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We demonstrate an algorithm for evaluating data-independent memory-hard functions (Amortlzed) Quallty of Attack A Amortized by #instances s |
(iMHFs) with significantly less cumulative resources (e.g., memory/energy) than ideally CC(Nawe)/ of iMHF computed. o
desired of such algorithms. In particular we get that: Quality(A) — 2 O Z el ]
* Catena-Dragonfly and Catena-Butterfly can be computed by an algorithm with CC(A) X #lnSt(A) E 4l : i (;%
cumulative cost O(n>/3) --- an improvement of 0(n1/3). c-ldeal iMHF = - M |
* Argon2i (winner of the Password Hashing Competition) can be computed by an * Forall attacks A, Quahty(A) sc Thm (Bad NEWS): No % %
algorithm with cumulative cost 0(n’/*) --- an improvement of 0(n1/*). * DAG has constant indegree c-ldeal iMHE exists for 20 / a o0s |- I
2 _ -1 - '
* Any iMHF can be computed by algorithm with cumulative cost 0(1091_8 n) for any Significance? c=20 (1091 & Tl) : B R 052 le Q;D gég 21'08 21'2?
constant £ > 0--- an improvement of O(logl—e n). * Cost of computing H varies greatly across architectures. 2 2 2 2 2 2 Memory Parameter 1
. . . . o 5 * Contrast: memory costs are consistent across architectures. Memory Parameter n
In particular, this shows that the goal of constructing an iMHF requiring .(l(n ) (a) Argon2i and SB (b) Ideal iIMHF
cumulative resources is infeasible.
. _ Depth-Robust DAGs are Necessary Attacking Argon?2i
IMHF (Password Hash Function)
Definition: We say that a DAG G=(V,E) is (e,d)-node robust if Argon2i DAG: G=(V,E), indegree=2
A data-independent memory hard function (iMHF) is defined by ) ; N\ : .
» an underlying compression function H, and vScV: [S|<e= depth(G — 5-) > d. Length of longest Edges: (Vi’vi+1)’ (Vr(i)’vi) fori=n  r(i)~Uniform([i-1])
 adirected-acyclic graph (DAG) representing data-dependencies e e ———— remaining path after Lemma: Let Sl — {vi [ :j X % }, and
. o removing nodes in 3. S, = {v;| vryand v, in same layer}. Then
npu ¢'
Output: L, 3/4
pwd, salt a/ b/ Theorem (Depth-Robustness is a necessary condition): If G is not depth(G-S,-S,) < v/n,and E[S, O(n log n)
L, = H(pwd, salt) L3 =H(LyL,) (e,d)-node robust then is an (efficient) attack A such that ‘ A
Advantage Data-dependent MHFs (e.g., SCRYPT) are vulnerable to side-channel attacks due to their ‘\‘_, oo ‘ Laye r - /n

dn+g°+ge

data-dependent memory access pattern Qu ahty( A) — 0 (drggasxn { gn }) | :
Computing an iMHF (Pebbling) @&& aé% Layer 1

Theorem (No DAG is sufficiently depth robust): If a DAG G=(V,E) has Layer O

Pebbling Rules: constant indegree then we can (efficiently) find S € V, s.t
* May place a pebble on node v, during any round. S| < 0(n/log'~¢n) and depth(G — S) < " log? n CONCLUSION

e May remove a pebble from DAG in any round. Note: yields attack with Quality(A) = Q(logl‘g n).

* May place a pebble on an unpebbled node v, during Practical attacks against every
MAIN ATTACK (GEN-PEBBLE) (known) iMHFs:

round j only if all parents had pebbles on round j-1.

. . Algorithm 1: GenPeb (G, S, g, d) o o
PEbeIng COStS' Arguments: G = (V, E), § CV, g € [depth(G — &), 1|, d > depth(G — &) ArgO n ZI
* (Each Round) pay energy cost (1 mwt) for each pebble ---|  * fori=1iondo In < d rounds we can e Catena
. , | Il of th
cost to store value in memory. B PAGRAT P Leeft‘,’l‘;a ot the
— 1L @ IO & eIl a EEEL agzg ] °
 Pay energy cost R to place a new pebble on the DAG 5 4 af—d% mod %1 ~~a e Balloon Hashlng (NEW)
— . 6 +— need(l L 4+ g, .
(e.g., R = 3,000 mwt is cost to compute H) . Pebble every v € IV which has all parents pebbled. { Onigsat"fg;dpnh)ase'
& Remove pebble from any v € K where K + S U keep(d,i4+ g) U {n}. =
0 else ' L’ight Phase REFERENCES
. . . . 10 K+ 5U parents{i, i+ g] I {ﬂ} ’/ All Balloon Phases:
CumUIatlve COSt Of PEbelng AlgO;Ltol'lqu?. : endRemmfe pebbles from all v & K. ”,/ Total Cost= O(anIg). . Password Hashing Competition (https://password-hashing.net/)
. 12 end ,” * Alex Biryukov ,Daniel Dinu and Dmitry Khovratovich. Argon2: new generation of memory-hard
CC(A) — R X (#q ueries(H )) + E (#pebbleS (])) ,,/ Each rc.)und of a.balloon functions for password hashing and other applications. EURO S&P 2016.
_ ] ] phase is potentially  Christian Forler, Stefan Lucks and Jakob Wenzel. Catena: A memory-consuming password
J=1 nght Phase: Discard most pebb|ES! very expensive. scrambler. ASIACRYPT 2014.
 Only keep pebbles on parents of next g nodes. cove bl ) - Alex Biryukov and Dmitry Khovratovich. Fast and Tradeoff-resilient memory-hard functions for
o . . . . €y: balioon phase cryptocurrencies and password hashing. ASIACRYPT 2015.
Nalve PEbbllng Algorlthm N. * One nght Phase: Cost = O(g | > | ) ends quickly! * Cythia Dwork, Moni Naor and Hoeteck Wee. Pebbling and proofs of work. CRYPTO 2005
* Pebble graph in topological order (n rounds) * All Light Phases: Total Cost = O(g|S|(n/g))= O(n|S]) y | R ' |
grap P & | 18 dses. 10td Ost = 8 nN/gl)= N * Joel Alwen and Vladimir Servinenko. High Parallel Complexity Graphs an Memory-Hard

e Cumulative Cost: Functions. STOC 2015.
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