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Abstract

In [22] we showed that existing single-server computa-

tional private information retrieval (PIR) protocols for the

purpose of preserving client access patterns leakage are or-

ders of magnitude slower than trivially transferring the en-

tire data sets to the inquiring clients. We thus raised the

issue of designing efficient PIR mechanisms in practical set-

tings.

In this paper we introduce exactly such a technique,

guaranteeing access pattern privacy against a computa-

tionally bounded adversary, in outsourced data storage,

with communication and computation overheads orders of

magnitude better than existing approaches. In the pres-

ence of a small amount (O(
√

n), where n is the size of

the database) of temporary storage, clients can achieve

access pattern privacy with communication and computa-

tional complexities of less than O(log2n) per query (as

compared to e.g., O(log4n) for existing approaches).

We achieve these novel results by applying new insights

based on probabilistic analyses of data shuffling algorithms

to Oblivious RAM [17], allowing us to significantly improve

its asymptotic complexity. This results in a protocol cross-

ing the boundary between theory and practice and becom-

ing generally applicable for access pattern privacy. We

show that on off the shelf hardware, large data sets can be

queried obliviously orders of magnitude faster than in exist-

ing work.

1 Introduction

In an increasingly networked world, computing and stor-

age services require security assurances against malicious

attacks or faulty behavior. As networked storage architec-

tures become prevalent – e.g., networked file systems and
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online relational databases in sensitive public and commer-

cial infra-structures such as email and storage portals, li-

braries, health and financial networks – protecting the con-

fidentiality and integrity of stored data is paramount to en-

sure safe computing. In networked storage, data is often

geographically distributed, stored on potentially vulnerable

remote servers or transferred across untrusted networks; this

adds security vulnerabilities compared to direct-access stor-

age.

Moreover, today, sensitive data is being stored on remote

servers maintained by third party storage vendors. This

is because the total cost of storage management is 5–10

times higher than the initial acquisition costs [12]. More-

over, most third party storage vendors do not provide strong

assurances of data confidentiality and integrity. For exam-

ple, personal emails and confidential files are being stored

on third party servers such as Gmail [2], Yahoo Mail [4],

Xdrive [3], and Files Anywhere [1]. Privacy guarantees

of such services are at best declarative and often subject

customers to unreasonable fine-print clauses—e.g., allow-

ing the server operator (and thus malicious attackers gaining

access to its systems) to use customer behavior for commer-

cial profiling, or governmental surveillance purposes [9].

To protect data stored in such an untrusted server model,

security systems should offer users assurances of data con-

fidentiality and access pattern privacy. However, a large

class of existing solutions delegate this by assuming the ex-

istence of co-operating, non-malicious servers. As a first

line of defense, to ensure confidentiality, all data and as-

sociated meta-data can be encrypted at the client side using

non-malleable encryption, before being stored on the server.

The data remains encrypted throughout its lifetime on the

server and is decrypted by the client upon retrieval.

Encryption provides important privacy guarantees at low

cost. It however, is only a first step as significant amounts

of information are still leaked through the access pattern of

encrypted data. For example, consider an adversarial stor-

age provider that is able to determine a particular region

of the encrypted database corresponds to an alphabetically

sorted keyword index. This is not unreasonable, especially

if the adversary has any knowledge of the client-side soft-



ware logic. The adversary can then correlate keywords to

documents by observing which locations in the encrypted

keyword index are updated when a new encrypted docu-

ment is uploaded.

In existing work, one proposed approach for achieving

access pattern privacy is embodied in Private Information

Retrieval (PIR) [8]. PIR protocols aim to allow clients to

retrieve information from public or private databases, with-

out revealing to the database servers which record is re-

trieved. Recently however, we showed [22] that deployment

of existing non-trivial single server PIR protocols on real

hardware of the recent past would have been orders of mag-

nitude more time-consuming than trivially transferring the

entire database. Their deployment would in fact increase

overall execution time, as well as the probability of forward

leakage, when the present trapdoors become eventually vul-

nerable – e.g., today’s queries will be revealed once fac-

toring of today’s values will become possible in the future.

We stressed that this result goes beyond existing knowledge

of mere “impracticality” under unfavorable assumptions.

On real hardware, no existing non-trivial single server PIR

protocol could have possibly had out-performed the trivial

client-to-server transfer of records in the past, and is likely

not to do so in the future either. This negative result is due to

the fact that on any known past general-purpose Von Neu-

mann hardware, it is simply more expensive to PIR-process

one bit of information than to transfer it over a network.

A related line of research tackles client-privacy of ac-

cesses to client-originated data on a server. Specifically, the

server hosts information for a client, yet does not find out

which items are accessed. Note that in this setup the client

has full control and ownership over the data and other par-

ties are able to access the same data through this client only.

One prominent instance of such mechanisms is Oblivious

RAM (ORAM) [17]. For simplicity, in the following we

will use the term ORAM to refer to any such outsourced

data technique.

The recent advent of tamper-resistant, general-purpose

trustworthy hardware (such as the IBM 4764 Secure Co-

Processor [5]) opens the door to effectively deploying

ORAM primitives for PIR purposes (i.e., for arbitrary pub-

lic or private data, not necessarily originated by the cur-

rent client) by deploying such hardware as a trusted server-

side client proxy. The SCPU offers complete tamper detec-

tion, as well as remote code attestation to prove to clients

that a particular program is in fact running unmodified on

such a SCPU. However, trusted hardware devices are not a

panacea. Their practical limitations pose a set of significant

challenges in achieving sound regulatory-compliance assur-

ances. Specifically, heat dissipation concerns under tamper-

resistance requirements limit the maximum allowable spa-

tial gate-density. As a result, general-purpose secure copro-

cessors (SCPUs) are often significantly constrained in both

computation ability and memory capacity, being up to one

order of magnitude slower than host CPUs.

In this paper we first introduce an efficient ORAM pro-

tocol with significantly reduced communication and com-

putation complexities (O(log2n) vs. O(log4n) for [17]) –
suited for deployment on constrained hardware such as SC-

PUs. We propose its deployment on existing secure hard-

ware (IBM 4764 [5]) and show that the achievable through-

puts are practical and orders of magnitude higher than ex-

isting work. These results constitute a first step to making

PIR assurance truly practical.

2 Model

Deployment. In our discourse, we will consider the fol-

lowing concise yet representative interaction model. Sen-

sitive data is placed by a client on a data server. Later,

the client or a third party will access the outsourced data

through an online query interface exposed by the server.

Network layer confidentiality is assured by mechanisms

such as SSL/IPSec. Without sacrificing generality, we will

assume that the data is composed of equal-sized blocks

(e.g., disk blocks, or database rows).

Clients need to read and write the stored data blocks

while revealing a minimal amount of information (prefer-

ably none) to the server. We will describe the protocols here

from the perspective of the client who will implement to

primitives: read(id), and write(id, newvalue). Specifically,
the (untrusted) server need not be aware of the protocol, but

rather just provide traditional store/retrieve primitives (e.g.,

a file server interface).

Timing attacks have the potential to leak some informa-

tion during the operation of this algorithm, if the algorithm

is not implemented properly to avoid these attacks. We as-

sume that the implementation is built in a manner that does

not leak any secret information (such as the location of the

fake blocks) through timing, noting that (1) any implemen-

tation can be turned into a timing-attack-free implementa-

tion simply by waiting longer on paths determined by secret

information so that the length of all pathsmatches the length

of the longest path, and (2) the transformation in (1) can be

achieved without affecting the running time complexity of

this algorithm.

Adversary. The adversarial setting considered in this paper

assumes a server that is curious but not malicious. While it

desires to illicitly gain information about the stored data,

it nevertheless executes all queries in a correct manner.

We are not concerned here with denial of service behav-

ior. We also assume the adversary can be represented by

a polynomial-time Turing machine; i.e., it is computation-

ally bounded, thereby allowing us to take advantage of the

following cryptographic primitives.



Cryptography. We require three cryptographic primi-

tives with all the associated semantic security [16] proper-

ties: (i) a secure hash function which builds a distribution

from its input that is indistinguishable from a uniform ran-

dom distribution, (ii) an encryption function that generates

unique ciphertexts over multiple encryptions of the same

item, such that a computationally bounded adversary has

no non-negligible advantage at determining whether a pair

of encrypted items of the same length represent the same or

unique items, and (iii) a pseudo random number generator

whose output is indistinguishable from a uniform random

distribution over the output space.

3 Related Work

PIR. Private Information Retrieval has been proposed

as a primitive for accessing outsourced data over a net-

work, while preventing its storer from learning anything

about client access patterns [8]. In initial results, Chor

et al.[8] proved that in an information theoretic setting in

which queries do not reveal any information at all about

the accessed data items, any solution requires Ω(n) bits
of communication. To avoid this overhead, if multiple

non-communicating databases can hold replicated copies of

the data, PIR schemes with only sub-linear communication

overheads are shown to exist [8]. For example, Sassaman et

al.[21] applied such a scheme to protect the anonymity of

email recipients. In the world of data outsourcing, in which

there are only a few major storage providers, we do not be-

lieve the assumption of non-collusion among such untrusted

servers is always practical, so we do not wish to rely on

this assumption. Goldberg et al.[15] introduced a construc-

tion that combines a multi-server PIR scheme with a single-

server PIR scheme, to guarantee information-theoretic PIR

if the servers are not colluding, but still maintain computa-

tional privacy guarantees when all servers are colluding.

It is not our intention to survey the inner workings (be-

yond complexity considerations) of various PIR mecha-

nisms or of associated but unrelated research. We invite the

reader to explore a multitude of existing sources, including

the excellent, almost complete survey by William Gasarch

[13, 14]. Additionally we invite the reader to explore the

results in [22] where we show that existing PIR protocols

are orders of magnitude slower that trivially transferring the

entire data sets to the inquiring clients.

It is worth noting that Asonov was the first to introduce

[7] a PIR scheme that uses a secure CPU to provide (an ap-

parent)O(1) online communication cost between the client
and server. However, this requires the secure CPU on the

server side to scan the entire database on every request, in-

dicating a hidden computational complexity cost of O(n),
where n is the size of the database.
ORAM. Oblivious RAM [17] provides access pattern

privacy on a database, requiring only logarithmic storage.

The amortized communication and computational complex-

ities are bothO(log3n), orO(log4n) in practice because the
asymptotic notation hides a very large constant factor in the

O(log3n) implementation. A variation of ORAM is imple-
mented by Iliev and Smith [18], who deploy secure hard-

ware to obtain PIR at a cost of O(
√

n log n). This is better
than the poly-logarithmic complexity granted by Oblivious

RAM for the small database sizes they consider. This work

is notable as one of the first full ORAM-based PIR setups,

albeit with lower query throughputs.

A PIR mechanism with O(n/k) costs is introduced by
Wang et al.in [23], where n is the database size and k is
the amount of secure storage. The protocol is based on a

careful scrambling of a minimal set of server-hosted items.

A partial reshuffle costingO(n) is performed every time the
secure storage fills up, which occurs once every k queries.
While a significant improvement, this result is not always

practical since the total database size n often remains much
larger than the secure hardware size k. In practice, hard disk
capacity (and enterprise database size) is increasing faster

than secured memory capacity, which is severely limited by

space and heat dissipation constraints inside a secure CPU.

In this paper we introduce a solution with onlyO(log2 n)
amortized overhead, in the presence of c

√
n temporary

client storage, where c is an independent security parameter.
We show this to be a (first) solution that can be implemented

efficiently over large data sets.

3.1 Oblivious RAM Overview.

Since the proposed protocol is based on ORAM [17],

a brief summary of the operation of ORAM follows. The

database is considered a set of n encrypted blocks and sup-
ported operations are read(id), and write(id, newvalue).
The data is organized into log4(n) levels, pyramid-like.
Level i consists of up to 4i blocks. Each block is assigned

to one of the 4i buckets at this level as determined by a hash

function. Due to hash collisions each bucket may contain

from 0 to log n blocks.

Reading. To obtain the value of block id, the client must
perform a read query in a manner that maintains two invari-

ants: (i) it must never reveal which level the desired block

is at, and (ii) it must never look twice in the same spot for

the same block. To maintain (i), the client always scans a

single bucket in every level, starting at the top (Level 0, 1

bucket) and working down. The hash function informs the

client of the candidate bucket at each level, which the client

then scans. Once the client has found the desired block, the

client still proceeds to each lower level, scanning random

buckets instead of those indicated by their hash function.

For (ii), once all levels have been queried, the client then re-

encrypts the query result with a different nonce and places



it in the top level. This ensures that when the client repeats

a search for this block, it will locate the block immediately

(in a different location), and the rest of the search pattern

will be randomized. Note that the top level will quickly fill

up; the process to dump the top level into the one below is

described later.

Writing. Writes are performed identically to reads in terms

of the data traversal pattern, with the exception that the new

value is inserted into the top level at the end. Inserts are

performed identically to writes, since no old value will be

discovered in the query phase. Note that semantic security

properties of the re-encryption function ensure the server

is unable to distinguish between reads, writes, and inserts,

since the access patterns are indistinguishable between each

case.

Level Overflowing. Once a top level is full, it is emptied

into the level below, and this second level is completely re-

encrypted, and re-ordered according to a new hash function.

Thus, accesses to this new iteration of the second level will

hence-forth be completely independent of any previous ac-

cesses. Note that each level will overflow once the level

above it has been emptied 4 times. Any re-ordering must be

performed obliviously: once complete, the adversary must

be unable to make any correlation between the old block lo-

cations and the new locations. A sorting network is used to

reorder the blocks.

To enforce invariant (i), note also that all buckets must

contain the same number of blocks. For example, if the

bucket scanned at a particular level has no blocks in it, then

the adversary would be able to determine that the desired

block was not at that level. Therefore, each reorder pro-

cess fills all partially empty buckets up to the top with fake

blocks. Recall that since every block is encrypted with se-

mantic security, the adversary cannot distinguish between

fake and real blocks.

Costs. Each query requires a total online cost of

O(log2(n)) for scanning the log n-sized bucket on each of
the log n levels, plus an additional, amortized cost due to
intermittent level overflows. Using a logarithmic amount

of client storage, reshuffling levels in ORAM requires an

amortized cost of O(log3(n)) per query (O(log4(n)) in
practice due to a hidden constant factor around 2100 in the

implementation [17]).

4 A Solution

Our solution deploys new insights based on probabilistic

analyses of data shuffling in ORAM allowing a significant

improvement of its asymptotic complexity. These results

can be applied under the assumption that clients can afford

a small O(
√

n) amount of temporary working memory. We
validate this assumption in real settings (e.g., the IBM 4764

SCPU [5] can host up to 64MB of RAM).

4.1 Additional Client­side Working Memory

Simply adding storage to ORAM in a straightforward

manner does not improve its complexity. Consider that

there are two stages where additional storage can be de-

ployed. First, the top levels could be stored exclusively on

the client, allowing the bypassing of all reads and writes

to the top levels, as well as the re-shuffling of these lev-

els. Since there are log n levels, with sizes 4i for i from
1 to log n, the blocks belonging to the first log(c

√
n) =

log c + 1
2 log n levels can fit in this storage. This however,

would only eliminate a constant fraction of the levels, leav-

ing the most expensive levels operating as before.

Second, as indicated in [17], additional client-side stor-

age can be deployed in the sorting network used in the level

reshuffle. The sorting network is the primitive that performs

all the level reordering, requiring O(n log2 n) time for the
client to obliviously sort data on the server (with no client

storage). The ORAM claim of O(log3 n) amortized over-
head requires the use of the impractical AKS sorting net-

work [6] that performs in O(n log n) time (with a hidden
factor of close to 2100).

Then, in the presence of additional storage, the normal

sorting network running time can be improved by perform-

ing comparisons in batches on the client. However, per-

forming batch comparisons with a limited amount of stor-

age does not greatly improve the complexity of the sorting

network. We are not aware of methods to apply this amount

of storage that would result in improvements of more than

a constant factor. While we cannot make a claim of nonex-

istence of such improvements, we can bound the degree of

improvement possible by this approach. Even if the stor-

age is used in a manner that can reduce the time complexity

of the sorting sequence, no amount of storage can cause

the sorting network to do a comparison sort (as required in

Oblivious RAM) better than Ω(n log n) [10]. This still re-
sults in overall amortized overhead of Ω(log3 n).

Our Approach. Instead, we propose to tackle the com-

plexity of the most time-consuming phase of ORAM, the

level reorder step. We take advantage of the consistent na-

ture of uniform random permutations to perform an oblivi-

ous scramble with a low complexity and little client storage.

Our intuition is that given two halves of an array consist-

ing of uniformly randomly permuted sequence of items, the

items will be distributed between the halves almost evenly.

That is, if we pick the permuted items in order, counting the

number of times each array half is accessed, the counts for

each array half remain close for the entire sequence, with

high probability.

This allows us to implement a novelmerge sort that hides

the order in which items are being pulled from each half.

Once the two array halves are each sorted and stored on the

server, we can combine them into a sorted whole by reading



from each half into the client buffer, then outputting them

in sorted order without revealing anything about the permu-

tation. By the uniform nature of the random permutation,

for arrays of size n, we show that the running tally of picks
from each array half will never differ by more than c

√
n,

with high probability. This means that we can pre-set a

read pattern from the server without knowing the permu-

tation, and still successfully perform the permutation! The

pattern of accesses between the two array halves will devi-

ate slightly, but with high probability they will fall within

the window of c
√

n from the fixed pattern.

This oblivious merge sort is the key primitive that allows

us to implement access pattern privacy with O(log2(n))
overhead. We use it to implement a random scramble, as

well as to remove the fake blocks that are stored in each

level. Being able to do both of those steps efficiently, we

can then replace the oblivious permutation used in ORAM

with a more efficient version.

From here on, we will be concernedmainly with the pro-

cess of re-ordering a level, since the rest of our algorithm is

unchanged from ORAM. A level re-ordering entails taking

the entire contents of level i, consisting of 4i buckets sized

log n, containing a total number of real blocks between 4i−1

and 4i, with the remainder filled with fake blocks, and rear-

ranging them to the new permutation obliviously – without

revealing anything about the new permutation to the server

storing these levels.

4.2 Strawman: client with n blocks of working
memory

Before describing the main result, let us first analyze a

strawman algorithm that achieves our desired time com-

plexity, in the presence of enough client-sided storage to

fit the entire database.

Observe that if the client has n ≥ 4i blocks of tem-

porary secure storage, it can perform a level reorder with

(2)(4i)(log n) = O(log n4i) server accesses. By reading
the entire level into the temporary secure storage, throw-

ing out the fake blocks as they were encountered, it can

store all 4i blocks locally. It then performs a comparison

sort on the local secure storage (which is hence done with-

out revealing the new permutation to the server) to permute

these blocks to their new location at a computational cost

of O(4i log(4i)) = O(i4i). The blocks are then all re-
encryptedwith new nonces for a cost ofO(4i) (so the server
is unable to link old to new blocks). Copying this data back

to the server, while inserting fakes to fill the rest of the buck-

ets, requireswriting another (4i)(log n) blocks to the server.

Since each level i overflows into level i + 1 once ev-
ery 4i accesses, level i + 1 must be reordered at each such
occurrence. As there are log n levels total, the amortized
communication and computational costs per query of this

level reordering approach, across all levels, can therefore

be approximated by

log n
∑

i←1

O(log n4i)

4i−1
=

log n
∑

i←1

O(log n) = O(log2 n)

This offline level reordering cost must be paid in addi-

tion to the online query cost to scan a bucket at each level.

This part of the algorithm is equivalent to ORAM. Since the

buckets have size log n, the online cost of scanning buck-
ets is (log4 n)(log n) = O(log2 n). Thus the average cost
per query, including both online costs and amortized offline

costs, is O(log2 n).
In summary, in the presence of O(n) client storage the

amortized running time for ORAM can be cut down from

O(log4 n) to O(log2 n). Of course, assuming that the client
has n blocks of local working memory is not necessarily
practical and could even invalidate the entire cost proposi-

tion of server-hosted data. Thus little has been gained so

far.

4.3 Overview: client with only c
√

n blocks of
working memory

We will now describe an algorithm for level re-ordering

with identical time complexity, but requiring only c
√

n lo-
cal workingmemory from the client. The client’s reordering

of level i is divided into Phases (refer to Figure 1). We now
overview these phases and then discuss details.

1. Removing Fakes. Copy the 4i original data blocks at

level i to a new remote buffer (on the server), oblivi-
ously removing the (log n − 1)4i fake blocks that are

interposed. Care must be taken to prevent revealing

which blocks are the fakes – thus copying will also

entail their re-encryption. This decreases the size of

the working set from (log n)4i to 4i if the level is full,

or to 1
44i, 1

24i, or 3
44i for the first, second, and third

reorderings of this iteration of level i. We will as-
sume we are dealing with a full level (fourth reorder-

ing) to make the remainder of this description sim-

pler; earlier reorderings proceed equivalently but with

slightly lesser time and space requirements. The com-

munication/computational complexity of this phase is

O(log n4i). (see section 4.4)

2. Oblivious Merge Sort. Obliviously merge sort the

working set in the remote buffer, placing blocks into

their final permutation according to the new hash func-

tion for this level. Perform the merge sort in such a

way that the server can build no correlation between

the original arrangement of blocks and the new permu-

tation. The communication/computational complexity

of this phase is O(log n4i). (see section 4.5)
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Figure 1. Solution Overview.

3. Add Fakes. Copy the 4i blocks, which were per-

muted by Phase 2 into their correct order, to the fi-

nal remote storage area for level i. They are not in
buckets yet, so we build buckets, obliviously adding

in the (log n − 1)4i fake blocks necessary to guar-

antee all buckets have the same size. The com-

munication/computational complexity of this phase is

O(log n4i). (see section 4.6)

The above algorithm reorders level i into the new per-
mutation, in time O(log n4i). Therefore the derivation of
the amortized overhead is equivalent to the derivation per-

formed for the strawman algorithm, leading to an amortized

overhead ofO(log2 n) per query. We now show how to effi-
ciently implement each phase, using only c

√
n local mem-

ory.

4.4 Phase 1: Remove Fakes

Fake blocks can be removed from level i in a single pass,
without revealing them, by copying into a temporary buffer

that hides the correspondence between read blocks and out-

put blocks (refer to Figure 2 (a)). The client scans the level,

storing the real blocks into a local queue and tossing the

fake blocks. Once the queue is expected to be half full, the

client starts writing blocks from the queue (while also con-

tinuing the scan), at a rate corresponding to the overall ratio

of real to fake blocks. The goal is to keep the queue about

half full until the end. (The server can observe the total

number of fake and real blocks in a particular level, which

is independent of the data access pattern.) Assuming the

temporary queue never overflows or empties entirely until

the end, the exact pattern of reads and writes observed by

the server is dependent only on the number of blocks, and

the ratio of fakes. The server learns nothing of which are the

fake blocks by observing the fake removal scan. We show

in Theorem 1 that, with high probability, a queue of size

c
√

n will not overflow or empty out.

remove fakes from level()
s← maximum size of local queue, c

√
n

q← empty queue stored locally, size s
r← ratio of fake blocks to real blocks
for x = 1 to r*(n+s/2) do

if x < r ∗ n then
t← decrypt(readNextBlockFromLevel());
if t is a real block then

enqueue(q, t)

end if

end if

if total number of blocks output < x/r − s/2 then
t← dequeue(q)
writeNextBlockToRemoteBuffer(encrypt(t))

end if

end for

add fakes to level()
s← size of local queue, c

√
n

q← empty queue stored locally, size s
r← ratio of buckets to real blocks, determined
by the reshuffle number for this level.

c← 0 (total number of buckets output so far)
for x =1 to n + s/2 do

if x ≤ n then
t← decrypt(readNextBlockFromLevel());
enqueue(q, t)

end if

if c < r ∗ (x− s/2) then
c← c + 1
items← Dequeue all items corresponding to bucket c.
(They will be on the end of the queue if there are any)

b← New bucket, containing those items, and filled
the rest of the way with fake blocks.

writeNextBucketToRemoteLevel(encrypt(b))

end if

end for

Figure 2. (a) Phase 1: Remove Fakes (b)

Phase 3: Add Fakes



oblivious merge sort(A)
if A is size 1 then

Return A

end if

A1← First Half of A
A2← Second Half of A
A1← ObliviousMergeSort(A1)
A2← ObliviousMergeSort(A2)
B← New remote buffer with the same size as A
s← size of local queues, c

√
n

q1← empty queue stored locally, size s
q2← empty queue stored locally, size s
for x = 1 to s/2 do

Enqueue(q1, decrypt(readNextBlockFrom(A1)));

Enqueue(q2, decrypt(readNextBlockFrom(A2)));

end for

(At this point, each queue will have s/2 blocks)

for x = s/2 to n + s/2 do

if x ≤ n then
Enqueue(q1, decrypt(readNextBlockFrom(A1)));

Enqueue(q2, decrypt(readNextBlockFrom(A2)));

end if

(Now we’ve read 2 blocks; time to output 2 blocks)

for i = 1 to 2 do

t1← Peek(q1);
t2← Peek(q2);
if HashLocation(t1) > HashLocation(t2) then
t← dequeue(q1)

else

t← dequeue(q2)
end if

writeNextBlockTo(B, encryptWithNewNonce(t));

end for

end for

Return B

Figure 3. Phase 2: Oblivious Merge Sort

This phase requires time linear to the size of the level

being read. For level i, which contains 4i buckets of size

log n, the running time is O(4i log n).
Since the location of real blocks is determined by a se-

cure hash function on the unique block index, the distribu-

tion of the blocks is indistinguishable from a uniform ran-

dom distribution. Hence the fake blocks, as well, will be

spread uniformly randomly across the entire level. With

high probability, any sample of buckets will thus have a ra-

tio of fake blocks to real blocks very close to the overall av-

erage. Before we formulate this, we introduce the following

lemma:

Lemma 1. A one-dimensional random walk consisting of

n steps of size 1, either forward or backward with equal

probability, will remain bounded by ±c
√

n with high prob-

ability.

Proof. (sketch) Let the likelihood of a such a one-

dimensional random 50-50 walk being at location d at step
j be defined as Pj(d). Then the likelihood that the walk is at

position c
√

n or −c
√

n at step j is 2Pj(c
√

n) and the like-
lihood that any step j along the way hits either of these out-
of-bounds markers becomes: 2

∑n
j←1 Pj(c

√
n). [11] uses

Stirling’s formula to approximate Pj(d) ≈ 2√
2πj

e−d2/2j

For 1 ≤ j < n, Pj(c
√

n) < Pn(c
√

n). Therefore,

2

n
∑

j←1

Pj(c
√

n) < 2nPn(c
√

n) ≈ 2n
2√
2πn

e−(c
√

n)2/2n

= 4

√

n

2π
e−c2/2

For any fixed maximum walk length nmax, the chance of

reaching ±c
√

n in a 50-50 random walk is negligible with
the security parameter c.

Theorem 1. With high probability, the Remove Fakes queue

never overflows or empties early.

Proof. (sketch): Let r = O(log n) be the ratio of fake
blocks to real blocks in the bottom level. Consider a random

walk of length nr. With probability 1/r, we step forward
(1 − 1/r). With probability 1 − 1/r, we step backwards
1/r. Then the main idea behind this proof is to reduce the
problem to showing that such a random walk will remain

within c
√

n of the starting location with high probability. It
can then be shown that this in turn can be reduced to the

probability of a standard 50-50 +1/-1 walk length n leaving
these bounds.

To summarize, Phase 1 copies all of the real blocks out

of level i, into a new remote (server-side) storage buffer that
only contains real blocks. In copying, a small local (client-

side) buffer is used to avoid leaking which blocks were fake.

This is possible since the fake blocks are evenly distributed

throughout the level.

4.5 Phase 2: Oblivious Merge Sort

We now describe an algorithm that performs a merge sort

on a array of size n, with c
√

n local storage, in O(n log n)
time, without revealing any correlation between the old and

new permutations. The algorithm runs recursively on the

remote array as described in Figure 3. The recursion depth

is log n, and each level of recursion entails a single pass of
size O(n) across the entire array.
The correctness of this algorithm depends on the unifor-

mity of the starting permutation of the items being sorted,

as illustrated in Theorem 3. Its oblivious nature derives im-

mediately by construction:

Theorem 2. The Oblivious Sort algorithm is private: no

more than a negligible amount of information about the new

permutation is leaked to a computationally bounded adver-

sary.



Proof. (sketch): The ordering of reads and writes in ev-

ery instantiation of the scramble is identical: observe that

in the algorithm defined in Figure 3, the readNextBlock-

From() and writeNextBlockTo() functions are called in the

same pattern every time, depending only on n, not the com-
parisons made on the HashLocation()s.

The semantic security properties of the symmetric en-

cryption scheme guarantee that the adversary cannot cor-

relate any two blocks based on the encrypted content (the

server cannot determine whether t is from q1 or q2). There-
fore, every instantiation of the scramble appears identical to

the server: it sees a fixed pattern of reads interspersed with

a fixed pattern of writes of unintelligible data. The specific

fixed pattern is known beforehand to the server (from the

algorithm definition), and the content of the reads has no

correlation to the content of the writes since the blocks are

re-encrypted with a semantically secure encryption scheme

at the client.

Therefore, in observing any iteration (or sequence of it-

erations) of the oblivious merge sort, the (computationally

bounded) adversary learns nothing.

Moreover, the final permutation is chosen from among

all possible permutations. Since the access pattern is identi-

cal when generating each of these permutations, the server

has no ability to guess the resulting permutation.

A small number of permutations will cause the algorithm

to fail and output⊥, if the queues overflow, but this absence
of a failure reveals only a negligible amount of information

about the new permutation, since failure occurs with very

low probability, as shown next.

Theorem 3. Oblivious Merge Sort queues never overflow

or empty early, with high probability.

Proof. (sketch): The queue size at step j is a probabilistic
functionQj defined iteratively:







Q0 = n/2
Qj = Qj−1 + 1 Pr. 1/2 − (Qj−1 − n/2)/(n− j)
Qj = Qj−1 − 1 Pr. 1/2 + (Qj−1 − n/2)/(n− j)

This is analogous to pulling two colors of balls out of a bag

without replacement, starting with n/2 of each color in the
bag. The further we deviate from an equivalent number of

each color, the more likely it is for the next ball to bring the

tally closer to equivalent counts. This negative dependency

implies that any step away from the balance will occur with

probability asymptotically lower than 1/2. This can be then
reduced to showing that a 50-50 random walk will remain

within ±c
√

n with high probability and Lemma 1 etc.

In summary, the Oblivious Sort algorithm sorts all the

data blocks on the server into their final permutation, with-

out revealing anything that could allow the server to corre-

late the two permutations.

4.6 Phase 3: Add Fakes

In the final phase, the permuted blocks are added back

to server-hosted buckets where they will be located by the

next iteration of the secure hash function (see Section 3.1).

At the same time, fake blocks are added to make all buck-

ets mutually indistinguishable. This is the exact inverse of

Phase 1.

For correctness we must also show here that the buckets

of size log n will not overflow. A simple balls and bins re-
sult shows that if 4i balls are randomly thrown into 4i bins,

with probability greater than n−1
n , the fullest bin has fewer

than 3 log 4i

log log 4i balls when n is large enough [20]. This is
small but non-negligible probability. If this case ever oc-

curs, the authors of [17] prescribe a level re-order abort and

restart. With high probability, the time complexity of this

algorithm is not affected. See [17] for a more complete

analysis of this issue. We note that while this restriction re-

veals to the server that the hash function finally chosen does

not overflow any bucket, it does not reveal any correlation

between previous and current block locations.

As in Phase 1, we employ a local buffer of size c
√

n
to prevent the server from learning where fakes are being

added. The client scans the array of real blocks stored in the

remote server by Phase 2 into a local queue. Once the local

queue is half full, it begins constructing server-side buck-

ets with the blocks from the queue, writing into one bucket

for every block read. As long as the temporary queue does

not overflow or become empty, the exact pattern of reads

and writes observed by the server is dependent only on the

number of blocks. Therefore, the server learns nothing of

which are the fake blocks by observing this process (see

Figure 2 (b)). Moreover, it does not reveal the number of

blocks in each bucket, since the buckets are written sequen-

tially to the server in full, so the read and write pattern for

this step is identical on every repetition.

The algorithm runs in time linear to the size of the level

being written. For level i, which contains 4i buckets of size

log n, the running time is O(log n4i).

Theorem 4. With high probability, the Add Fakes algorithm

queue never overflows or empties early.

Proof. (sketch): The queue length Qj at step j is modeled
byQj+1 = Qj + 1− bucketSize(j). The bucket sizes, de-
termined by a fair balls and bins experiment placing n balls
into n bins, are distributed according to a Poisson distribu-
tion parameter 1 [20]. Taking the sum of j Poisson random
variables yields a Poisson random variable [20]. The walk

distance after j steps can therefore be modeled as j minus a
Poisson random variableX with mean j etc.

Theorem 5. Correctness. After Phase 3, all blocks will be

in the correct bucket (determined by the secure hash func-

tion).



Proof. (sketch): This proof follows from the construction

of Phases 2 and 3. Phase 3 correctly builds the buckets

for level i when its input array satisfies the follow prop-
erties: (1) all data blocks corresponding to i are in the ar-
ray. (2) For all data blocks b, b′, if the bucket corresponding
to data block b precedes the bucket corresponding to data
block b′, then b is listed in the array before b′. After the
sort in Phase 2, all blocks are in sorted order, according to

their bucket, therefore meeting the two requirements for the

input to Phase 3.

Theorem 6. Privacy. The contents of the level make it from

the old permutation to the new permutation without reveal-

ing any non-negligible information about either permuta-

tion. The location of the fake blocks is not revealed.

Proof. (sketch): Theorem 2 shows that the level permuta-

tion performed in Phase 2 does not reveal any correlation

between the old locations and the new locations. Further-

more, the read and write pattern of Phase 3 is independent

of the data items and the final permutation, so Phase 3 does

not reveal anything about the location of the fake blocks, or

the permutation.

5 Performance

Server Client IBM 4764

RAM 4GB 1GB 32MB

processor 2Ghz 266Mhz

disk seek time 5ms

sustained disk read/write 50 MB/s

Link bandwidth 10 MB/s 80MB/sa

Link round trip time 50ms 0.1ms

En/Decryption 100MB/sb 10MB/s

Outsourced data set size 1 TB, in 1000-byte blocks;n = 109

aThe 4764 sits on an 8GB/s PCI-X bus; the bottleneck is the DMA rate.
bBased on processor speed, using AES [19].

Figure 4. Configuration used to compute sample values
in the following tables and graphs.

In evaluating the feasibility and performance of the ar-

chitecture we consider the sample configuration illustrated

in Figure 4. Further, Figure 7 illustrates multiple such data

points.

Online Cost. The query requires online scans of one

bucket at each level, plus a write to the top level. The scan of

the log4 n levels are interactive; the bucket scanned at each
level depends on the results of the previous level. Figure 5

displays the expected online cost per query.

It is clear from these estimates that in a sequential access

model, the network latency is responsible for most of the

query latency. This is due to the interactive nature of the

scans; the client cannot determine the next bucket to scan

until it has seen the contents of the previous.

Formula Sample

Network latency RTTlink ∗ log4 n 750ms

Disk seek Latencyseek ∗ log4 n ∗ 2 150ms

Network transfer log4 n ∗ log n ∗ 2 ∗ blksz/Throughputlink 60ms

Client en/decryption log4 n ∗ log n ∗ 2 ∗ blksz/Throughputcrypto 6ms

Server disk transfer time log4 n ∗ log n ∗ 2 ∗ blksz/Throughputdisk 12ms

Figure 5. Online cost per query, resulting from scanning
a bucket at each level.

Offline Reorder Cost. The offline cost resulting from the

reordering of level i (performed once every 4i−1 accesses)

consists of three phases including a sequential level scan of

size log n ∗ 4i, and a sequential write-back of size 4i to re-

move fakes (Phase 1). The oblivious sort (Phase 2) consists

of log 4i sequential scans of size 4i. Adding fakes (Phase

3) requires requires copying back log n ∗ 4i items. To esti-

mate this cost we must sum over all log4 n levels, recalling
that each level is reordered only once every 4i−1 queries.

We therefore remove a factor of 4i−1, and sum over all lev-

els, to calculate the amortized overhead. Figure 6 shows

the resulting formulas. If all of these costs are incurred se-

quentially, we have an amortized response rate of approx-

imately 637ms/query offline plus 978ms/query online,
for 1.6s/query.

Formula Sample

Network latency. a n/a < 1ms

Network transfer b log4 n ∗ logn ∗4 ∗ 4 ∗ blksz/Throughputlink 500ms

Disk seek latency c n/a < 1ms

Disk transfer d log4 n ∗ logn ∗4 ∗ 4 ∗ blksz/Throughputdisk 98ms

Client processing log4 n ∗ logn ∗4 ∗ 4 ∗ blksz/Throughputcrypto 49ms

aLevel reordering is not interactive, so idling can be avoided here.
bThe Phase 1 and 3 scans account for its bulk.
cSeek time will be hidden by disk transfer during reordering.
dThis load can be split among several disks.

Figure 6. Amortized offline cost per query.

The bottleneck when determining the parallel query

throughput is the network throughput, at 560ms/query.
This results in a query throughput of just under 2 queries
per second.

By comparison, in ORAM, the network transfer

time alone for reshuffling level i consists of about
10 sorts of 4i log n data, each sort therefore requiring
4i log(n) log2(4i log n) block transfers, for a total of 10 ∗
4i ∗ log(n) ∗ log2(4i log n) ∗ 210/10MB/sec. Summing
over the log4 n levels, and amortizing each level over 4i−1

queries, ORAM has an amortized network traffic cost per

query of
∑15

i←1 10 ∗ 4 ∗ 15 ∗ log2(15 ∗ 4i) ∗ 210B =

614KB
∑15

i←1(log 15 + log 4i)2 ≈ 3.680GB. Over the
considered 10MByte/s link this results in a 368 sec/query

amortized transfer time, almost three orders of magnitude

slower.

Achieving PIR. So far we have described how to imple-

ment an ORAM-type of mechanism providing access pat-

tern privacy for private data. A general PIR implementation
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requires a client to be able to download from a public server,

meaning the client does not have access to prearranged se-

cret keys. As discussed in Section 1 by implementing the

access pattern privacy on a SCPU, we can achieve general

PIR. The secure CPU maintains the encrypted database, and

never leaks any of the encryption keys. Clients who wish to

retrieve an item privately then interact with the main data

through the SCPU.

Figure 7 shows that when we implement PIR on the se-

cure CPU, the bottleneck is no longer the network band-

width, but the en/decryption times. Under our sample con-

figuration, the new bottleneck matches the old one, leav-

ing us at 560ms per query, or just under 2 queries per sec-

ond. Additionally, of concern is the limited SCPU stor-

age. By setting c (the security parameter) to 10, corre-

sponding to a chance of failure less than 4
√

n
2π e−c2/2 <

4
√

250

2π e−102/2 < e−25, 32MB of RAM available on a

SCPU can support databases of sizes up to 10TB, for 1 byte

blocks, or 10GB, for 1 KB blocks.

Memory Pooling. A key advantage to our algorithm is

that the working buffers are only used for a small period of

time and are transient, thus requiring no backup. Therefore

the high cost of client storage maintenance is avoided since

no data is lost if the working memory is lost. A second ad-

vantage is that resources can be pooled between SCPUs to

support larger databases. For example, if a storage provider

manages 10 SCPUs for 10 customers, and if the working

buffer is only in use for 10% of the time, the provider can



pool the secure storage between SCPUs, allowing for an

effective secure storage area of 320 MB instead of just 32

MB. This would allow the provider to support databases of

size 1015 1-byte blocks per client, or 1 TB if consisting of

1-KB blocks.

The limiting factor in pooling is the percentage of time

the secure CPUs are put to use. This will vary based on the

actual transaction patterns of the clients. If transactions are

run continuously at the maximum throughput, we expect the

idle time to be around 50%. If there are idle periods, how-

ever, and the average throughput is lower, each SCPU may

see a much higher idle time. Note that if a provider over-

estimates the idle time of the CPUs, by supporting larger

customer databases, the performance will suffer as clients

must wait for each others’ SCPUs to become free.

Existing PIR. Trivial PIR (transfering the entire

database to the SCPU for every query) will have a bottle-

neck shared by the bus transfer time and the disk transfer

time, of 50MB/sec. For our 1TB database, this will require

about 22000 seconds per query 1.

The PIR protocol introduced in [23] offers an amortized

complexity of O(n/k) for database size n and secure stor-
age size k. For k = O(

√
n), this yields an overhead of

O(
√

n) per query. This is proving to be a reasonable esti-
mate of k, since as described earlier in this paper, database
sizes and hard disk capacity are increasing much faster than

secured storage capacity. As databases become larger, our

superiorO(log2(n)) complexity becomes increasingly nec-
essary for obtaining practicality.

6 Conclusions

We introduced a (first) practical PIR mechanism, orders

of magnitude faster than existing mechanisms. We have an-

alyzed its overheads and security properties. We validated

its practicality by exploring achievable throughputs on cur-

rent off the shelf hardware. In future work we believe it is

important to increase achievable throughputs. We are look-

ing for ways to de-amortize the offline level reorder cost.

Moreover, as the bulk of the overhead in this technique is

related to the fake blocks, we are currently exploring al-

ternate constructions that hide which level is accessed for

a particular query, potentially bringing the amortized over-

head to O(lg n lg lg n) per query.
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