) with overwhelming probabil-
ity.

3. Privacy-preservation: The client and server should
not learn anything about the other party’s private input
(credentials and policies) or intermediate results (us-
able credential sets), other than what can be deduced
from the yes/no outcome of the negotiation.

4.3 Overview of Our Approach

As described earlier, our overall strategy for privacy-
preserving trust negotiation is theRE strategy. During each
round of theRE strategy, a negotiator blindly (i.e., with-
out actually learning the outcome) checks which of their
presumed-usable local credentials are in fact not usable (ac-
cording to whether the policy for it has ceased to be satis-
fied based on the the new presumed-usable credential set of

the other party). After this, the negotiator blindly decreases
their own local presumed-usable credential set accordingly.
Recall that we useUC (US) to denote the set of the client’s
(server’s) credentials that are presumed usable, i.e., at apar-
ticular stage of the iterative process, for each credentialin
UC (US), the corresponding usability policy is currently sat-
isfied (although it may cease to be so in a future iteration).
We present theRE strategy in Figure 1.

reverse-eager-strategy(C,P,UO)
C: the local credentials of this party.
P: the local policies of this party.
UO: the credentials used by the other party.

Output:
U : the local credentials that can be used.

Procedure:
U = C;
For each credentialc ∈ C

let c’s policy bepc : c← φc;
if φc(UO) = 0, thenU = U − {c};

returnU .

Figure 1. Pseudocode for the RE strategy

Our approach to privacy-preserving trust negotiation is
to implement theRE strategy in a secure way. We give the
high-level description of our protocol in Figure 2. In it, the
server first initializesUS . Then the client and server run a
secure version of theRE strategy protocol to updateUC and
US iteratively forn rounds, wheren = min(nC , nS) (recall
that the trust negotiation using the eager strategy takes at
mostn rounds). In the end, ifs ∈ US (i.e., s can be used),
the negotiation succeeds, otherwise, it fails.

privacy-preserving-trust-nego(s, CC ,PC , CS ,PS)
Output:

true or false

Procedure:
Initialize US ;
For i = 1, . . . ,min(nC , nS)
UC = reverse-eager-strategy(CC ,PC ,US);
US = reverse-eager-strategy(CS ,PS ,UC);

If s ∈ US , outputtrue, otherwise, outputfalse.

Figure 2. High-level description of privacy-
preserving trust negotiation

Clearly,UC andUS should not be known to either the
client or the server. ThusUC andUS need to be maintained
in such a way that the values ofUC andUS : (1) are un-
known to the client and server and (2) cannot be modified

by a malicious client or server. We maintainUC in the fol-
lowing split way: For eachc ∈ CC , the client generates two
random numbersrc[0] andrc[1], and the server learns one
of them, denoted asrc. If c ∈ UC , thenrc = rc[1], oth-
erwiserc = rc[0]. The client does not learn which value
the server obtains, and so by splittingUC in this way, the
client does not learnUC . Furthermore, the server does not
learn anything aboutUC , as the values he obtains from the
client look random to him. We maintainUS in an analogous
way. Our protocol will keep this form of splitting as an in-
variant through all its steps. This does not solve all privacy
problems of the negotiation, but it will be one of the guiding
principles of our protocol.

4.4 Proof ofRE Strategy

We now provide a proof of the correctness of theRE

strategy for trust negotiations. That is, we prove that at
the end of theRE negotiation every unusable credential has
been marked as such (the other credentials correctly retain
their initial label of “usable”). So not only does RE not pro-
duce a minimal usable credential set pairCC , CS , in fact it
will produce a maximal pair in the sense that every creden-
tial (whether essential or not) is kept usable unless marked
otherwise. As stated earlier, this is justified by the indistin-
guishability to either party of any two solution pairs.

Throughout this section, we useCX,i, X ∈ {C,S}, to
denote the usable credential set of the client (ifX = C) or
of the server (ifX = S) after iterationi of theRE negotia-
tion has completed. We useCX,0 to denote the initial (prior
to iteration 1) usable credential set (which equalsCX). We
useX̄ to denote{C,S} −X.

Letting C(X) denote the correct usable credentials for
X, our goal is therefore to prove that, after the last itera-
tion i of the RE negotiation, we haveCX,i = C(X) and
CX̄,i = C(X̄). Note thatCX,i = fX(CX,i−1, CX̄,i−1) for
some monotonic functionfX . (Although in factCXi

de-
pends only onCX̄,i−1 and not onCX,i−1, it does no harm
to give a more general proof, as we do below, for the case
when it can depend on both.)

The next lemma proves the intuitive fact that an iteration
i cannot cause an unusable credential to become usable.

Lemma 1 CX,i ⊆ CX,i−1, for i = 1, 2,

Proof: By induction oni. For the basis of the induction,
i = 1, the claim trivially holds because, prior to iteration
1, all the credentials of each party are in their initial usable
setCX,0. We now turn our attention to the inductive step,
i > 1. Observe that

1. during iterationi, CX,i is computed based onCX,i−1

andCX̄,i−1, i.e.,CX,i = fX(CX,i−1, CX̄,i−1);

2. during iteration i − 1, CX,i−1 is computed
based on CX,i−2 and CX̄,i−2, i.e., CX,i−1 =
fX(CX,i−2, CX̄,i−2);

3. by the induction hypothesis we haveCX,i−1 ⊆ CX,i−2,
andCX̄,i−1 ⊆ CX̄,i−2

The above facts (1), (2), and (3), together with the
monotonicity of the functionfX , imply thatCX,i ⊆ CX,i−1.
�

A corollary of the above lemma is that, to prove the cor-
rectness ofRE, it suffices to show that for every credential
c of partyX, c is unusable if and only if there is some itera-
tion i after whichc /∈ CX,i. The next lemma proves the “if”
part. Recall thatC(X) denote the correct usable credentials
for X.

Lemma 2 For everyi, we haveC(X) ⊆ CX,i.

Proof: By induction oni. The basis,i = 0, is trivial
becauseCX,0 = CX . For the inductive step,i > 0, we
assume that credentialc was removed by iterationi (i.e.,
that c ∈ CX,i−1 andc /∈ CX,i), and we show that it must
then be the case thatc /∈ C(X). Observe that

1. c /∈ fX(CX,i−1, CX̄,i−1);

2. by the induction hypothesis, we haveC(X) ⊆ CX,i−1

andC(X̄) ⊆ CX̄,i−1.

The above (1) and (2), together with the monotonicity of
fX , imply thatc /∈ fX(C(X), C(X̄)), i.e., thatc /∈ C(X).
�

The above lemma proved that everyc removed by the
RE negotiation deserves to be removed (the “if” part). To
complete the proof, we need to prove the “only if” part:
That every unusable credential will eventually be marked as
such by theRE negotiation. That is, we need to prove that
everyc /∈ C(X) will, for somei, be removed by iterationi.
This is proved in the next lemma.

Lemma 3 For everyc /∈ C(X), there is an iterationi for
whichc ∈ CX,i−1 andc /∈ CX,i.

Proof: For every credentialc, let thelevelof c be defined
as follows:

• If c is unconditionally usable thenlevel(c) = 1.

• If the usability policy forc is pc thenlevel(c) = 1 +
max{level(v) : v ∈ R(pc)}. (Recall thatR(pc) is the
set of credentials relevant to policypc.)

We claim that a credentialc /∈ C(X) is removed after
at mostlevel(c) iterations, i.e., that for somei ≤ level(c)
we havec ∈ CX,i−1 andc /∈ CX,i. This is established by
a straightforward induction onlevel(c), whose details we
omit. �

5 Review of Cryptographic Tools and Hidden
Credentials System

5.1 Identity-based encryption

The concept of Identity-Base Encryption (IBE) was first
proposed by Shamir [26] in 1984, however the first usable
IBE systems were discovered only recently [5, 9]. An IBE
scheme is specified by following four algorithms:

1. Setup:A Private Key Generator (PKG) takes a security
parameterk and generates system parametersparams

and a master secrets. params is public, whereass is
private to PKG.

2. Extract: Given any arbitraryID ∈ {0, 1}∗, PKG uses
params, s, andID to compute the corresponding pri-
vate keydID.

3. Encrypt: It takesparams, ID and plaintextM as input
and returns ciphertextC.

4. Decrypt: It takesparams, dID and ciphertextC as input
and returns the corresponding plaintextM .

An IBE scheme enables Bob to encrypt a message using
Alice’s ID as the public key, and thus avoids obtaining the
public key from Alice or a directory. Boneh and Franklin
proposed an IBE scheme from the Weil pairing [5]. Their
scheme is secure against adaptive chosen ciphertext attacks.

5.2 Homomorphic Encryption

A homomorphic encryption scheme [23, 24, 10, 11] is an
encryption scheme in which the plaintexts are taken from a
groupG, and given the encryptions of two group elements
one can efficiently compute a encryption of their sum. Usu-
ally this computation involves a modular multiplication of
the encryptions, letG = ZM whereM is a large integer,
we haveE(a) · E(b) = E(a + b mod M). It is easy to see
thatE(a)c = E(c · a mod M).

Damg̊ard and Jurik [11] recently proposed a homomor-
phic encryption scheme in which all users can use the same
RSA modulusN when generating key pairs. Under the
Decisional Composite Residuosity assumption and Deci-
sion Diffie-Hellman assumption, the Damgård-Jurik cryp-
tosystem [11] issemantically secure. The semantic secu-
rity property guarantees that an eavesdropper cannot learn
any information abouta from E(a). More precisely, given
two arbitrary messagem0 and m1, the random variables
representing the two homomorphic encryptionsE(m0) and
E(m1) are computationally indistinguishable.

5.3 Scrambled Circuit Evaluation

The scrambled circuit evaluation protocol was developed
by Yao [31]. This protocol involves ageneratorand an
evaluator, in which the evaluator has private inputx and
the generator has private inputy, and they want to jointly
computef(x, y) without revealing their private inputs to the
other party.

In the scrambled circuit evaluation protocol, the gener-
ator builds a circuit for computingf , constructs a scram-
bled version of the circuit, and then sends the scrambled
circuit to the evaluator for evaluation. In a scrambled cir-
cuit, each wire is associated with two random numbers, one
corresponds to0 and the other to1. Before the evaluation,
the evaluator uses oblivious transfer to obtain the random
values for the input wires corresponding to each bit of her
private inputx. During the evaluation, the evaluator learns
exactly one random value for each internal wire, yet she
doesn’t know whether it corresponds to0 or 1. Finally the
evaluator sends the outcome of the evaluation to the gener-
ator, who recovers the final result.

The scrambled circuit evaluation protocol is secure
against semi-honest adversaries and has been implemented
by Malkhi et al. in [22]. Letγ be a security parameter,ρ
be the cost of a 1-out-of-2 oblivious transfer, assuming the
circuit to computef is ans-input,t-gate Boolean 2-ary cir-
cuit, the cost of the scramble circuit protocol isO(ρs+γt).
When the size of the circuit is linear to the size of the input,
the cost of the protocol isO(ρs).

5.4 Review of hidden credentials system

The hidden credentials system was proposed by Holt et
al. [17, 6]. In that system, there is a trusted Credential
Authority (CA) who issues credentials for users in the sys-
tem3. Each user in the system is assigned a uniquenym,
wherenym could be either a real name or a pseudonym. A
hidden credential is a digitally signed assertion about an at-
tribute of a credential holder by the CA. Roughly speaking,
given an IBE scheme, a hidden credentialcred for username
nym and attributeattr is the private key corresponding to
the stringnym||attr.

We now give a simple example of how Alice accesses
Bob’s resource using the hidden credentials. Suppose Bob’s
resourceM has an access policy which states thatM should
only be accessed by students. Alice has a student credential
cred, i.e., cred.nym = Alice and cred.attr = student.
To accessM , Alice sends her usernameAlice to Bob. Bob
responds withI(M,Alice||student), the IBE encryption of
M using identityAlice||student. Alice uses her credential
cred to decryptI(M,Alice||student) and obtainsM . Note

3It is possible to support multiple CAs in the hidden credentials sys-
tem [17]. For simplicity, we assume there is only one CA.

that Bob does not learn whether Alice possesses a student
credential from the above interaction.

6 Protocol for Privacy-Preserving Trust Ne-
gotiation

6.1 Building Blocks

We now describe two building blocks, one for blinded
policy evaluation, the other for equality test for array ele-
ments. These building blocks will later be used in the secure
RE strategy protocol.

6.1.1 Blinded policy evaluation

The goal of the blinded policy evaluation is for Bob to
evaluate Alice’s policy without learning her policy. Alice
should learn nothing about Bob’s input nor the output of the
evaluation. We define the input and output for this blinded
policy evaluation in Figure 3.

Input: Alice has a private policy functionφ :

{0, 1}k → {0, 1}, two random numberst0 and t1,
andk pairs of values{r1[0], r1[1]}, . . . , {rk[0], rk[1]}.
Bob hask valuesr1, . . . , rk whereri ∈ {ri[0], ri[1]}.

Output: Bob learnst
φ(r1

?
=r1[1],...,rk

?
=rk[1])

. Alice

learns nothing.

Figure 3. Input and output of blinded policy
evaluation

The protocol for blinded policy evaluation was given
in [14], for details see Appendix B. In most cases, it re-
quires a polynomial amount of communication, and works
for a family of policy functions.

6.1.2 Equality test for array elements

In an equality test for array elements, Alice has a private ar-
ray 〈x1, . . . , xn〉 and Bob has a private array〈y1, . . . , yn〉.
They want to learn whether there exists an indexi such that
xi = yi. The result of the equality test is known to nei-
ther Alice nor Bob. We define the input and output for this
protocol in Figure 4.

This equality test can be implemented by a scrambled
circuit evaluation protocol [31, 22]. The protocol requires
O(ρ2n) communication and computation, whereρ is the
maximum bit-length of eachxi andyi or the security para-
mater (whichever is larger). We give an efficiency improve-
ment that reduces that communication and computation re-

Input: Bob hasn values〈y1, y2, . . . , yn〉. Alice hasn
values〈x1, x2, . . . , xn〉 and has two random numbers
t0 andt1.

Output: Bob learnst1 if and only if there∃ i ∈ [1..n]
such thatxi = yi, and learnst0 otherwise. Alice learns
nothing.

Figure 4. Input and output of equality test for
array elements

quirement toO(ρn) (that is of independent interest) in Sec-
tion 7.

6.2 SecureRE Strategy Protocol

The goal of the secureRE strategy protocol is to se-
curely implement theRE strategy in Figure 1. We denote
the participants of this protocol by Alice and Bob, where
Alice is either the client or the server and Bob is the oppo-
site role. In this section, we introduce a protocol to com-
pute secure-reverse-eager-strategy(CA,PA, CB ,UB) (the
items subscripted byA are Alice’s values and those sub-
scripted byB are Bob’s values), where the output isUA

in the split-form described earlier. The careful reader may
notice a discrepancy between this and theRE strategy de-
fined earlier. Note that in this caseUB represents an array
of Boolean values marking which credentials are usable,
whereas in the previous case it represented the actual cre-
dentials. A credentialsc of Alice’s is not usable if Bob’s
usable credentials do not satisfy Alice’s usability policyfor
c. Figure 5 describes this protocol.

Intuiton of Correctness/Security: In Step 1 of the proto-
col, Bob will learnti[1] if he has credentialci and he can use
it, and otherwise he learnsti[0]. Note that these values were
generated by Alice. The first part of this (i.e., Bob hasci)
is captured by the valuex; that is, Bob is able to obtainx if
and only if he hasci. Furthermore, if Bob’s credentialbj is
ci, thendj = x in Step 1b. The second part of this (i.e., Bob
can useci) is captured by the setUB ; that is, Alice will have
rB
i [1] if Bob can useci can she will haverB

i [0] otherwise.
Putting these pieces together implies that ”bj equalsci and
Bob can usebj” if and only if x + rB

j [dB
j] = dj + rB

j [1].
Thus the equality test for arrary elements protocol computes
the desired value.

In Step 2 of the protocol Alice and Bob learn their shares
of UA, that is Alice will learn a pair(rA

i [0], rA
i [1]) and Bob

will learn rA
i [1] if and only if Alice can use credentialai and

he will learnrA
i [0] otherwise. Note that Alice can use cre-

dentialai only if Bob’s usable credential (computed in Step
1) satisfies Alice’s policy forai. However, this is exactly

Input: Bob inputs: (1) a set of credentials,CB , which we denote byb1, . . . , bn and (2) his share ofUB , which
we denote by ordered pairs(rB

1 [0], rB
1 [1]), . . . , (rB

n [0], rB
n [1]). Alice inputs: (1) a set of credentials,CA, which

we denote bya1, . . . , am, (2) a set of policies for these credentials,PA, which we denote byp1, . . . , pm, and (3)
her share ofUB , which we denote byrB

1 [dB
1], . . . , rB

n [dB
n] (notedB

i is 1 if Bob can usebi and is 0 otherwise).

Output: Alice learns her share of the updatedUA which is denoted by ordered pairs
(rA

1 [0], rA
1 [1]), . . . , (rA

m[0], rA
m[1]). Bob learns his share of the updatedUA which is denoted by

rA
1 [dA

1], . . . , rA
m[dA

m], wheredA
i = pi(UB).

Protocol Steps:
1. Determine which credentials in Alice’s policies Bob has andcan use: Suppose that the credentials inR(PA)

arec1, . . . , ck. Alice randomly generatesk ordered pairs:(t1[0], t1[1]), . . . , (tk[0], tk[1]). For each creden-
tial ci, Alice and Bob engage in the following steps:

(a) Alice picks a random numberx, and sendsm = I(x, ci) (the IBE encryption ofx based on the hidden
credentialci) to Bob.

(b) Bob decryptsm using each of his hidden credentials, and obtainsd1, . . . , dn, wheredi = I−1(m, bi).
(c) Alice creates a vector~a1 = 〈x + rB

1 [dB
1], . . . , x + rB

n [dB
n]〉 and Bob creates a vector~a2 = 〈d1 +

rB
1 [1], . . . , dn + rB

n [1]〉. Alice and Bob engage in an equality test protocol for array elements where
they each input their own array and Alice inputsti[0] andti[1]. At the end of the protocol, Bob obtains
ti[xi]. Note thatxi is 1 if and only ifci ∈ UB and Bob hasci (that is Bob can use the credential and
he actually has it) and is 0 otherwise.

2. ComputeUA: For each credentialai, Alice and Bob engage in the following steps:
(a) Alice randomly generates an ordered pair(rA

i [0], rA
i [1]).

(b) Alice and Bob securely evaluatepi using blinded policy evaluation. Alice inputs
pi, (r

A
i [0], rA

i [1]), {(t1[0], t1[1]), . . . , (tk[0], tk[1])} and Bob inputs{t1[x1], . . . , tk[xk]}. At the end
of the protocol Bob obtainsrA

1 [dA
1].

3. Alice and Bob produceUA: Alice learns (rA
1 [0], rA

1 [1]), . . . , (rA
m[0], rA

m[1]) and Bob learns
rA
1 [dA

1], . . . , rA
m[dA

m]

Figure 5. Secure RE strategy protocol secure-reverse-eager-strategy(CA,PA, CB ,UB)

what the blinded policy evaluation in Step 2 does.

Proof of Correctness/Security: A more detailed proof
sketch is given in Section 8.

Cost analysisSteps 1(a)-1(c) are performedk times. Step
1(c) requiresO(nρ2) (whereρ is a security parameter) com-
munication. Thus Step 1 requiresO(knρ2) communication,
but this can be reduced toO(knρ) if the protocol in Section
7.1 is used for Step 1(c). Assuming that the policies can be
computed with circuits that are linear in the number of cre-
dentials, Step 2 requiresO(mkρ) communication. Nowk
is mA, n is nB , andm is nA, and so this protocol requires
O(mAρ(nA +nB)) communication (assuming policies can
be computed by a circuit of size linear in the number of bits
of their inputs).

6.3 Privacy-Preserving Trust Negotiation Proto-
col

We now “put the pieces together” and give the overall
protocol for privacy-preserving trust negotiation. We de-

scribe the protocol in Figure 6.

Intuition of Correctness/Security: In Step 1 of the pro-
tocol, the server sets its set of usable credentials to all of
its credentials (recall that theRE strategy protocol assumes
everything is usable initially and that things are removed
from this set).

In Step 2 of the protocol, the client and the server take
turns updating their usable credential sets based on the other
party’s usable set. Once a set ceases to change then the
usable sets will cease changing and we will have com-
puted the maximal usable credential set. Note that since
we are assuming monotonic policies this will take at most
min{nC , nS} rounds to compute this set.

Finally, as we model the service as a credentials1, the
client will haverS

1 [1] after Step 3 if and only ifs1 is in the
US .

Proof of Correctness/Security: A more detailed proof
sketch is given in Section 8.

Cost analysis Step 2 of the protocol is executed
min{nC , nS} (call this valuen) times. An individual exe-

Input: The client hasCC andPC . The server hasCS (call these credentialss1, . . . , snS
) andPS . Furthermore,

s1 is the service that the client requested.

Output: If the trust negotiation between the client and server can succeed, then both the client and server output
true, otherwise, they outputfalse.

Protocol Steps:
1. Initialize US . For each credentialsi ∈ CS , the server picks two random numbers{rS

i [0], rS
i [1]}. The server

sendsrS
i [1] to the client. The client calls this valuerS

i [xi]
2. Fori = 1, . . . ,min(nC , nS):

(a) The client and server run the secureRE strategy protocol (Figure 5) to obtainUC =
secure-reverse-eager-strategy(CC ,PC , CS ,US) in split form.

(b) The server and client run the secureRE protocol (Figure 5) to obtainUS =
secure-reverse-eager-strategy(CS ,PS , CC ,UC) in split form.

3. Output result.To determine whethers1 ∈ US , the server sends a hash ofrS
1 [1] to the client. The client

checks if the hash ofrS
1 [x1] matches this value; if it is a match then the client proves this to the server by

sendingrS
1 [x1] to the server (and both parties outputtrue), and if it is not a match the client terminates the

protocol (and both parties outputfalse).

Figure 6. Privacy-preserving trust negotiation protocol

cution requiresO(ρ(mC +mS)(nC +nS)) communication
and thus the protocol requiresO(nρ(mC +mS)(nC +nS))
communication.

7 Efficiency Improvements

7.1 A more efficient equality test for array ele-
ments

In this section, we introduce a more efficient protocol for
the equality test for array elements. This protocol is related
to the protocol proposed by [13] for secure set intersection.
Figure 7 introduces this protocol. Note that this protocol re-
quires onlyO(nρ+ ρ2) communication (instead ofO(nρ2)
communication). We give the proof sketch of correctness
and security in Section 8.

7.2 Reducing the number of rounds

A possible criticism of our protocol for trust negotiation
is that it requiresO(min{nC , nS}) rounds. TheRE strategy
requires this many rounds in the worst case, but in practice
it requires much less (it requires rounds proportional to the
length of the longest policy chain). Our protocol can be
modified to stop as soon as the usable credential sets cease
changing. However, this is not recommended as it would
leak additional information, and this information allows for
additional probing. For example, if the negotiation requires
5 rounds then both parties can deduce that the other party
does not satisfy at least 4 of their credentials. Thus, from
a privacy standpoint terminating after the usable credential

sets cease changing is not a good idea. Another option is
to limit the number of rounds to some reasonable constant.
This does not have privacy problems, but it could cause the
negotiation to succeed where it would not have succeeded
under Definition 2 of trust negotiation. However, if there is
domain-specific knowledge that bounds the longest creden-
tial chain, then this is a viable option.

8 Security Proofs

In this appendix we discuss the security of our protocols.
We first define what is meant by security. We then briefly
(due to page constraints) sketch components of the proof of
security.

8.1 Definition of Security

The security definition we use is similar to the stan-
dard model from the secure multi-party computation liter-
ature [15, 7]. The security of our protocol is analyzed by
comparing what an adversary can do in our protocol against
what an adversary can do in an ideal implementation with a
trusted oracle. Specifically, we will show our protocol is no
worse than this ideal model by showing that for any adver-
sary in our model there is an adversary in the ideal model
that is essentially equivalent. Thus if the ideal model is ac-
ceptable (in terms of security), then our protocols must also
be acceptable.

Defining the ideal model for private trust negotiation is
tricky. First, the ideal model has to be defined such that
there are no “violations of security” that are achievable in

Input and Output: See Figure 4.

Protocol Steps:
1. Alice and Bob both choose semantically secure homomorphic encryption schemesEA andEB that share a

modulusM and exchange public parameters.
2. Alice creates a polynomialP that encodes thex values where the constant coefficient is1 (which can be

done since this arithmetic is modular). In other words she finds a polynomialP (x) = ηnxn + ηn−1x
n−1 +

· · ·+ η1x + 1 whereP (xi) = 0 for all xi. She sends to BobEA(ηn), . . . , EA(η1).
3. Bob chooses a valuekB uniformly fromZ⋆

M . For eachyi, Bob chooses a valueqB,i uniformly fromZ⋆
M

and he computes(EA(P (yi)))
qB,iEA(kB + yi) = EA(qB,iP (yi)+ kB + yi) (call this valueEA(αi)). Bob

sends to AliceEA(α1), . . . , EA(αn), EB(kB).
4. Alice decrypts the values to obtainα1, . . . , αn. She then computesx1 − αi, . . . , xn − αn She checks for

duplicate values, and if there are duplicates she replaces all extra occurrences of a value by a random value.
Alice chooses a valuekA uniformly fromZ⋆

M . For each of the valuesxi − αi she choosesqA,i uniformly
fromZ⋆

M and then she computes(EB(kB)EB(xi − αi))
qAi EB(kA)= EB((xi + kB − αi)qA,i + kA) (we

will call this valueEB(βi)). Alice sends to BobEB(β1), . . . , EB(βn).
5. Bob decrypts the values to obtainβ1, . . . , βn. Bob then creates a polynomialQ that encodes these values

where the constant coefficient is1. In other words Bob finds a polynomialQ(x) = γnxn + γn−1x
n−1 +

· · ·+ γ1x + 1 whereQ(βi) = 0 for all βi. Bob sends to AliceEB(γn), . . . , EB(γ1).
6. Alice chooses two valuesk andqA uniformly fromZ⋆

M and computesEB(Q(kA)qA + k) and sends this
value to Bob.

7. Bob decrypts this value to obtaink′. Alice and Bob engage in a scrambled circuit evaluation of anequality
circuit where Alice is the generator with inputk and she sets the encodings for the output wire tot0 for the
negative encoding and tot1 for the positive encoding and Bob is the evaluator with inputk′.

Figure 7. Secure Equality Test for Array Elements.

this ideal model; otherwise, there could be “violations of
security” in our protocols. Furthermore, the ideal model
must be defined in such a way as to allow useful trust ne-
gotiation to take place; otherwise it and our protocols will
not be useful. This is further complicated by the fact that
the RE strategy does not make sense in a non-private set-
ting (as one cannot revoke knowledge from another party).
Thus we define a fictitious environment where the parties
have ”chronic amensia” about the other party’s credentials.
In such an environment theRE strategy is plausible, and so
our ideal model simulates this environment.

We now informally define an ideal model implementa-
tion of our scheme. In the ideal model the client sendsCC
andPC to the trusted oracle, and the server sendsCS , PS ,
ands to the oracle. We modelPC andPS as arbitrary PPT
algorithms. These algorithms will simulate the parties’ be-
havior during theRE strategy. Thus these algorithms should
be viewed as control algorithms that: (1) define which cre-
dentials to use during each round, (2) define the access con-
trol policies (which we model as PPT algorithms over the
other party’s currently usable credentials) for its credentials
during each round, and (3) can force the oracle to termi-
nate. We stress that these algorithms cannot do the above
operations based upon the state of the negotiation. For ex-
ample, they cannot force the oracle to terminate when a spe-

cific credential becomes unusable. The oracle will simulate
theRE strategy using the access control policies defined by
each party’s control algorithm. At the end of the negotia-
tion the oracle will inform the client and the server whether
access is granted. Due to page limitations we do not discuss
the above ideal model in more detail.

8.2 Sketch of the Security Proof

We will now sketch part of the proof. As it is too lengthy
to include in full detail, we focus only on one specific aspect
of the system. We focus on the Secure Reverse Eager strat-
egy protocol (which is the key component of our system).
We first show that if Alice is honest, then Bob cannot in-
fluence the outcome of the protocols so that he unrightfully
keeps one of Alice’s credentials usable.

Lemma 4 In the secureRE strategy protocol (Figure 5): If
Alice is honest and after the protocol a specific credential
ai (with policy pi) is in UA, then Bob has a credential set
CB such thatpi(CB) is true.

Proof: Because step 2 is done by SCE and Alice is an
honest generator, by Lemma 5 all that we must show is that
after step 1, Bob learnsti[1] only when he has credentialai.

By way of contradiction, suppose Bob does not have cre-
dentialai, and that he learnsti[1] in Step 1c. By Lemmas 6
and 7, Bob only learnsti[1] when there is a match in the ar-
rays created by Alice and Bob in Step 1c. If there is a match,
then Bob must be able to learnx with a non-negligible prob-
ability, but this implies that he can invert the IBE encryption
with non-negligible probability, but this contradicts that the
IBE encryption scheme is secure. �

Lemma 5 In scrambled circuit evaluation: If the genera-
tor is honest and the evaluator learns at most one encoding
for each input wire, then the evaluator learns at most one
encoding for the output wire; furthermore this encoding is
the correct value.

Proof: We omit the details of this lemma, but similar
lemmas are assumed in the literature �.

Lemma 6 In the circuit-version of the equality test for ar-
ray elements: If Alice is honest, Bob learnst1 only when
there is an indexi such thatxi = yi.

Proof: Since Alice is the generator of the circuit and is
honest, Bob will input a set ofy values and will learnt1 only
when one of hisy values matches one of Alice’sx values
(by Lemma 5). �

Lemma 7 In the other version (Figure 7) of the equality
test for array elements: If Alice is honest, Bob learnst1
only when there is an indexi such thatxi = yi.

Proof: By way of contradiction, suppose Bob learnst1
and there is no match in their arrays. In Step 7 of the pro-
tocol Bob must know the valuek (by Lemma 5). Thus in
Step 5 of the protocol, Bob must be able to generate a non-
zero polynomial of degreen that haskA as a root, but this
implies he knowskA with non-negligible probability. This
implies that in Step 3, Bob can generate valuesα1, . . . , αn

such that there is anα value that isxi + kB . This implies
Bob knowsxi with non-negligible probability, and this im-
plies that there is a match in the arrays. �

The above only shows one part of the proof. We must
also show that if Alice is honest, Bob cannot learn whether
he made a specific credential usable (he can force a creden-
tial to be unusable, but this has limited impact). Further-
more, we must show that if Bob is honest that Alice does
not learn which of her credentials are usable (other than
what can be deduced from her policies; i.e., a globally us-
able credential will definitely be usable). These proofs will
be in the full version of the paper. We now show that the
protocol is correct, that is if the parties are honest, then the
correct usable set is computed.

Proof: In step 1 of the protocol, Bob learns a valueti[xi]
wherexi is 1 if Bob has credentialci and can use it. There
are 3 cases to consider:

1. Bob does not haveci: In Step 1b of the protocol, Bob
will not learn the valuex, and thus there will not be a
match in Step 1c (with very high probability). Since
there is no match in the array, Bob will learnti[0],
which is correct.

2. Bob hasci but cannot use it. Supposebj = ci and
Alice hasrB

j [0]. In this case,dj = x, but Bob’s vector
entry will bex + rB

j [1] and Alice’s will bex + rB
j [0].

Since there is no match in the array, Bob will learn
ti[0], which is correct.

3. Bob hasci and can use it. Supposebj = ci and Alice
hasrB

j [1]. In this case,dj = x, but Bob’s vector entry
will be x + rB

j [1] and Alice’s will bex + rB
j [1]. Since

there is a match in the array, Bob will learnti[1], which
is correct.

In step 2 of the protocol, Alice and Bob securely evaluate
pi based upon which credentials are inUB . If pi(UB) is
true, then Bob will learnrA

i [1] (signifying that Alice can
useai) and otherwise he will learnrA

i [0] (signifying that
Alice cannot useai). �

9 Related Work

Our work is originally motivated from the existing au-
tomated trust negotiation literature [4, 30, 25, 34, 33,
29] whose goal is to enable trust establishment between
strangers in a decentralized or open environment, such as
the Internet. In trust negotiation, each party establishesac-
cess control policies to regulate not only the granting of re-
sources, but also the disclosure of credentials (and possibly
policies) to others. A negotiation begins when a party re-
quests access to a resource that is protected by an access
control policy. The negotiation process consists of a se-
quence of cautious and iterative exchanges of credentials
and possibly access control policies. In successful nego-
tiations, disclosed credentials eventually satisfy the access
control polices of the desired resource. A security require-
ment for trust negotiation is that no credential should be
disclosed unless its access control policy has been satisfied.
The concept of privacy protection in the previous trust nego-
tiation schemes differs from the one in our scheme. In exist-
ing trust negotiation schemes, a resource (e.g., a service,a
credential, or a policy) is revealed and delivered to the other
party, when the policy for the source has been satisfied. In
our framework, neither the credentials nor the policies are
revealed to the other party, even when the policies for the re-
source and the credentials are satisfied. Furthermore, all of
the intermediate results of the negotiation remain unknown
to each participant. Thus, our scheme offers better privacy
protection than the existing schemes.

Recent work on using cryptographic protocols for trust
negotiation includes hidden credentials [17, 6, 14], secret
handshakes [2], oblivious signature based envelope [20],

oblivious attribute certificates [18, 19], and policy-based
cryptography [1]. In these protocols, Alice has some pri-
vate credentials (or attribute values), Bob has a policy (that
may or may not be private), Alice and/or Bob want to de-
termines whether Alice’s credentials satisfy Bob’s policy.
While these protocols are useful in general and can be in-
tegrated into trust negotiation systems as valuable building
blocks, none of the protocols address the SCALP problem,
i.e., Alice’s credentials are not protected by any of her poli-
cies in those protocols. Therefore, our work is substantially
different from this other work.

Our problem is closely related to Secure Function Eval-
uation (SFE) [31, 16, 15]. In SFE, Alice has an input
x, Bob has an inputy, Alice and Bob want to compute
f(x, y), wheref is public to both of them. Elegant gen-
eral constructions have been developed to solve any SFE
problems [31, 16, 8]. Our paper uses two-party SFE tech-
niques, however, it is not a routine usage of these tech-
niques because (1) we had to first propose a suitable overall
strategy for the negotiation (i.e., what “overall global func-
tion” to compute in the first place); and (2) in the standard
SFE problems, neither party’s inputs are certified, but in our
problem, some of the inputs are verified off-line by a third
party (recall that Alice and Bob input their credentials is-
sued by the CA instead of directly providing their attributes
to the protocol), and verifying the credentials using the gen-
eral solutions to SFE is expensive.

10 Conclusion

In this paper, we gave an efficient protocol for Alice and
Bob to negotiate trust, such that Alice does not learn Bob’s
credentials and policies, and Bob does not learn Alice’s cre-
dentials and policies. The only information they learn is
whether the trust between them can be established, or in
other words, whether Alice is eligible for Bob’s service or
resource. Our work is a substantial extension of the state-of-
the-art in privacy-preserving trust negotiations. The details
of our work contain technical results of independent inter-
est, such as the secure protocol for an equality test for array
elements.

References

[1] W. Bagga and R. Molva. Policy-based cryptography and
applications. InProceedings of the 9th International Con-
ference on Financial Cryptography and Data Security, Feb.
2005.

[2] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon,
and H.-C. Wong. Secret handshakes from pairing-based key
agreements. InProceedings of the IEEE Symposium and
Security and Privacy, pages 180–196, May 2003.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. InProceedings of the 1996 IEEE Symposium

on Security and Privacy, pages 164–173. IEEE Computer
Society Press, May 1996.

[4] P. Bonatti and P. Samarati. Regulating service access and
information release on the web. InProceedings of the 7th
ACM Conference on Computer and Communications Secu-
rity (CCS-7), pages 134–143. ACM Press, Nov. 2000.

[5] D. Boneh and M. Franklin. Identity-Based Encryption from
the Weil Pairing. InProceedings of Crypto 2001, volume
2139 ofLecture Notes in Computer Science, pages 213–229.
Springer, 2001.

[6] R. Bradshaw, J. Holt, and K. Seamons. Concealing com-
plex policies with hidden credentials. InProceedings of 11th
ACM Conference on Computer and Communications Secu-
rity, Oct. 2004.

[7] R. Canetti. Security and composition of multiparty crypto-
graphic protocols.Journal of Cryptology, 13(1):143–202,
2000.

[8] R. Canetti, Y. Ishai, R. Kumar, M. K. Reiter, R. Rubinfeld,
and R. N. Wright. Selective private function evaluation with
applications to private statistics. InProceedings of the twen-
tieth annual ACM symposium on Principles of distributed
computing, pages 293–304. ACM Press, 2001.

[9] C. Cocks. An identity based encryption scheme based on
quadratic residues. In8th IMA International Conference on
Cryptography and Coding, volume 2260, pages 360–363.
Springer, Dec. 2001.

[10] I. Damg̊ard and M. Jurik. A generalisation, a simplification
and some applications of paillier’s probabilistic public-key
system. InPKC ’01: Proceedings of the 4th International
Workshop on Practice and Theory in Public Key Cryptogra-
phy, pages 119–136. Springer, 2001.

[11] I. Damg̊ard and M. Jurik. A length-flexible threshold cryp-
tosystem with applications. InProceedings of the 8th Aus-
tralasian Conference on Information Security and Privacy,
volume 2727 ofLecture Notes in Computer Science, pages
350–364. Springer, 2003.

[12] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. SPKI certificate theory. IETF RFC 2693,
Sept. 1999.

[13] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. InAdvances in Cryptology:
EUROCRYPT ’04, volume 3027 ofLecture Notes in Com-
puter Science, pages 1–19. Springer, 2004.

[14] K. B. Frikken, M. J. Atallah, and J. Li. Hidden access control
policies with hidden credentials. InProceedings of the 3rd
ACM Workshop on Privacy in the Electronic Society, Oct.
2004.

[15] O. Goldreich.The Foundations of Cryptography — Volume
2. Cambridge University Press, May 2004.

[16] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game. InProceedings of the nineteenth annual
ACM conference on Theory of computing, pages 218–229,
May 1987.

[17] J. E. Holt, R. W. Bradshaw, K. E. Seamons, and H. Orman.
Hidden credentials. InProceedings of the 2nd ACM Work-
shop on Privacy in the Electronic Society, Oct. 2003.

[18] J. Li and N. Li. OACerts: Oblivious attribute certificates. In
Proceedings of the 3rd Conference on Applied Cryptogra-
phy and Network Security (ACNS), volume 3531 ofLecture
Notes in Computer Science. Springer, June 2005.

[19] J. Li and N. Li. Policy-hiding access control in open envi-
ronment. InProceedings of the 24nd ACM Symposium on
Principles of Distributed Computing (PODC). ACM Press,
July 2005.

[20] N. Li, W. Du, and D. Boneh. Oblivious signature-based en-
velope. InProceedings of the 22nd ACM Symposium on
Principles of Distributed Computing (PODC). ACM Press,
July 2003.

[21] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust management framework. InProceedings of
the 2002 IEEE Symposium on Security and Privacy, pages
114–130. IEEE Computer Society Press, May 2002.

[22] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
– secure two-party computation system. InProceedings
of the 13th USENIX Security Symposium, pages 287–302.
USENIX, 2004.

[23] T. Okamoto, S. Uchiyama, and E. Fujisaki. Epoc: Efficient
probabilistic public-key encryption. InIEEE P1363: Proto-
cols from other families of public-key algorithms, Nov. 1998.

[24] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. InAdvances in Cryptology: EU-
ROCRYPT ’99, volume 1592 ofLecture Notes in Computer
Science, pages 223–238. Springer, 1999.

[25] K. E. Seamons, M. Winslett, and T. Yu. Limiting the disclo-
sure of access control policies during automated trust nego-
tiation. In Proceedings of the Symposium on Network and
Distributed System Security (NDSS’01), February 2001.

[26] A. Shamir. Identity-based cryptosystems and signature
schemes. InAdvances in Cryptology: CRYPTO ’84, volume
196 of Lecture Notes in Computer Science, pages 47–53.
Springer, 1984.

[27] L. G. Valiant. Universal circuits (preliminary report). In
STOC ’76: Proceedings of the eighth annual ACM sympo-
sium on Theory of computing, pages 196–203, New York,
NY, USA, 1976. ACM Press.

[28] W. H. Winsborough and N. Li. Towards practical automated
trust negotiation. InProceedings of the Third International
Workshop on Policies for Distributed Systems and Networks
(Policy 2002), pages 92–103. IEEE Computer Society Press,
June 2002.

[29] W. H. Winsborough and N. Li. Safety in automated trust
negotiation. InProceedings of the IEEE Symposium on Se-
curity and Privacy, pages 147–160, May 2004.

[30] W. H. Winsborough, K. E. Seamons, and V. E. Jones. Auto-
mated trust negotiation. InDARPA Information Survivability
Conference and Exposition, volume I, pages 88–102. IEEE
Press, Jan. 2000.

[31] A. C. Yao. How to generate and exchange secrets. InPro-
ceedings of the 27th IEEE Symposium on Foundations of
Computer Science, pages 162–167. IEEE Computer Society
Press, 1986.

[32] T. Yu, X. Ma, and M. Winslett. Prunes: An efficient and
complete strategy for trust negotiation over the internet. In
Proceedings of the 7th ACM Conference on Computer and
Communications Security (CCS-7), pages 210–219. ACM
Press, Nov. 2000.

[33] T. Yu and M. Winslett. Unified scheme for resource protec-
tion in automated trust negotiation. InProceedings of IEEE
Symposium on Security and Privacy, pages 110–122. IEEE
Computer Society Press, May 2003.

[34] T. Yu, M. Winslett, and K. E. Seamons. Interoperable strate-
gies in automated trust negotiation. InProceedings of the 8th
ACM Conference on Computer and Communications Secu-
rity (CCS-8), pages 146–155. ACM Press, Nov. 2001.

A The Eager Strategy

In this appendix we review the eager strategy [30]. Re-
call that the goal of the eager strategy is to compute a cre-
dential disclosure sequence that contains the requested ser-
vice. In the eager strategy, each negotiator iteratively ex-
ecutes the pseudo-code in Figure 8. The negotiation suc-
ceeds ifs appears in the output (i.e.,s ∈ M), and it fails
if the size of the credential disclosure sequence does not in-
crement after one round of execution (i.e.,M = ∅). Note
that any negotiation using the eager strategy takes at most
min(nS , nC) rounds, wherenS andnC are the sizes ofCS
andCC , respectively. The following is an example of trust
negotiation using the eager strategy.

The Eager Strategy(D, C,P, s)
D = {c1, . . . , ck}: the credential disclosure sequence.
C: the local credentials of this party.
P: the local policies of this party.
s: the service to which access was originally requested.

Output:
M: the set of new released credentials.

Pre-condition:
s has not been disclosed.

Procedure:
M = ∅;
For each credentialc ∈ C

let c’s policy bepc : c← φc;
if φc(D) = 1, thenM =M∪ {c};

M =M−D;
returnM.

Figure 8. Pseudocode for the Eager Strategy

Example 2 Suppose the client and server have the follow-
ing policies:

Client Server
pc1

: c1 ← s1 ps : s← c5 ∨ (c2 ∧ c4)
pc2

: c2 ← s2 ∧ s3 ps1
: s1 ← c4

pc3
: c3 ← s1 ∨ s2 ps2

: s2 ← c1

pc4
: c4 ← true ps3

: s3 ← true

wheres denotes the server’s service,{s, s1, s2, s3} denote
the set of server’s credentials,{c1, c2, c3, c4} denotes the
set of the client’s credentials. Using the eager strategy,
the client begins by revealing credentialc4, as the policy

function for c4 is true (thus it is trivially satisfied). The
server then disclosess3 (which can be revealed freely) and
s1 (which requires the earlier receipt ofc4). The exchange
of credentials continues as the final disclosure sequence is
{c4, s1, s3, c1, c3, s2, c2, s}. Note that all policies for dis-
closed credentials have been satisfied.

B Protocol for Blinded Policy Evaluation

Figure 9 describes how to achieve blinded policy evalua-
tion, which is a natural extension of Yao’s circuit simulation
protocol [31].

1. Alice constructs a circuitC that computes her
policy (several “useful circuits” are described be-
low) that uses theri values as inputs and that has
an output wire with two encodings:t1 for true
andt0 for false. She sends the encodings of the
circuit’s gates to Bob (note that he already has in-
put encodings).

2. Bob evaluates the circuit and learns the encoding
for the output wire.

Figure 9. Blinded Policy Evaluation Protocol

The protocol for Blinded Policy Evaluation uses a cir-
cuit to evaluate the policy. This reveals the topology of the
circuit to the evaluator (which reveals some information to
the evaluator). However, one can build a topology that cov-
ers a large class of functions; this can be achieved in sev-
eral ways including: (1) building a topology that can handle
many useful functions, (2) using a universal circuit [27], and
(3) using a singlen-ary gate for arbitrary functionality (this
latter option requires exponential communication). There
are several interesting circuit topologies with size linear in
the number of inputs to the circuit, including:

1. It is easy to construct an oblivious comparison circuit
(i.e., one that can compute=, 6=, >, <,≥, and≤ with-
out revealing which comparison is done) with size pro-
portional to the number of bits in the values.

2. A binary tree of oblivious gates (with inputs
a1, . . . , an) can be used to compute many useful func-
tions (without revealing which function is being com-
puted) including:

(a)
∧n

i=1 ai,
∨n

i=1 ai,
⊕n

i=1 ai, etc.

(b) For any subset of the valuesS,
∧

i∈S ai,
∨

i∈S ai,⊕
i∈S ai, etc.

(c) Other functions like: for a subsetS1 of the first
half of the values and another subsetS2 of the

second half of the values, the function
∨

i∈S1
ai∧∨

i∈S2
ai.

