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Pebbling Rules:
• May place a pebble on node v1 during any round.
• May remove a pebble from DAG in any round.
• May place a pebble on an unpebbled node vi during 

round j only if all parents had pebbles on round j-1.

Pebbling Costs: 
• (Each Round) pay energy cost (1 mwt) for each pebble ---

cost to store value in memory.
• Pay energy cost  𝑅 to place a new pebble on the DAG 

(e.g.,  𝑅 ≈ 3,000 mwt is cost to compute H)

Cumulative Cost of Pebbling Algorithm A:

cc A =  𝑅 × #queries(H) +  

𝑗=1

#𝑟𝑜𝑢𝑛𝑑𝑠

(#𝑝𝑒𝑏𝑏𝑙𝑒𝑠(𝑗))

Naïve Pebbling Algorithm N: 
• Pebble graph in topological order (n rounds).
• Cumulative Cost:  

cc(N)=O 𝑛2

Argon2i DAG: G=(V,E), indegree=2
Edges: (vi,vi+1), (vr(i),vi) for i ≤ 𝑛 r(i)~Uniform([i-1])
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Definition: We say that a DAG G=(V,E) is (e,d)-node robust if 

∀𝑆 ⊆ 𝑉: 𝑆 ≤ 𝑒 ⇒ depth 𝐺 − 𝑆 ≥ 𝑑. 

Theorem (Depth-Robustness is a necessary condition): If G is not 
(e,d)-node robust then is an (efficient) attack A such that

Quality 𝐴 = 𝜴 max
𝑑≤𝑔≤𝑛

𝑔𝑛

𝑑𝑛+𝑔2+𝑔𝑒
.

Theorem (No DAG is sufficiently depth robust): If a DAG G=(V,E) has 
constant indegree then we can (efficiently) find 𝑆 ⊆ 𝑉, s.t

𝑆 ≤ 𝑂 𝑛/ 𝑙𝑜𝑔1−𝜀 𝑛 and depth 𝐺 − 𝑆 ≤  𝑛 log2 𝑛

Note: yields attack with Quality 𝐴 = 𝛺 𝑙𝑜𝑔1−𝜀 𝑛 .
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ABSTRACT

We demonstrate an algorithm for evaluating data-independent memory-hard functions 
(iMHFs) with significantly less cumulative resources (e.g., memory/energy) than ideally 
desired of such algorithms. In particular we get that:

• Catena-Dragonfly and Catena-Butterfly can be computed by an algorithm with 

cumulative cost O 𝒏𝟓/𝟑 --- an improvement of O 𝒏𝟏/𝟑 .

• Argon2i (winner of the Password Hashing Competition) can be computed by an 

algorithm with cumulative cost  𝑶 𝒏𝟕/𝟒 --- an improvement of  𝑶 𝒏𝟏/𝟒 .

• Any iMHF can be computed by algorithm with cumulative cost O
𝒏𝟐

𝒍𝒐𝒈𝟏−𝜺 𝒏
for any 

constant 𝜺 > 𝟎--- an improvement of O 𝒍𝒐𝒈𝟏−𝜺 𝒏 .

In particular, this shows that the goal of constructing an iMHF requiring 𝜴 𝒏𝟐

cumulative resources is infeasible.

A data-independent memory hard function (iMHF) is defined by 

• an underlying compression function H, and 

• a directed-acyclic graph (DAG) representing data-dependencies

Advantage: Data-dependent MHFs (e.g., SCRYPT) are vulnerable to side-channel attacks due to their 
data-dependent memory access pattern. 

(Amortized) Quality of Attack A

Quality 𝐴 =
𝐶𝐶(𝑁𝑎𝑖𝑣𝑒)

𝐶𝐶 𝐴 × #𝑖𝑛𝑠𝑡(𝐴)
c-Ideal iMHF

• For all attacks A, Quality(A) ≤ 𝑐

• DAG has constant indegree

Significance?

• Cost of computing H varies greatly across architectures.

• Contrast: memory costs are consistent across architectures.

MAIN ATTACK (GEN-PEBBLE)

PRACTICAL RESULTS
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iMHF (Password Hash Function)
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Output: L4

Input:

pwd, salt

𝐿3 = 𝐻(𝐿2, 𝐿1)𝐿1 = 𝐻(𝑝𝑤𝑑, 𝑠𝑎𝑙𝑡)

Computing an iMHF (Pebbling)

Attack Quality and Ideal iMHFs
Amortized by #instances 
of iMHF computed.

Thm (Bad News): No 
c-Ideal iMHF exists for
𝑐 = 𝑂 𝑙𝑜𝑔1−𝜀 𝑛 .

Depth-Robust DAGs are Necessary

Length of longest 
remaining path after 
removing nodes in S.

In ≤ d rounds we can 
recover all of the 
pebbles. 

One Balloon Phase:     
Cost = O(dn)

All Balloon Phases:
Total Cost= O(dn2/g).

Each round of a balloon 
phase is potentially 
very expensive. 

Key: balloon phase 
ends quickly!

Light Phase: Discard most pebbles!
• Only keep pebbles on parents of next g nodes.
• One Light Phase: Cost = O(g|S|)
• All Light Phases: Total Cost = O(g|S|(n/g))= O(n|S|)

Attacking Argon2i
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Lemma: Let 𝑆1 = 𝑣𝑖 𝑖 = 𝑗 × 4 𝑛 , and

𝑆2 = 𝑣𝑖 𝑣𝑟(𝑖)and v𝑖 in same layer . Then 

depth(G-S1-S2) ≤ 𝑛, and E 𝑆2 = 𝑂 𝑛3/4 log 𝑛

CONCLUSION

• Argon2i
• Catena
• Balloon Hashing (New)

Practical attacks against every
(known) iMHFs:

https://password-hashing.net/
http://eprint.iacr.org/2016/115

