
Printing:
This poster is 48” wide by 36” high. It’s
designed to be printed on a large
printer.

Customizing the Content:
The placeholders in this
formatted for you.
placeholders to add text, or click an icon
to add a table, chart, SmartArt graphic,
picture or multimedia file.

T
text, just click the Bullets button on the
Home tab.

If you need more placeholders for titles,
content
of what you need and drag it into place.
PowerPoint’s Smart Guides will help you
align it with everything else.

Want to use your own pictures instead
of ours? No problem! Just
picture
Maintain the proportion of pictures as
you resize by dragging a corner.

Pebbling Rules:
• May place a pebble on node v1 during any round.
• May remove a pebble from DAG in any round.
• May place a pebble on an unpebbled node vi during

round j only if all parents had pebbles on round j-1.

Pebbling Costs:
• (Each Round) pay energy cost (1 mwt) for each pebble ---

cost to store value in memory.
• Pay energy cost 𝑅 to place a new pebble on the DAG

(e.g., 𝑅 ≈ 3,000 mwt is cost to compute H)

Cumulative Cost of Pebbling Algorithm A:

cc A = 𝑅 × #queries(H) +

𝑗=1

#𝑟𝑜𝑢𝑛𝑑𝑠

(#𝑝𝑒𝑏𝑏𝑙𝑒𝑠(𝑗))

Naïve Pebbling Algorithm N:
• Pebble graph in topological order (n rounds).
• Cumulative Cost:

cc(N)=O 𝑛2

Argon2i DAG: G=(V,E), indegree=2
Edges: (vi,vi+1), (vr(i),vi) for i ≤ 𝑛 r(i)~Uniform([i-1])

Th

Th

Th

Definition: We say that a DAG G=(V,E) is (e,d)-node robust if

∀𝑆 ⊆ 𝑉: 𝑆 ≤ 𝑒 ⇒ depth 𝐺 − 𝑆 ≥ 𝑑.

Theorem (Depth-Robustness is a necessary condition): If G is not
(e,d)-node robust then is an (efficient) attack A such that

Quality 𝐴 = 𝜴 max
𝑑≤𝑔≤𝑛

𝑔𝑛

𝑑𝑛+𝑔2+𝑔𝑒
.

Theorem (No DAG is sufficiently depth robust): If a DAG G=(V,E) has
constant indegree then we can (efficiently) find 𝑆 ⊆ 𝑉, s.t

𝑆 ≤ 𝑂 𝑛/ 𝑙𝑜𝑔1−𝜀 𝑛 and depth 𝐺 − 𝑆 ≤ 𝑛 log2 𝑛

Note: yields attack with Quality 𝐴 = 𝛺 𝑙𝑜𝑔1−𝜀 𝑛 .

Attacking Data Independent Memory Hard Functions

Jeremiah Blocki (Microsoft Research)
Joel Alwen (IST Austria)

ABSTRACT

We demonstrate an algorithm for evaluating data-independent memory-hard functions
(iMHFs) with significantly less cumulative resources (e.g., memory/energy) than ideally
desired of such algorithms. In particular we get that:

• Catena-Dragonfly and Catena-Butterfly can be computed by an algorithm with

cumulative cost O 𝒏𝟓/𝟑 --- an improvement of O 𝒏𝟏/𝟑 .

• Argon2i (winner of the Password Hashing Competition) can be computed by an

algorithm with cumulative cost 𝑶 𝒏𝟕/𝟒 --- an improvement of 𝑶 𝒏𝟏/𝟒 .

• Any iMHF can be computed by algorithm with cumulative cost O
𝒏𝟐

𝒍𝒐𝒈𝟏−𝜺 𝒏
for any

constant 𝜺 > 𝟎--- an improvement of O 𝒍𝒐𝒈𝟏−𝜺 𝒏 .

In particular, this shows that the goal of constructing an iMHF requiring 𝜴 𝒏𝟐

cumulative resources is infeasible.

A data-independent memory hard function (iMHF) is defined by

• an underlying compression function H, and

• a directed-acyclic graph (DAG) representing data-dependencies

Advantage: Data-dependent MHFs (e.g., SCRYPT) are vulnerable to side-channel attacks due to their
data-dependent memory access pattern.

(Amortized) Quality of Attack A

Quality 𝐴 =
𝐶𝐶(𝑁𝑎𝑖𝑣𝑒)

𝐶𝐶 𝐴 × #𝑖𝑛𝑠𝑡(𝐴)
c-Ideal iMHF

• For all attacks A, Quality(A) ≤ 𝑐

• DAG has constant indegree

Significance?

• Cost of computing H varies greatly across architectures.

• Contrast: memory costs are consistent across architectures.

MAIN ATTACK (GEN-PEBBLE)

PRACTICAL RESULTS

REFERENCES

• Password Hashing Competition (https://password-hashing.net/)

• Alex Biryukov ,Daniel Dinu and Dmitry Khovratovich. Argon2: new generation of memory-hard
functions for password hashing and other applications. EURO S&P 2016.

• Christian Forler, Stefan Lucks and Jakob Wenzel. Catena: A memory-consuming password
scrambler. ASIACRYPT 2014.

• Alex Biryukov and Dmitry Khovratovich. Fast and Tradeoff-resilient memory-hard functions for
cryptocurrencies and password hashing. ASIACRYPT 2015.

• Cythia Dwork, Moni Naor and Hoeteck Wee. Pebbling and proofs of work. CRYPTO 2005.

• Joel Alwen and Vladimir Servinenko. High Parallel Complexity Graphs an Memory-Hard
Functions. STOC 2015.

• Joel Alwen and Jeremiah Blocki. Efficiently Computing Data-Independent Memory-Hard
Functions. http://eprint.iacr.org/2016/115

iMHF (Password Hash Function)

1
2

3

4
Output: L4

Input:

pwd, salt

𝐿3 = 𝐻(𝐿2, 𝐿1)𝐿1 = 𝐻(𝑝𝑤𝑑, 𝑠𝑎𝑙𝑡)

Computing an iMHF (Pebbling)

Attack Quality and Ideal iMHFs
Amortized by #instances
of iMHF computed.

Thm (Bad News): No
c-Ideal iMHF exists for
𝑐 = 𝑂 𝑙𝑜𝑔1−𝜀 𝑛 .

Depth-Robust DAGs are Necessary

Length of longest
remaining path after
removing nodes in S.

In ≤ d rounds we can
recover all of the
pebbles.

One Balloon Phase:
Cost = O(dn)

All Balloon Phases:
Total Cost= O(dn2/g).

Each round of a balloon
phase is potentially
very expensive.

Key: balloon phase
ends quickly!

Light Phase: Discard most pebbles!
• Only keep pebbles on parents of next g nodes.
• One Light Phase: Cost = O(g|S|)
• All Light Phases: Total Cost = O(g|S|(n/g))= O(n|S|)

Attacking Argon2i

1 2 3 𝑛3/4

𝑛3/4+1 +2 +3 …
…

2𝑛3/4

… 4 𝑛

+4 𝑛

… …

Layer 0

Layer 1

Layer 4 𝑛

Lemma: Let 𝑆1 = 𝑣𝑖 𝑖 = 𝑗 × 4 𝑛 , and

𝑆2 = 𝑣𝑖 𝑣𝑟(𝑖)and v𝑖 in same layer . Then

depth(G-S1-S2) ≤ 𝑛, and E 𝑆2 = 𝑂 𝑛3/4 log 𝑛

CONCLUSION

• Argon2i
• Catena
• Balloon Hashing (New)

Practical attacks against every
(known) iMHFs:

https://password-hashing.net/
http://eprint.iacr.org/2016/115

