
NDSS 2016 Yao Group on Cyber Security, Virginia Tech

http://people.cs.vt.edu/~danfeng/index.html

Motivation:
• Conventional app-screening approaches are passive as they are not designed to make security enhancements to the app code.
• Current all-or-nothing verification cannot prevent vulnerable apps that are in the gray area.

Fig.1 Android information taint flows

with permission related risk scores

1. The original app will record
SMS content and store it into a
local file called zjsms.txt.
2. After the rewriting, the
writing function (with privacy
info) is redirected to a proxy,
the WRITE permission is
removed.

Vulnerable
app

sms

Zjsms.txt

Rewriting rule: remove unsafe permissions and redirect
the suspicious function to a proxy

ICC (SMS)

Proxy

Android-Application Rewriting Guided by Quantitative Information Flow
Ke Tian, Danfeng (Daphne) Yao

Dept. of Computer Science
Virginia Tech

{ketian, danfeng}@cs.vt.edu

Gang Tan
Dept. of Computer Science & Engineering

Penn State University
gtan@cse.psu.edu

Our Approach:

Risk Scores Associated with:
• inherited permissions (passed
down by ancestor nodes).
• inherent permissions (required
for completing API invocations).

Experiments:

Analysis Phase:
• Utilizing machine learning to map permissions to quantitative

values representing security risks.
• Constructing the information taint flow graph and Initializing

the graph with risk value assignment.
• Analyzing propagation of permissions and calculating risk

scores of sinks.

Risk Inequality:
79% of the apps, the riskiest
node has a risk score of 0.95
or higher.
This inequality may be due to
the excessive permission
requests in malicious code.

Rewriting Phase:
• Generating rewriting policies with constraints (e.g., register

integrity, execution completeness).
• Extracting rewriting rules combined with analysis results to

make optimal rewriting decisions.

Demo:

Security Applications of Android Rewriting:
• External runtime monitoring (e.g., preventing data

exfiltration and privacy leakage).
• Code reduction (e.g., removing certain code to eliminate

apps’ the overall risk).
• Inlined code insertion for monitoring Insert security checks

and assertions (e.g., for authentication, logging).

Threat Model:
• Vulnerable Android apps can expose and exfiltrate sensitive

data (privacy leakage, e.g., sending sensitive device ID
through a HTTP connection).

• Vulnerable interfaces of privileged Android apps can be
exploited by malicious apps (confused deputy, e.g.,
intercepting communication channels for the
malevolent purpose).

Purposes of Quantifying Risks of Flows:
• Quantitative risk analysis of flows enables one to efficiently

identify the most critical sets of sinks to cut or modify.
• There are too many sensitive sink nodes as possible

rewriting options. A find-all-occurrences approach would be
expensive.

• Alternative approaches such as choosing sinks with the
minimum in-degrees often give imprecise results.

Conclusion:
• We provide an efficient quantitative analysis to characterize

apps’ internal behaviors and rank risk scores of nodes.
• We provide a general rewriting framework with our

quantitative analysis to enforce apps’ security properties.

Evaluation Goals:
• To discover properties of the apps with our quantitative

information flow analysis.
• To demonstrate the feasibility of our rewriting techniques on

real-world applications.

We utilize graph algorithms and machine-learning methods to compute and
propagate permission-based risk scores over data-flow graphs of apps.

