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Abstract

Today’s Internet routing infrastructure exhibits high homo-

geneity. This constitutes a serious threat to the resilience

of the network, since a bug or security vulnerability in an

implementation could make all routers running that imple-

mentation become simultaneously unusable. This situation

could arise as a result of a defective software upgrade or a

denial-of-service attack.

Diversity has been proposed as a solution to increase re-

silience to software defects, but the benefits have not been

clearly studied. In this paper, we use a graph theoretic ap-

proach to study the benefits of diversity for the robustness

of a network, where robustness is the property of a network

staying connected under a software failure. We address

three fundamental questions: 1) How do we measure the

robustness of a network under such failures? 2) How much

diversity is needed to guarantee a certain degree of robust-

ness? 3) Is there enough diversity already in the network or

do we need to introduce more?

We find that a small degree of diversity can provide good

robustness. In particular, for a Tier-1 ISP network, five

implementations suffice: two for the backbone routers and

three for the access routers. We learn that some networks

may already have enough diversity, but the diversity is not

adequately used for robustness. We observe that the best

way to apply diversity is to partition the network into con-

tiguous regions using the same implementation, separating

backbone and access routers and taking into account if a

router is replicated. We evaluate our approach on multiple

real ISP topologies, including the topology of a Tier-1 ISP.
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1 Introduction

Today’s Internet routing infrastructure exhibits high ho-

mogeneity. A few router vendors dominate the market and

each ISP relies on a very limited number of vendors to build

their infrastructure. Simplified network operation, uniform

operator training, reduced complexity, and interoperability

are common reasons behind this homogeneity. Such ho-

mogeneity, however, raises serious questions about the re-

silience of the routing infrastructure against software de-

fects. Computer systems are notoriously known for being

laden with bugs and vulnerabilities, and routers are no ex-

ception.

Software defects in routers are not uncommon.

Markopoulou et al. [23] found that 12% of all failures in a

Tier-1 ISP network were router related, and a NIST-funded

survey [15] in 2002 found that in financial services ap-

proximately 16% of reported major bugs were attributed

to router and switch problems. Most vendors acknowledge

these problems and provide search tools or toolkits to find

the flaws in specific software versions. Vulnerabilities in

router software are also frequent and can allow denial-of-

service attacks [2, 4, 5], remote execution of system-level

commands with no authentication [3], unauthorized privi-

leged access [1], or possible remote shell execution [7].

Thus, a real threat lurks. A serious bug in a router soft-

ware implementation could make all routers running that

implementation simultaneously unusable. Due to the router

homogeneity in ISPs and enterprise networks, this would ef-

fectively disconnect their customers and sites, halting their

operation and dealing a major blow to their business and

their perceived quality. This dramatic scenario could appear

as a result of a defective software upgrade, or a security vul-

nerability that opens the door for a denial-of-service attack

on the routing infrastructure.

Diversity, i.e., using different software implementations

from different code bases on different routers, could in-

crease the overall resiliency of a network against some soft-

ware defects but it would also increase the complexity and

cost associated with network deployment and management.

Thus, we need to understand the benefits of diversity. To the



best of our knowledge, this is the first paper that systemati-

cally studies the effectiveness of using software diversity to

increase the resiliency of the router infrastructure against si-

multaneous router failures, which might happen due to soft-

ware defects in routers.

In this paper, when we refer to network robustness or

simply to robustness, we mean the property of the network

staying connected under a software failure1 that simultane-

ously disables all routers running a specific implementation.

We address the following three fundamental questions: 1)

How do we measure the robustness of a network under such

failures? 2) How much diversity is needed to guarantee a

certain degree of robustness? 3) Is there enough diversity

already in the network or do we need to introduce more?

There are many factors contributing to the resiliency of

a network. As a first step, in this paper we consider the

most fundamental property to guarantee the resiliency of a

network, the connectivity. Without connectivity no routing

is possible and no quality-of-service can be guaranteed. A

good example was the Sprint network incident on January

9, 2006, when failure of two links led to a network parti-

tion [9]. Other properties such as network capacity, which

will be reduced due to the failure and might lead to an in-

crease in delay and packet loss, are left as future work.

To study whether the network topology will stay largely

connected or will be partitioned into small unconnected

components, when all routers running a certain implemen-

tation become unusable, we propose a graph theoretic ap-

proach and convert the problem into a version of a graph

coloring problem, where routers are colored based on their

implementations and connectivity needs to be maximized

when any color is removed from the graph. A color fail-

ure (i.e., removing a color) is equivalent to disconnecting

all nodes using that color and has two impacts: the discon-

nection of the nodes themselves, which cannot be avoided,

and the disconnection of other nodes who relied on those

nodes to connect to the rest of the graph. Our goal is to

minimize this second factor so that a network is as robust as

a fully connected topology (i.e., full mesh), since removing

any number of nodes from a fully connected topology does

not affect the connectivity of the remaining nodes.

In this paper, we show how to measure the robustness of

the network against software failures, propose a family of

coloring algorithms to best apply the diversity, and evaluate

those algorithms over real topologies, including the topolo-

gies obtained from a large Tier-1 ISP and from the Rock-

etfuel project [28]. Our results show that a small degree

of diversity can provide good robustness against simulta-

neous router failures. A large Tier-1 ISP network can ob-

1A router is a combination of hardware and software. In this paper we

focus on software failures, which are more likely to simultaneously affect

all routers running an implementation, but our approach can also protect

against similar hardware failures.

tain good robustness when using a total of five implementa-

tions: two for the backbone routers and three for the access

routers. In addition, we show that large networks might al-

ready have enough diversity, since the homogeneity is due

to a large fraction of the nodes using a small number of

implementations, even when the total number of implemen-

tations present might be large. Thus, the existing diversity

is not being adequately used for robustness. To benefit from

the available implementations, ISPs would need to change

the relative number of nodes per implementation and to ge-

ographically distribute the diversity. Furthermore, we show

that our algorithms can apply the available diversity in a

way such that a network achieves robustness near the opti-

mal one that can be achieved with a fully connected topol-

ogy.

Scope and deployment cost: Diversity can protect against

software vulnerabilities that affect one or multiple imple-

mentations from the same vendor. But, some software vul-

nerabilities might be shared across implementations from

multiple vendors. This can happen when there is code reuse

between vendors, e.g., by using a third party library con-

taining a vulnerability. Past examples include the ASN.1

parser vulnerabilities found in OpenSSL that affected many

different platforms using this library [6].

This paper does neither claim that diversity can protect

against all software defects nor that we should redesign all

networks to accommodate for diversity. Rather, we show

that diversity greatly helps with simultaneous router failures

and that many networks already have a significant amount

of diversity, due to legacy routers, changes of provider, or

budget restrictions. Our results show that the number of

implementations already present in some large networks

could, if properly used, provide good robustness against

simultaneous router failures. However, the existing diver-

sity is not used adequately for robustness. An adequate use

would require changing the relative number of nodes using

each implementation, and a better geographical distribution.

We argue that a large part of the cost usually assigned to di-

versity, such as interoperability problems, network manage-

ment or operator training is already being paid in networks

where multiple implementations are already present. Thus,

the additional cost introduced by shifting the relative num-

ber of nodes from each implementation and by changing the

geographical distribution of the diversity could be relatively

small in these networks. Our goal is not to evaluate the cost

of redistributing or introducing more diversity in networks

since we lack important data for such evaluation, only avail-

able to ISPs, but to understand the benefits of diversity and

how should such diversity be applied. Our contributions

are summarized below.

Measure the robustness against specific failures: There

has been previous work on metrics that describe the global

robustness of a graph. Rather, we show how to measure



the robustness of a network against specific failure types,

modeling the failure’s effect on connectivity. We focus on

one failure type, i.e., simultaneous router failures, which

we convert into a version of a graph coloring problem, but

we believe that our approach can be easily applied to many

other failure types.

Design and implement algorithms that properly apply

diversity: We learn that the best way of applying diversity

is to partition the network into contiguous regions that use

the same implementation, taking into account the node roles

and possibly replicated nodes. Our results show that our

algorithms can apply the diversity in a way that a network

achieves robustness near the optimal that can be achieved

with a fully connected topology.

Demonstrate that a small degree of diversity can achieve

good robustness: We show that using a good coloring al-

gorithm the amount of diversity needed to provide good

robustness is small. A large Tier-1 ISP network can ob-

tain good robustness when using a total of five implementa-

tions: two for the backbone routers and three for the access

routers.

Expose that the existing diversity could already provide

good robustness: Our data shows that the homogeneity

in Tier-1 ISP networks comes from a large fraction of the

nodes using a few implementations, even when the total

number of implementations present is large. Thus, the ex-

isting diversity is not being adequately used for robustness.

To benefit from the existing diversity, ISPs would need to

change the relative number of nodes per implementation

and to geographically distribute the diversity.

The remainder of the paper is organized as follows. Sec-

tion 2 defines our graph theoretic approach. In Section 3 we

present the metrics needed to evaluate the robustness of the

network. Then, in Section 4 we present graph coloring algo-

rithms that properly apply the diversity, and in Section 5 we

evaluate them over different topologies. Section 6 presents

the related work. Finally, we discuss extensions and future

work in Section 7 and conclude in Section 8.

2 Problem Statement

In this section, we convert the problem of using router

software diversity to increase network robustness into a

graph coloring algorithm. We represent a given network

topology as a graph G = (V, E), where V is the set of

nodes representing routers in the network, and E is the set

of undirected edges each corresponding to a link between

two routers in the network. Let n = |V | be the number

of nodes, and m = |E| be the number of edges in G. Let

Ck = {c1, c2, . . . , ck} be a set of k distinct colors repre-

senting the available implementations that any router can

utilize. We say a vertex-coloring algorithm takes as input

the graph G and the color set Ck , and outputs a colored

graph Gk = (V, E) where each node in V has been tagged

with a color from Ck. Thus, the coloring algorithm deter-

mines which implementation should be run by each router,

by assigning a color to each router in the network.

A color failure is the simultaneous failure of all the

routers running a specific implementation, which makes

those routers unusable. This color failure can be caused by

a defective router software upgrade, or a denial of service

attack on the routing infrastructure. A color failure is repre-

sented as a color removal, which takes as input the colored

graph Gk and a color ci ∈ Ck and returns a color-removed

subgraph Gi
k = (V, E∗) with E∗ ⊆ E, which is the sub-

graph of Gk generated by disconnecting all nodes of color

ci from Gk, where disconnecting a node means removing

all edges connected to that node while leaving the node in

the graph. Intuitively, the color-removed subgraph repre-

sents the remaining network topology after a color failure.

Problem definition: Given a graph G = (V, E) with n
nodes and m edges, a set Ck with k distinct colors, and

a robustness function φ(·), find a k-color vertex-coloring of

graph G that maximizes φ(·). Our problem is different from

the most common graph coloring problem, which tries to

find a proper coloring, meaning no two adjacent nodes are

assigned the same color [16]. We do not require adjacent

nodes to have different colors. We try to find a coloring

of G that maximizes a robustness function φ, where φ is

computed on the subgraphs of G obtained by removing the

colors, one at a time.

Note that the probability of finding a software defect in

one implementation should be independent of the probabil-

ity of finding a defect in any other implementation. Thus,

the implementations used to add diversity to the network

should come from different code bases. To summarize, our

problem is composed of two main parts. First, how to de-

fine the function φ, such that it measures the robustness of

the graph upon a color removal. We address this in Sec-

tion 3. Second, how to design an effective vertex-coloring

algorithm, that achieves high robustness for a given graph

with a limited number of colors. We address this in Sec-

tion 4.

3 Measuring Network Robustness

In this section we introduce the metrics used to describe

the robustness of a graph under color failures. First, we

describe connectivity metrics that can be used on any graph,

and then we define the robustness metric on a colored graph,

as a function of a connectivity metric.

3.1 Connectivity Metrics for a Graph

We use the connectivity of the graph as a measure of

the robustness of the network topology. There have been



numerous previously proposed connectivity metrics for a

graph such as: number of components in the graph2, nor-

malized size of the largest component [10], pair connec-

tivity [27], average size of the components (excluding the

largest component) [10], average distance [10], number of

biconnected components [32], minimum cut-set size for a

balanced bi-partition of the graph [29], and effective diam-

eter [26].

But we are not aware of any in-depth comparison of

these connectivity metrics that allows to select one of them.

Thus, a significant part of our work has been to identify the

important characteristics that a connectivity metric should

possess. In this paper, we require the following characteris-

tics to be satisfied by a connectivity metric: 1) it has to be

non-negative; 2) it should monotonically decrease as more

nodes are disconnected; 3) it needs to be normalized; 4)

it should represent only binary connectivity, that is, if two

nodes are connected or not, rather than try to measure the

degree of connectivity between them, and 5) it should be as

intuitive as possible.

Note that some of the above metrics, such as those us-

ing shortest path computations or hop counts, attempt to

measure not only if two nodes are connected, but also the

degree of connectivity between them, but in doing so in-

troduce an assumption about shortest path routing being

used in the network, which is not desirable. We believe the

proper approach is to first guarantee the physical connectiv-

ity of the network before investigating the impact on routing

and end-to-end performance. We select the following two

connectivity metrics because they satisfy the above require-

ments. Note that, the robustness function is independent of

the connectivity metrics used and other metrics can thus be

selected.

The normalized size of the largest component

(NSLC) [10] is the size of the largest component over

the total number of nodes. Ideally, when removing a color

from the graph, the remaining nodes should all form a

single component and thus be all reachable to each other.

The pair connectivity (PC) [27] is the fraction of con-

nected node pairs in a graph over the total number of distinct

pairs of nodes. It measures for each node, how many other

nodes it can reach. This metric takes into account all the

components in the graph rather than just the largest one and

it is useful when the graph is partitioned into multiple large

components where each component connects a significant

number of nodes and should not be ignored.

PC =

∑comp

i=1
1
2 |Li|(|Li| − 1)
(

n
2

)

where comp is the number of components in the graph and

2In graph theory, a component is a set of connected nodes, i.e., two

nodes belong to the same component if and only if there is a path between

them.

|Li| is the number of nodes in the ith component. Note

that we need to first extract the graph’s components before

calculating any of the two metrics, which takes O(n + m).

Modeling node importance: So far, our connectivity met-

rics consider each node in the graph to be equally important.

However, for a given graph, some nodes can be more impor-

tant than others. For example, a node carrying more traf-

fic would be considered more important than those carrying

less traffic. Alternatively, a node which connects to more

customers or has more capacity can be considered impor-

tant. In this paper, we assign different weights to different

nodes in the graph to reflect their importance.

In our setting, we do not need to use link weights because

we only deal with node failures, rather than individual link

failures, and in this case node weights allow dealing with

link weights in a straightforward way. Since a node failure

implies the failure of all the links connected to the node,

then a node can be assigned a weight proportional to the

sum of the weights of all the links it connects to. We now

extend our connectivity metrics to the case where nodes are

associated with weights.

The weighted normalized size of the largest component

(W-NSLC) is the sum of the weights of all nodes that belong

to the largest component, over the total weight of all nodes

in the graph.

The weighted pair connectivity (W-PC) takes into ac-

count the sum of the products of all the node weights that

belong to the same component.

W-PC =

∑comp
i=1

∑

j∈Li
wj(
∑

k 6=j;k∈Li
wk)

∑n

i=1 wi(
∑

j 6=i wj)

where comp is the number of components in the graph and

Li is the ith component of the graph.

Disconnecting a node: To generate Gi
k from Gk , we dis-

connect all nodes with color i by removing its edges but

we do not remove the nodes themselves from the graph.

The reason is that this allows a fair comparison between

the connectivity of Gk and Gi
k. Figure 1 illustrates an ex-

ample. There are two alternative ways to generate G1
2 from

G2, disconnecting the black node (case A) or removing it

(case B). Table 1 shows the connectivity metrics for both

cases. Note that the connectivity for case B is the same

as the connectivity for the original colored graph, which is

misleading. However, in case A the connectivity reflects

the node removal, and as a result, the normalized size of the

largest component is 0.66.

3.2 Robustness Metrics for a Colored Graph

Intuitively, the robustness of a colored graph measures

the remaining connectivity of the colored graph when a

color is removed. Given a colored graph and a connectivity



G
2

A B

Figure 1. Two alternatives to generate G1
2

from G2: disconnecting the black node (A)
or removing it (B)

Metric G2 A B

Pair Connectivity 1 0.33 1

Normalized Size of

Largest Component 1 0.66 1

Table 1. Connectivity metrics for both pos

sible alternatives to generate G1
2 from G2

Figure 2. An unbalanced coloring of the Abi

lene backbone

metric, we define two robustness metrics: 1) the average of

the connectivity of the subgraphs created by disconnecting

all nodes of a specific color, and 2) the minimum connec-

tivity among all the subgraphs created by disconnecting all

nodes of a specific color. Thus, given the colored graph

Gk and a connectivity metric f(·), we first obtain all color-

removed subgraphs Gi
k by removing each color ci in turn,

where i ∈ [1, k]. Then, we compute the robustness of G
according to the connectivity measure f as follows.

φavg
G,f =

1

k

∑

1≤i≤k

f(Gi
k) φmin

G,f = min
1≤i≤k

f(Gi
k)

The average robustness is the most straightforward measure

of robustness, representing the expected robustness under a

color failure. But, if taken alone, it can sometimes be mis-

leading because some colored graphs can present good aver-

age robustness but bad minimum robustness. Since, a priori

we do not know what the probability of failure is for each of

the implementations, we need to try to protect against fail-

ures of any of the implementations. That is precisely what

the minimum robustness gives us: the worst case.

One scenario in which we might get good average ro-

bustness and bad minimum robustness is when the coloring

is unbalanced, that is, most nodes in the graph use one color

and the rest split the remaining colors. Figure 2 shows that

scenario in the Abilene backbone network with two colors.

The average robustness is quite good, 0.5 for the normalized

size of the largest component, but the minimum robustness

is only 0.18. The average is good because the removal of

the black color gives a very high connectivity that compen-

sates the poor connectivity when the gray color is removed.

Such an unbalanced coloring creates a situation where if the

grey color fails the graph becomes almost unusable. This

situation is clearly undesirable and we will favor coloring

algorithms that produce balanced colorings.

4 Coloring Algorithms

In this section, we propose coloring algorithms that as-

sign a color, from a set of k available colors, to each node in

the graph. Finding an optimal coloring of a graph is known

to be NP-complete. We have devised a total of 9 approx-

imation algorithms which can be classified into 4 different

families. Due to space constrains, we present only the re-

sults for the region coloring family because the two algo-

rithms from this family clearly outperform all others in our

evaluation. We refer the reader to our extended paper for

more information on the other algorithms [12].

This section is structured as follows. In Section 4.1 we

present the intuition behind region coloring and the two al-

gorithms that belong to this family. Then, in Section 4.2 we

extend the region coloring algorithms to handle two com-

mon cases found in ISP networks: 1) different node roles,

and 2) replicated nodes.

4.1 Region Coloring

Region coloring tries to divide the network into con-

tiguous regions and color each region with the same color.

This is somewhat similar to a geographic coloring but with

the difference that the regions are found automatically, i.e.,

no geographical information needs to be provided with the

graph. Thus, the intuition behind region coloring is to try to

isolate the failure to a contiguous region of the graph. Since

networks are designed with geography in mind, then remov-

ing a particular region of the graph has little additional ef-

fect on the rest of the graph, other than the disconnection of

the nodes themselves.

This problem is related to the graph clustering and graph

partitioning problems. Graph clustering algorithms try to

find peninsulas of connectivity, i.e., regions with a high

density of intra-regional links and a few inter-regional links

connecting them with other regions. Graph partitioning al-

gorithms employ a similar approach, but the goal is to split



the network into balanced partitions, i.e., partitions with a

similar number of nodes.

Thus, the region coloring family contains two different

types of algorithms: Cluster and Partition algorithms. Our

results, presented in Section 5, indicate that graph partition-

ing algorithms attain better robustness than graph cluster-

ing algorithms on the same graph, because clustering al-

gorithms may produce unbalanced partitions which result

in bad minimum robustness. In addition, we learn that

the colored graph is most robust when the partitions are

all contiguous. When faced with the decision of provid-

ing either perfectly balanced but discontiguous partitions,

or slightly unbalanced but contiguous partitions, the lat-

ter usually achieves better robustness. Our results show

that a graph colored with a partitioning algorithm that pro-

vides contiguous and balanced partitions, achieves robust-

ness near the maximum provided by a fully connected

topology with the same number of nodes.

4.2 Extending Region Coloring to Handle Roles
and Replicated Nodes

In the previous section, we assumed that all nodes in the

network can use any of the k colors in Ck. However, the

role that a router plays in a network will further constrain

the implementation the router may use. For example, back-

bone routers and access routers might be built with different

design goals and using very different technologies. Thus,

a backbone router might not be able to use the implemen-

tation of an access router and vice versa. With roles, we

require that each node in the graph is appended with a role

tag. We consider two main roles: access routers and back-

bone routers. Each role has a different color set: access

color set CA
ka

and backbone color set CB
kb

. and a node can

only be assigned a color from the color set corresponding to

its role.

Also, ISPs often replicate important nodes to increase the

robustness against node failures. The node and its replica

usually connect to the same neighbors so that the replica

can take the place of the replicated node in case of node

failure, or that the load can be split between both nodes.

Typically, backbone routers might be replicated in pairs.

Intuitively, to achieve best robustness the replicated node

and the replica should be colored differently. To identify

replicated nodes, we use a similarity metric employed in

social networks: Structural Equivalence [21]. Two nodes

are said to be structurally equivalent if they connect to the

exact same set of neighbor nodes. When we identify such

equivalent nodes, we color them differently. In our extended

paper we extend this metric to handle nodes that are similar

but not identical [12].

When taking into account roles and replicated nodes,

the region coloring algorithms work as follows: 1) color

all backbone routers, since they provide connectivity to the

access routers, and 2) color the access routers, which pro-

vide connectivity to the customers. These extensions can be

used with either clustering or partitioning algorithms. Next,

we present them in conjunction with the Partition algorithm

since our experiments have shown this to be the best com-

bination.

Coloring backbone routers: We create the backbone

graph by removing all access routers and their correspond-

ing links from the original graph. Then, we consider three

cases in coloring the backbone graph: 1) if every backbone

router has a structurally equivalent neighbor, then color

each router in a structurally equivalent pair differently, 2)

if no backbone router has a structurally equivalent neigh-

bor, then use region coloring, and 3) if only some back-

bone routers have structurally equivalent neighbors, then

color each node in a structurally equivalent pair differently

and use region coloring but imposing the constraint that two

nodes previously colored differently need to belong to dif-

ferent regions.

Coloring access routers: We create the access graph by

collapsing all the backbone nodes into a single node, that

connects to all access routers. We consider two cases: 1)

if the probability of a failure in CA
ka

is independent from

the probability of a failure in CB
kb

, for example because they

come from different vendors or code bases, then we evenly

split the colors in CA
ka

among all access routers to create

a balanced colored graph, and 2) if failures in access and

backbone colors cannot be assumed independent, then for

each access router, if all backbone routers connecting to it

have the same color, then the access router is assigned a dif-

ferent color, if available. Otherwise, there is no constraint

on the color assigned to the access router.

5 Evaluation

In this section, we evaluate our coloring algorithms on a

number of network topologies. The section is structured as

follows. In Section 5.1 we describe the network topologies

used in the evaluation. Then, in Section 5.2 we compare

the different coloring algorithms on a Tier-1 ISP topology.

Next, in Section 5.3 we compare the different topologies

when colored with the same algorithm. In Section 5.4 we

extend our results to node weights. Finally, in Section 5.5

we provide data on the available diversity in a Tier-1 ISP

network and show how our algorithms can be used to better

apply such diversity.

5.1 Experimental Setup

The network topologies used in the evaluation are pre-

sented in Table 2. All the topologies are router-level topolo-

gies, where each node represents a router and each edge



Topology Date Nodes Edges

Tier-1 ISP Oct 2006 A few A couple of

hundreds thousands

Cenic Aug 2006 51 91

Abilene Sep 2006 12 15

Exodus Jan 2002 201 434

Sprint Jan 2002 604 2268

Verio Jan 2002 960 2821

Mesh N/A 100 4950

Table 2. Network topologies used in the eval
uation.

represents a link between routers. The table is divided into

three parts. The top part shows real ISP topologies that we

have access to, including the topology of a Tier-1 ISP; the

middle shows Rocketfuel topologies [28] also used in our

experiments; and at the bottom, as a base case, we present

a synthetic topology which is a full mesh of 100 nodes. All

topologies have a single connected component. If there are

parallel edges between a pair of nodes, we collapse them

into a single edge.

The Rocketfuel topologies were obtained by the authors

through external probing. Though they are known to con-

tain some inaccuracies, we consider them a good approxi-

mation of a router-level ISP topology and accurate enough

to test our algorithms. We use the Mesh topology as a best

case since disconnecting a node in a full mesh topology has

no effect on the connectivity of the rest of the graph.

Implementation details: We implement the metrics and

coloring algorithms using the JUNG graph library [8]. We

use the graph clustering algorithm from Wu et al. [31] since

it scales linearly with the topology size (i.e., O(n + m))
and allows to predefine the number of clusters. We use the

graph partition algorithms from Karypis et al. [19], which

employ multilevel recursive-bisection and scale well while

providing good flexibility. Any other clustering or parti-

tioning algorithms could be used, though as we will show,

algorithms that generate balanced and contiguous partitions

work best.

5.2 Coloring Algorithms

In this section, we compare the robustness achieved by

the Partition and Cluster coloring algorithms without exten-

sions, that is, assuming no distinction between backbone

and router nodes, and no replicated nodes. These assump-

tions usually hold in medium size networks such as Abi-

lene or Cenic, but might not hold for large Tier-1 ISP net-

works. We present results for the extended algorithms in

Section 5.5. In addition to the Cluster and Partition algo-

rithms, we also present results for the Random algorithm

which randomly assigns a color from Ck to each node. The

Random algorithm is used as a baseline to compare the

other algorithms. The evaluation of the remaining algo-

rithms can be found in our extended paper [12] and their

performance is usually somewhere between the Random

and Partition algorithms.

Comparing to the optimal coloring: We can provide a

guideline on how close to optimal our algorithms work. The

idea is that no topology can be more robust than a fully con-

nected topology with the same number of nodes. Thus, in

Figure 3 the dotted line labeled Max shows the robustness

achieved in a full mesh topology with the same number of

nodes and balanced coloring. That is, for two colors, n
2

nodes are colored using one color and the other n
2 are col-

ored with the other color. Then, we can compare the ro-

bustness achieved by our approximation algorithms to this

guideline to know how well our algorithms are performing.

Figure 3 shows the robustness achieved on the Tier-1

topology by the different algorithms measured using the

Normalized Size of the Largest Component (NSLC). Simi-

lar results for the Pair Connectivity (PC) on the Sprint topol-

ogy are provided in Appendix A. We observe from Fig-

ure 3(a) that the Cluster and Partition algorithms clearly out-

perform the Random algorithm with respect to the average

robustness for any number of colors less than fourteen.

These results indicate that coloring nodes at random lo-

cations in the graph is not a good strategy, since region

coloring, which uses the opposite approach, exhibits bet-

ter performance. Recall that disconnecting all nodes from

one color creates two different impacts: the disconnection

of the nodes themselves, which cannot be avoided, and the

disconnection of any other node who relied on those nodes

to connect to the rest of the graph. The second factor can

be reduced and sometimes eliminated with a good coloring.

This is where region coloring seems to excel, i.e., the si-

multaneous removal of nodes that are located nearby, in the

same region of the graph, has little impact on other nodes

located further away in different regions.

Unbalanced partitions: Figures 3(a) and 3(b) show that

the Cluster algorithm performs close to the Partition algo-

rithm in terms of average robustness, but significantly worse

in terms of minimum robustness. This is due to the un-

balanced coloring performed by the Cluster algorithm. For

example, when using two colors on the Tier-1 ISP topol-

ogy, the Cluster algorithm assigns one color to more than
2
3 of the nodes and the other color to less than 1

3 of the

nodes. On the other hand, the Partition algorithm assigns

each color to roughly half of the nodes. This is expected

since a graph partitioning algorithm tries to balance the

number of nodes in each partition. Using the Cluster al-

gorithm, when the least common color fails, the remaining

connectivity is quite good and on average compensates the

poor connectivity created by the opposite case. Appendix A

shows a more detailed example of the same effect.



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  4  6  8  10  12  14  16  18  20

N
o
rm

a
liz

e
d
 S

iz
e
 L

a
rg

e
s
t 
C

o
m

p
o
n
e
n
t 
(A

v
e
)

Number of colors

Tier 1 ISP

Random
Cluster

Partition
Max

(a) Average Normalized Size Largest Component

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  4  6  8  10  12  14  16  18  20

N
o
rm

a
liz

e
d
 S

iz
e
 L

a
rg

e
s
t 
C

o
m

p
o
n
e
n
t 
(M

in
)

Number of colors

Tier 1 ISP

Random
Cluster

Partition
Max

(b) Minimum Normalized Size Largest Component

Figure 3. Robustness achieved by the different coloring algorithms on the Tier1 ISP topology when

using the Normalized Size of the Largest Component as connectivity metric.

Figure 3(b) shows that the Partition algorithm regularly

outperforms the others in terms of minimum robustness. We

also observe that the minimum robustness for the Cluster al-

gorithm stays flat. This is because the Cluster algorithm we

use is deterministic, i.e., it always finds the same partitions

on different runs over the same graph. Once a bad partition

is found, e.g., an unbalanced or discontiguous partition, it

is likely to be kept and adding more colors will not improve

the minimum robustness.

Since we do not have prior knowledge on which color

might fail, we need to optimize for both average and mini-

mum robustness. Otherwise, a failure of the color with the

largest number of nodes would have a major impact on the

network. As we have seen, unbalanced partitions can gen-

erate good average robustness, but they will introduce bad

minimum robustness which is not desired. Thus, we prefer

the Partition algorithm over the Cluster algorithm, since the

Partition algorithm tends to generate balanced partitions.

Non-contiguous partitions: In Figure 3(b), the minimum

robustness for the Partition algorithm takes a dip at k = 5.

This is also observed on other topologies. We found that one

of the partitions in the split is non-contiguous, that is, the

same partition contains two groups of nodes that have intra-

group connectivity but no inter-group connectivity. The

main problem with non-contiguous partitions is that they

might disconnect other partitions that depend on the non-

contiguous partition for connectivity to the rest of the graph.

Good graph partitioning algorithms tend to avoid non-

contiguous partitions but this is not always easy given that

the number of nodes in each partition needs to be balanced.

Some algorithms such as the one we use [19] have a param-

eter to control how unbalanced the partitions can be. Our

solution for non-contiguous partitions is to rerun the par-

titioning algorithm with an increased value of this param-

eter if any of the partitions is found to be non-contiguous.

This increases the final robustness but increases the runtime.

Since the Partition algorithm is fast, we can generate and

color multiple partitions and then select the best coloring,

without significantly impacting the runtime. Appendix C

shows the runtime for the different algorithms.

In summary, we observe that the best approach to color

the network is to use the same color for each region of the

graph, since the failure of one node impacts closer nodes

more than nodes located further away (i.e., fate-sharing).

Among the two algorithms that use this approach, Cluster

and Partition, the Partition algorithm works best because it

produces a more balanced coloring.

In addition, the selected partitioning algorithm should

provide contiguous partitions as these improve the overall

robustness of the network. Note that for a coloring algo-

rithm to provide a robust coloring, it is not enough to pro-

duce a balanced coloring. For example, a perfectly balanced

random coloring, produces colored graphs with smaller ro-

bustness than the less balanced ones produced by the Parti-

tion algorithm.

5.3 Network Topologies

Next, we compare the robustness of the various topolo-

gies for a given coloring algorithm. We use the Partition

algorithm which outperformed the others in Section 5.2. As

a baseline we use the synthetic Mesh topology since it is

the most resilient topology. That is, after removing a color,

the remaining nodes are still fully connected; there is no

additional impact from disconnecting a node.
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Figure 4. Robustness of the different topologies when colored using the Partition algorithm.

Figure 4 shows the robustness of different topologies us-

ing the Partition algorithm and the NSLC connectivity met-

ric. Similar results for the PC metric are provided in Ap-

pendix A. For this experiment, we first force the graph par-

titioning algorithm to try to find very balanced partitions. If

any of the generated partitions is non-contiguous, we relax

the balancing constraint. We find that we rarely have to re-

lax the balancing constraint more than once for any color set

size. We observe that, using the Partition algorithm, most

topologies achieve average and minimum robustness close

to the Mesh topology. Thus, when any router can run any

implementation, we can achieve robustness close to the op-

timal obtained with a full mesh, by coloring the graph using

the Partition algorithm.

It is not surprising to find that the Abilene topology of-

ten performs worse than others. This can be explained by

its simple topology with few nodes and minimal link redun-

dancy between nodes. Being a non-commercial network,

it is unlikely that robustness was one of Abilene’s design

goals. However, we also find that the Exodus topology also

performs worse than the other commercial network topolo-

gies, specially in the worst case. This indicates that the Ex-

odus topology has less geographical redundancy.

5.4 Node Importance

Nodes in a topology may not be equally important. This

can be modeled by assigning a weight to each node. Some

partitioning algorithms, such as the one we use [19], allow

node weights to be specified and compute the partitions to

achieve similar total weight in every partition, rather than

a similar number of nodes in each partition. Thus, in this

case a balanced partition, has approximately the same sum

of node weights in each partition.

As an example, Figure 5 shows the robustness of the

weighted Cenic topology using the Partition algorithm,

where each node is assigned a weight equal to the number

of customers that connect to that node. We select the Cenic

topology because we have such information available. Note

that the significance of the weights can be arbitrary and

we use this specific weight just as an illustrative example.

The dashed line shows the result when we run the Partition

algorithm forcing balanced partitions, while the solid line

shows the final result where if one of the partitions was non-

contiguous, we relax the balancing constraint. Compared

with Figure 4, we observe that similar robustness can be

achieved in the weighted topology as that in the unweighed

topology. There are two points (i.e., k = 3 and k = 10)

where the partitioning algorithm is not able to find con-

tiguous partitions if constrained to very balanced partitions.

When we relax this constraint, we obtain partitions that are

more unbalanced, but contiguous, which improves the final

result specially for minimum robustness.

5.5 Optimizing the Use of Existing Diversity

In this section we first present the diversity that currently

exists in the Tier-1 ISP topology, which we call original

coloring. Then, we compare the robustness of the original

coloring to the robustness in the colored graphs obtained

by the Partition algorithm without extensions (Basic Parti-

tion), and the Partition algorithm using the role and repli-

cated node extensions (Extended Partition).

The Tier-1 ISP topology uses 8 implementations with

two of the implementations being used by over 90% of the

nodes. The fact that there are two dominating implemen-

tations supports the hypothesis that current networks are

highly homogeneous, but the surprising fact is the large

number of implementations already available in the net-
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Figure 5. Robustness of the Cenic topology, with node weights assigned based on the number of

customers connected to the router, and selecting the split that gives no discontiguous partitions.

work. Table 3 compares the robustness of the Tier-1 ISP

using the original coloring, with the robustness achieved us-

ing the Basic Partition and Extended Partition algorithms.

Since there are eight colors in the original coloring, we set

the number of available colors for the Basic Partition al-

gorithm to eight and allow any router to select any of the

colors. For the Extended Partition algorithm we need two

sets of colors: one for the backbone nodes and one for the

access nodes. We observe that, among the eight implemen-

tations in the original coloring, only two are used for back-

bone routers. Therefore, we allow the Extended Partition

algorithm to use two colors for backbone routers and six

colors for access routers.

We observe that the original coloring has bad minimum

robustness when the color failure affects one of the colors

used by the backbone routers. Both Partition algorithms

achieve improved average and minimum robustness by dis-

tributing the available diversity better throughout the net-

work. This is specially significant for minimum robust-

ness, achieving values much closer to the average robust-

ness. The Extended Partition algorithm shows worse mini-

mum robustness than the Basic Partition algorithm, since it

has an additional constraint that routers can only use imple-

mentations adapted to their role. But this constraint is more

realistic for Tier-1 ISP networks, where the role separation

of backbone and access routers becomes evident.

Figure 6 shows the degree of diversity needed to achieve

a certain level of robustness in the Tier-1 ISP topology using

the Extended Partition algorithm. From the total number of

colors shown in the x-axis, two colors are always used for

the backbone routers and the rest used for the access routers.

The results show that two colors are enough to guarantee the

robustness of the backbone, given the existing amount of re-

dundancy. This is shown as a good average robustness with

any number of access colors. It also shows that we start to

achieve good overall robustness (e.g., minimum robustness

≥ 0.5 and average robustness ≥ 0.75) when we use at least

3 colors for the access routers, that is with a total of 5 colors.

To conclude, we observe that the original Tier-1 network

has a significant amount of diversity, but the diversity is not

best used to maximize robustness against color failures. Us-

ing a realistic coloring algorithm such as Extended Parti-

tion, we can achieve a significant increase in the robustness

of the topology against color failures, by redistributing the

diversity, without increasing the amount of implementations

used in the network.

6 Related Work

Zhang et al. [33] first proposed the use of diversity to

increase the survivability of a network, inserting diver-

sity at each level of the networking stack. More recently,

O’Donnell et al. [25] studied the problem of how to use

diversity to limit the spread of malware on a network topol-

ogy. O’Donnell et al. assume that each node runs mul-

tiple implementations and takes an online decision, in a

distributed fashion, of which implementation to use at any

given time. In our case, nodes run a single implementa-

tion and network operators select in a centralized and offline

manner, using our coloring algorithms, which implementa-

tion each node should run from the set of available imple-

mentations. Junqueira et al. [17,18] propose to use diversity

in a cooperative backup system to protect against correlated

host failures due to software vulnerabilities. Their results

on distributed systems are analogous to ours on routing in-



Metric Original Basic Extended

coloring Partition Partition

Average 0.713 0.875 0.855

robustness (NSLC)

Minimum 0.055 0.867 0.760

robustness (NSLC)

Average 0.647 0.765 0.739

robustness (PC)

Minimum 0.016 0.752 0.578

robustness (PC)

Table 3. Comparison of the robustness of
the Tier1 topology using the original col

oring and the coloring obtained by the Ba

sic Partition and Extended Partition algo
rithms. Each coloring uses 8 colors.
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frastructure in that they show that diversity is common and

can be exploited for increased resiliency.

Previous work on network robustness has focused on the

Internet topology. Albert et al. [10] showed that scale-free

networks are resilient to random faults but vulnerable to at-

tacks that target the most connected nodes. Park et al. [27]

studied the susceptibility of the Internet to a mixture of ran-

dom faults and attacks. Magoni [22] studied the Internet ro-

bustness to attacks finding that the removal of a few nodes

could significantly damage the Internet’s connectivity but

such an attack would be costly to mount. Li et al. [20] raised

concerns about the application of power laws to the router-

level Internet topology. Markopoulou et al. [23] classified

the different network faults from a Tier-1 ISP network and

found that 12% of all faults were router-related problems.

There has been extensive work on the connectivity of

the Internet and generally in identifying graph connectivity

metrics [10,26,27,29,32]. Several node importance metrics

have also been proposed [14, 20, 24, 30]. Finally, there is

also research work on graph partitioning. Wu and Huber-

man [31] use a voltage ranker to find clusters while Karypis

and Kumar [19] use a k-way multi-level approach to parti-

tion hypergraphs. We use both algorithms in this paper to

compare the differences between clustering and partitioning

algorithms.

7 Discussion

In this section we present extensions to our work that we

are currently testing, other foreseeable applications for our

approach and some future work.

External connections: ISPs need to route their customer’s

traffic to the rest of the Internet. For all destinations not di-

rectly connected to the ISP network, this means forwarding

the traffic to another ISP, either an upstream provider or a

peer. In order for the network to remain functioning upon a

color failure, we need to ensure that there is at least one ex-

ternal connection in each partition when a color fails. With

the Partition algorithm, we can apriori fix nodes in differ-

ent regions, and the partitioning will try to keep those nodes

in the specified regions. We use this property to fix border

routers in different partitions.

Robustness beyond connectivity: In this paper we have

limited our analysis to the connectivity of the network, be-

cause connectivity is the fundamental property that needs

to be guaranteed for the network to be functional. Once

we address connectivity, we can study the impact on higher

layers. Clearly, the disconnection of a large number of

routers impacts the routing and the end-to-end quality of

service and might introduce higher CPU load on the re-

maining routers, packet loss increments due to congestion

on the remaining links, or an increase in end-to-end delay

due to longer paths. We leave the study of these effects on

the higher layers as future work.

Robustness beyond color failures: There is a need to de-

velop a general framework to measure network robustness,

that encompasses any type of failure and any kind of im-

pact. Such a framework would allow us to predict the im-

pact of failures and to understand the effect of a proposed

local change (e.g., add or remove a router or a link) on the

global network robustness. In this paper we have presented

a first step towards that framework by studying the network

robustness under simultaneous router failures. This is a

worst case scenario because it involves simultaneous and

geographically disperse node failures. This type of failures

are infrequent but have great impact. In our future work we

plan to extend our approach to handle more frequent failures

with more limited impact.



8 Conclusion

In this paper, we have shown that diversity does increase

the robustness of the routing infrastructure against simulta-

neous router failures, by answering three fundamental ques-

tions. First, we have presented how to measure the robust-

ness of the network when faced with a color failure, using

connectivity and robustness metrics that capture the impact

of a node failure and its effect on the rest of the topology.

Second, we have shown that a small degree of diversity in

the network can provide good robustness against simulta-

neous router failures. A large Tier-1 ISP network can ob-

tain good robustness when using a total of five implementa-

tions: two for the backbone routers and three for the access

routers. The amount of diversity needed is small because

our proposed coloring algorithms maximize the benefits of

the available diversity. We observe that the best way of ap-

plying diversity is to partition the network into contiguous

regions that use the same implementation, taking into ac-

count the node roles and possibly replicated nodes. Finally,

we expose that large networks might already have enough

diversity, since the homogeneity is due to a large fraction of

the nodes using a small number of implementations, even

when the total number of implementations present might be

large. Thus, the existing diversity is not being adequately

used for robustness. To benefit from the available imple-

mentations, ISPs would need to change the relative num-

ber of nodes per implementation and to geographically dis-

tribute the diversity. When using the same number of im-

plementations currently available in a Tier-1 ISP network

we can increase the number of nodes in the largest compo-

nent from 5% to at least 76% in the worst case.
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A Pair Connectivity Results

This section presents additional results using the Pair

Connectivity metric. Figure 7 shows the performance of

the different algorithm on the Sprint topology and Figure 8

shows the robustness of the different topologies when col-

ored using the Partition algorithm. The results are analo-

gous to those presented in Sections 5.2 and 5.3 for the Nor-

malized Size of the Largest Component. In addition, we

present a more detailed example on how unbalanced parti-

tions decrease the robustness of a network.

Figure 7(a) shows that the Cluster algorithm performs

better than the Partition algorithm in terms of average ro-

bustness. This is due to the unbalanced coloring performed

by the Cluster algorithm. With two colors, the Cluster al-

gorithm assigns one color to 58 nodes and the other color

to the remaining 546 nodes. Removing the first color yields

a PC of 0.817 and removing the second one yields a PC of

0.009. Thus, the average PC is 0.413. On the other hand,

the Partition algorithm assigns the first color on 309 nodes

and the other color on 295 nodes. This is expected since

a graph partitioning algorithm tries to balance the number

of nodes in each partition. Thus, in both cases the PC is

close to 0.25. As a result, the minimum PC yielded by the

Cluster algorithm is 0.009, while the corresponding figure

for the Partition algorithm is 0.25. Note that the above ex-

ample highlights some interesting observation on the pair

connectivity. If the colored graph has n
2 nodes using each

color (most balanced coloring with 2 colors), the maximum

value for PC is close to 0.25, while that for NSLC is 0.5.

It might surprise the reader that in the above example the

average robustness is 0.413, larger than 0.25. Since the PC

metric is quadratic in the number of nodes, a case with very
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Figure 7. Pair Connectivity of the coloring obtained using the different coloring algorithms on the

Sprint topology

good connectivity overcompensates a case with small con-

nectivity. This explains why in Figure 7(a) the average PC

for the Cluster algorithm is above the Max line.

B Randomized Coloring Analysis

Here, we conduct theoretical analysis for the effective-

ness of the randomized coloring on large power-law graphs,

such as the Internet AS-level topology [13]. Note that

the power-law model does not apply to router-level topolo-

gies [20] and here we deal with the AS-level Internet topol-

ogy where each AS randomly selects a router implementa-

tion to use on all its routers.

Let H
(n)
m represent a random graph consisting of n nodes

formed in the following way (a.k.a. preferential attach-

ment): nodes are added one at a time, by joining each new

node to an independently chosen set of m earlier nodes

where the probability for choosing a given node is propor-

tional to its degree. We then construct a subgraph Hn
m(p)

by deleting each node independently with probability 1−p.

Bollobás and Riordan [11] have shown that there is a “phase

transition”: there is a certain critical value pc such that a

component of order Θ(n) remains with high probability as

n → ∞ if and only if p > pc.

Let L1(G) represent the size of the largest component

of G, L2(G) represent the size of the second largest com-

ponent of G. More formally, we have the following theo-

rem [11]:

Theorem 1 Let m ≥ 2 and 0 < p < 1 be fixed, and set

pc =
1

2

(

1 −
√

m − 1

m

)

(1)

If p ≤ pc, then

L1(H
(n)
m (p)) = o(n)

holds with high probability as n → ∞. If p = pc +ǫ, ǫ > 0,

then

L1(H
(n)
m (p)) = fm(ǫ)n + o(n) (2)

and

L2(H
(n)
m (p)) = o(n)

holds with high probability as n → ∞, where

fm(ǫ) = exp(−Θ(1/
√

ǫ)).

As m gets higher the critical value pc gets lower. Thus,

with m = 2, which is the lowest possible value of m, we

have pc = 0.146. Thus, for every graph with m ≥ 2, if

we retain edges with probability slightly higher than 0.146,

then we expect to observe a very large component, linear to

n.

Note that Theorem 1 states the necessary condition in or-

der to retain a giant component, which is a component that

has size linear to the size of the initial graph, when deleting

nodes at random in a preferential-attachment random graph.

With randomized coloring using k colors, when we remove

all nodes of the same color, we can easily see that it is es-

sentially equivalent to deleting nodes at random in the same

graph with probability 1/k.

Therefore, we can conclude that for a large graph follow-

ing the preferential attachment model (where n → ∞), even

the minimum number of two colors is sufficient in order to

have a giant component, because in this case we are retain-

ing nodes with probability p = 0.5 > pc. When we have 3

colors we are retaining nodes with probability p = 0.666.



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  4  6  8  10  12  14  16  18  20

P
a
ir
 C

o
n
n
e
c
ti
v
it
y
 (

A
v
e
)

Number of colors

Partition

Mesh
Abilene

Cenic
Exodus

Sprint
Verio
Tier 1

(a) Average Pair Connectivity

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2  4  6  8  10  12  14  16  18  20

P
a
ir
 C

o
n
n
e
c
ti
v
it
y
 (

M
in

)

Number of colors

Partition

Mesh
Abilene

Cenic
Exodus

Sprint
Verio
Tier 1

(b) Minimum Pair Connectivity

Figure 8. Robustness of the different topologies when colored using the Partition algorithm.

Indeed, even though in our graphs the number of nodes does

not really approach infinity, as required by the above theo-

rem, we have performed experiments that show that when

using 3 colors we achieve a high robustness.

C Algorithm Runtime

Table 4 shows the algorithms runtime on the Verio topol-

ogy, which has the largest number of nodes. The algorithms

Run Time Run Time

Algorithm (19 runs) (1 run average)

Dynamic Load 711.8 37.5

Cluster 100.1 5.3

Static Load 42.8 2.2

Dynamic Degree 31.6 1.7

Redundancy-Next 29.9 1.6

Static Degree 29.6 1.6

Random 29.5 1.6

Redundancy-Random 29.3 1.5

Partition 2.2 0.1

Table 4. Algorithm runtime (in minutes) on the
Verio topology. The middle column shows the

total runtime for coloring the graph 19 times,

from 2 to 20 colors. The rightmost column
shows the average time per color set

are run on a Pentium IV desktop computer with 1.8 GHz

CPU and 1 GB of RAM. The runtime includes the time to

color the graph and the time to compute the robustness of

the colored graph.

The Dynamic Load algorithm is the most expensive, tak-

ing 37 minutes per color set. On the other hand, the Parti-

tion algorithm takes only a few seconds per color set, which

includes both generating the partitions and coloring them.

Thus, it is quite feasible to run the Partition algorithm mul-

tiple times, e.g., by varying the degree of unbalance in the

graph, and select the partition with highest robustness.


