
A Security API for Distributed Social Networks

Michael Backes
Saarland University and

MPI-SWS
Germany

backes@mpi-sws.org

Matteo Maffei
Saarland University

Germany
maffei@cs.uni-saarland.de

Kim Pecina
Saarland University

Germany
pecina@cs.uni-saarland.de

Abstract

We present a cryptographic framework to achieve access
control, privacy of social relations, secrecy of resources,
and anonymity of users in social networks. We illustrate
our technique on a core API for social networking, which
includes methods for establishing social relations and for
sharing resources. The cryptographic protocols implement-
ing these methods use pseudonyms to hide user identi-
ties, signatures on these pseudonyms to establish social re-
lations, and zero-knowledge proofs of knowledge of such
signatures to demonstrate the existence of social relations
without sacrificing user anonymity. As we do not put any
constraints on the underlying social network, our frame-
work is generally applicable and, in particular, constitutes
an ideal plug-in for decentralized social networks.

We analyzed the security of our protocols by developing
formal definitions of the aforementioned security properties
and by verifying them using ProVerif, an automated theo-
rem prover for cryptographic protocols. Finally, we built a
prototypical implementation and conducted an experimen-
tal evaluation to demonstrate the efficiency and the scala-
bility of our framework.

1. Introduction

Over the last years, online social networks (OSNs) have
become the natural means to get in touch with people and
to engage in a number of social activities, such as sharing
information, exchanging opinions, organizing events, and
publishing advertisements. The new dimensions of social
interaction and the opportunities deriving from these novel
functionalities tend to push into the background the impres-
sive leakage of personal information (e.g., religious beliefs,
political opinions, and sexual orientations) and the conse-
quent threats to users’ privacy.

It is well-understood that the lack of access control
mechanisms (e.g., to restrict the access to pictures, videos,

and posts on the wall) may lead to unpleasant consequences,
such as employers monitoring the personal life of their
employees. Nowadays, most centralized social networks
(e.g., Facebook [49]) implement their own access control
mechanisms (we refer to a recent study by Carminati and
Ferrari [17] for a comprehensive overview of access con-
trol mechanisms in social networks) and, recently, crypto-
graphic solutions [51, 22, 45, 8] have been proposed to en-
force access control schemes in distributed social networks.

The threats to the privacy of users, however, go well
beyond access control problems. For instance, OSNs are
highly vulnerable to coercion attacks, where the coercer
asks the user for the password, accesses its profile, and
learns the list of friends together with their recent activities.
This kind of attacks have been reported in countries ruled by
authoritarian governments [27, 38, 1, 54], where people use
social networks to organize protest activities and to publish
documents that would be censored otherwise. In such set-
tings, the privacy of social relations is a fundamental prop-
erty as well as user anonymity. Combining anonymity with
forms of access control is crucial to ensure that certain doc-
uments can only be read or posted by friends as opposed
to hostile users. Anonymity and privacy properties are also
desirable in many other applications that can run of top of
social networks, such as content sharing and feedback re-
ports.

In this paper, we present a cryptographic framework to
achieve a wide range of security properties in OSNs, in-
cluding access control, privacy of social relations, secrecy
of resources, and anonymity of users. We illustrate our tech-
nique on a core API for social networking, which includes
methods for establishing social relations and for sharing re-
sources. Our framework does not constrain the underlying
social network and, in particular, constitutes an ideal plug-in
for distributed social networks [34, 47, 50, 8, 45], where so-
cial information and OSN functionality are decoupled and
users can choose where and how to store their data.1 Dis-

1We remark that our API could be implemented on top of centralized
social networks as well, for example, to bypass the native access control



tributed social networks allow users to strengthen their con-
trol over sensitive material and, in addition, facilitate the
management and interoperability of different networks and
services.

Our contributions. The contribution of this paper is three-
fold:

• Cryptographic Framework. We present a number
of cryptographic protocols to securely implement the
methods of our API. In a nutshell, the fundamental
idea is to use pseudonyms to hide user identities, signa-
tures on these pseudonyms to establish social relations,
and non-interactive zero-knowledge proofs of knowl-
edge2 of such signatures to demonstrate the existence
of social relations. More precisely, a principal A es-
tablishes a social relation with principal B by signing
B ’s pseudonym and a tag R describing the social re-
lation. The resulting signatures are sent to B in en-
crypted form and are kept secret by the two principals.
B can demonstrate to be in a certain social relation R
with A by proving the knowledge of a signature on its
pseudonym or the knowledge of a signature on the tag
R, depending on whether B wants to reveal its identity
to A or not.

Access control lists are defined in terms of
pseudonyms (which by themselves do not reveal
user identities) and social relations. Besides the
resources themselves, access control lists constitute
the only information stored on the servers. Signatures
are only needed by the prover while anonymously
authenticating with the verifier and can be stored on
some secure device while offline. Hence, an attacker
compromising the server of a principal cannot get any
information about its friends, not even after reading
the access control lists and monitoring the incoming
authentication requests.

• Performance evaluation. We developed a prototypical
implementation of our cryptographic framework and
conducted an experimental evaluation to demonstrate
its efficiency. The zero-knowledge proofs, which dom-
inate the communication and computational complex-
ity of our protocols, are a few kilobytes in size and their
generation and verification takes less than one second
on average.

mechanisms and achieve more fine-grained security properties.
2A zero-knowledge proof combines two seemingly contradictory prop-

erties. First, it is a proof of a statement that cannot be forged, i.e., it
is impossible, or at least computationally infeasible, to produce a zero-
knowledge proof of a wrong statement. Second, a zero-knowledge proof
does not reveal any information besides the bare fact that the statement is
valid [31]. A non-interactive zero-knowledge proof is a zero-knowledge
protocol consisting of one message sent by the prover to the verifier. A
zero-knowledge proof of knowledge additionally ensures that the prover
knows the witnesses to the given statement.

• Formal security analysis. We provide a formal and au-
tomated security proof of our protocols. We specify
the cryptographic protocols in a process calculus [3],
we formalize access control policies and secrecy re-
quirements as trace properties, and we characterize
the anonymity guarantees provided by our protocols in
terms of observational equivalence relations. We con-
sider a strong adversarial model where the attacker has
the control over the social relations, the access control
policies, some of the protocol parties, and the proto-
cols executed by the users.

The security properties are successfully verified us-
ing ProVerif [12], a state-of-the-art automated theorem
prover based on Horn clause resolution that provides
security proofs for an unbounded number of protocol
sessions and parties.

Related Work. Privacy and anonymity in online social net-
works are an emerging security problem, as witnessed by
the vast literature on this topic [9, 23, 39, 42, 51, 46, 8, 45].
Weaknesses of and attacks on OSNs account for a large
part of that literature. To the best of our knowledge,
this work presents the first generally applicable framework
to formally define and to provably achieve anonymity of
users, secrecy of exchanged resources, and privacy of so-
cial graphs in OSNs.

Our work is close in spirit to some recent OSN
projects [34, 47, 22, 50, 8, 45].

Safebook [22, 23] by Cutillo, Molva, and Strufe is a dis-
tributed social network implementation based on a special
peer-to-peer overlay network, named matryoshka after its
shape. The idea of Safebook is to capitalize on the trust
relations among users to achieve integrity and privacy prop-
erties. Intuitively, external observers do not learn any infor-
mation on the social graph as messages are passed from the
outside of the matryoshka to its inside. In our approach, the
signatures that witness the friendship relations are stored on
a secure external medium and thus not only external ob-
servers but even attackers that successfully compromise the
server of a user do not learn any information on the social
graph. The access control in Safebook is based on public-
key cryptography and users have no means to hide their
identities from the other parties involved in the protocol.
We provide a more fine-grained approach by assigning each
resource an individual access control list and by harnessing
the power of zero-knowledge proofs to provide authentica-
tion modalities that do not sacrifice user anonymity. Finally,
our approach does not rely on any particular network topol-
ogy.

Persona [8] by Baden et al. implements a distributed so-
cial network with distributed data storage. Access control is
obtained by employing a combination of traditional public-
key cryptography and attribute-based encryption (ABE)



scheme. In ABE schemes, attributes such as “neighbor”
are assigned to users and data is encrypted such that only
participants holding the assigned attributes can decrypt the
data. The combination of classical public-key schemes and
ABE schemes has the drawback of increased key manage-
ment complexity. Our implementation uses only traditional
public-key cryptography and, consequently, only two key
pairs need to be stored. Also, our approach does not require
a trusted third party for the key setup as necessary in ABE
schemes.

The social network scheme proposed by Sun, Zhu, and
Fang [45] is closely related to Persona, however, access
control along with an efficient revocation mechanism is
achieved by using broadcast encryption [28]. This social
network scheme also requires a trusted third party for key
management. Due to the distributed storage on untrusted
network sites, a considerable computation effort is required
to enable searches on encrypted data. In our approach, data
servers are operated and maintained by the data owner and
search queries can be performed on unencrypted data with-
out computational overhead.

Both of these worksmainly specify the cryptographic
implementation of their corresponding APIs, the security
proofs are not formal and do not consider possible unin-
tended interleavings of API calls. Sun et al. discuss how
their scheme can be modified to allow for an anonymous so-
cial network but their model significantly differs from ours:
they are mainly concerned with maintaining the anonymity
of the resource providers. We on the other hand guaran-
tee the unconditional anonymity of the requester. Further,
we have formalized all desired security properties such as
authenticity, secrecy, and anonymity, and proven them us-
ing ProVerif, an automated theorem prover that provides
security proofs for an unbounded number of protocol ses-
sions. In particular, this excludes all unintended protocol
interleavings. In addition, our approach does not require
any trusted third parties.

Mezzour et al. solve the problem of finding a relationship
path in social networks where the relationships are kept se-
cret [37]: the idea is to use cryptographic token propagation
and a private set intersection protocol together with homo-
morphic encryption, which allows for path discovery even
when users are offline. Our work focuses also on the en-
forcement of anonymity properties and we thus describe a
protocol that allows us to anonymously register a “friend of
a friend” relation rather than an algorithm for path discov-
ery. Due to the nature of our protocols and the degree of
freedom regarding the employed encryption scheme, how-
ever, we might use the technique Mezzour et al. to obtain a
sophisticated way of finding social acquaintances in a pri-
vate social graph.

Lockr [51] by Tootoonchian et al. is a cryptographic
framework to achieve access control and privacy of social

graphs. Lockr is among the first architectures to propose
a separation of the social graph from the content of social
networks and it shows that this is possible even without the
support of the underlying OSN. Nonetheless, the authenti-
cation protocol in Lockr does not preserve the anonymity of
users. The attacker can thus retrieve the social relations of a
principal by simply monitoring the incoming authentication
requests. Our approach allows users to authenticate using
pseudonyms or social relations (thus hiding their identity),
and we even offer the option to authenticate anonymously
without revealing anything other than the knowledge of a
signature.

Although the setting is different, our work may resem-
ble the anonymous delegatable credential scheme [10] by
Camenisch et al. which enables a root authority to issue
anonymous credentials that can further be delegated. Our
protocol intentionally does not allow for such a delegation.
Further, the credential scheme is explicitly rooted at a cer-
tain node, i.e., a credential can always be assigned to the
original root authority. In our scheme, any user can act as
a source and it is hence sufficient to only issue a signature
once and for all rather than once for every possible origin.

Backes et al. have recently introduced the concept of
anonymous webs of trust [4]. The goal of that work is to al-
low principals to prove trust relations in an anonymous way,
which is achieved by deploying zero-knowledge proofs. Al-
though these proofs can be used to prove complex trust rela-
tions, they are in general expensive and turn out to be prac-
tical only for short key sizes.

We finally mention that neither group signatures [19,
11, 16] nor ring signatures [43, 53] suffice to provide the
properties we achieve by means of zero-knowledge proofs.
Group signatures usually rely on a group manager that sets
up the group and can reveal the creator of a particular sig-
nature (traceability). Consequently, it is impossible to pro-
vide the anonymity of the requester as a corrupt group man-
ager is able to immediately determine the originator of a re-
quest. Notice that the revocation can also be used to break
our targeted anonymity property by consecutively revoking
the signing capabilities of all members in a particular group.
Further, each group membership requires a separate key, in-
creasing the key management complexity. Ring signatures
cannot be used either as the public keys of all ring members
need to be publicly known, which reveals the social graph.

Outline of the paper. Section 2 introduces our API. Sec-
tion 3 gives an overview of the cryptographic protocols and
Section 4 describes the cryptographic setup in detail. Sec-
tion 5 illustrates the performance evaluation and the exper-
imental results. Section 6 gives a formal and automated se-
curity proof of our protocols. Section 7 concludes and gives
directions for further research.



M ::= masks
| p pseudonym
| R social relation

op ::= operations
r | w | rw

ACL ::= access control list
(M,op)::ACL | [ ]

M ::= register (B ,pB )
| getHandles (MB)
| getResource (MB ,hdl(res))
| putResource (MB ,hdl(res), res ′)
| getFriends (MB)
| indirectRegister (MB ,C )

We let A, B , and C range over principals. We write hdl(res) to denote the handle of the resource res .

Table 1. Grammar of access control lists

2. A Core API for Social Networking

This section describes a security API for social network-
ing, which includes methods to establish social relation-
ships as well as to upload and download resources. In
this paper, we do not aim at specifying a fully fledged
API, since this would comprise a variety of application-
dependent methods that are similar to each other and present
the same problem (e.g., getImage, getVideo, readPost, etc.).
We rather focus on a concise set of methods, which suffice
to encode the others (e.g., a single primitive getResource is
sufficient to encode the aforementioned methods) and allow
us to deal with all the problems related to the cryptographic
realization of an API for social networking.

A central feature of our API is that social links are kept
secret and principals can engage in social activities (e.g.,
post a comment or retrieve a picture) without disclosing
their identities.

We could not keep social relations private if access con-
trol lists revealed the identity of the principals with read and
write capabilities: an attacker compromising the server of
principal A would be able to read the access control lists
stored therein and immediately learn the identity of A’s
friends. For this reason, access control lists are defined on
masks (cf. Table 1), which are ranged over byM and con-
sist of either a pseudonym p or a social relation R. The
idea is that a user B communicates its pseudonym pB while
establishing social relations: B is the only user that can
use this pseudonym and only the users whom B registered
with know the link between pB and B (the pseudonym itself
does not reveal any information about the owner’s identity,
cf. Section 3.2). We do not impose constraints on the us-
age of pseudonyms: B can decide to always use the same
pseudonym such that friends can track all its activities or
to use different pseudonyms to become unlinkable. The
social relation R is simply a tag characterizing a certain
social relation. An access control list consists of a list of
pairs, whose first component is a mask and the second com-
ponent is an operation (e.g., r, w, and rw ). For instance,
[(pB , rw), (friends, r)] is an access control list specifying
that the associated resource can be read and written by the

principal with pseudonym pB and it can additionally be read
by the principals in the friends relation.

The protocols comprising our API are designed to pro-
tect the social relations and the anonymity of principals
against external observers and against attackers that com-
promise the servers running the API. A dishonest principal
can of course reveal its social relations but an attacker that
observes the network traffic or breaks into an API server
should not be able to learn them. The key idea to achieve
this strong anonymity property is that principals can get and
post resources by simply revealing their pseudonym or by
proving to be in a certain social relation with the resource
provider. Our cryptographic realization does not require the
resource provider to store any information about its social
relations, just the access control lists. This means that an
attacker compromising the server of the resource provider
cannot get any information about its friends, not even after
reading the access control lists and monitoring the incoming
authentication requests. The requester, instead, has to prove
to be associated to a certain pseudonym or to be in a certain
social relation with the resource provider. This procedure
requires the knowledge of some information about the so-
cial relations that is, however, only needed when a principal
goes online and wants to authenticate. Hence, these data do
not need to be stored on a server (they can be stored, for ex-
ample, on a secure portable device) and they are not leaked
in case of server compromise.

Note that an ACL does not reveal enough structure
about the social graph to apply de-anonymization tech-
niques [39]. An access control list typically consists of
social relations that do not reveal any structural informa-
tion on the social graph. Should a user decide to mainly
use pseudonyms, “padding” the ACL with fake pseudonyms
(e.g., stipulating that social relatives register only fresh
pseudonyms and adding fake pseudonyms until all re-
sources have 1000 pseudonyms associated with them) suf-
fices to hide the actual structure of the social graph and to
render de-anonymization techniques inapplicable. Such a
blinding technique has no consequence for the requester
and only a negligible computational overhead for the re-
source provider. Moreover, since all signatures, i.e., the so-



cial relations, and the pseudonym-user bindings are stored
on a well-hidden external device, even complete access to a
number of servers will not reveal any social relation.

We now describe the methods composing the API, which
are summarized in Table 1. We write A.M to denote the
method M exported by A’s API.

R ← A.register(B , pB ): This method takes as input the
identifier B of the principal that wants to establish a
social relationship with A and a pseudonym pB cho-
sen by B (cf. Section 3.2). This method returns a
tag R chosen by A to characterize the social relation
(e.g., a string such as “friends” or a number). The
cryptographic realization ensures that the caller cor-
responds to the identifier specified in the argument.
The pseudonym pB can be used by A to allow user-
based access to B when setting up its access control
list. Although A is able to link pB to B ’s identity, the
pseudonym itself does not reveal anything about B ’s
identity, which is crucial to achieve anonymity even if
A’s server is compromised, the access control list is
leaked, and the incoming authentication requests are
monitored.

hdl(res1), . . . , hdl(resn)← A.getHandles(MB): This
method takes as input the caller’s mask MB and
returns the handles to A’s resources. A handle identi-
fies and describes the resource without disclosing it.3

Handles are passed to the other methods to specify the
resource of interest, as discussed below. Since this
method takes as input the caller’s mask, B has the
option to reveal its pseudonym or to stay anonymous
by just proving to be in a certain social relation with
A, depending on whether A accepts anonymous
requests or reveals its handles only to non-anonymous
requesters.

res ← A.getResource(MB , hdl(res)): This method takes
as input the caller’s maskMB and the handle hdl(res)
of the requested resource. If MB is given read ac-
cess to res in the corresponding access control list,
getResource returns the resource res .

ack ← A.putResource(MB , hdl(res), res ′): This
method takes as input the caller’s mask MB , the
handle hdl(res) of the resource to modify, and the
new content res ′. This method encodes the methods
used by B to post comments on A’s wall, to upload
pictures, and so on. Typically, messages and pictures
are appended while other resources such as the profile
picture are replaced. We intentionally leave the actual
behavior of this method unspecified, since it depends

3For the sake of generality, we do not specify the format of handles:
for instance, one can use thumbnails as handles for pictures and URI-style
descriptions for text documents.

on the specific social network and on the kind of
resource.

R ← A.indirectRegister(RAB , pB ,C ): This method al-
lows users to establish indirect social relations (e.g.,
“friend of a friend”). It takes as input the social rela-
tion RAB between A and B , a pseudonym pB chosen
by B and the identifier C of the principal which B is
interested in establishing an indirect relation with. No-
tice that B must be in a direct social relation with A,
and A has to be in a direct social relation with C . The
idea is that if C accepts indirect relations, B can ask A
to establish an indirect relation with C on his behalf.
This method returns a tag R that describes the newly
established social relation between C and B .

This method could in principle be cascaded to establish
indirect relationships of arbitrary degree (e.g., “friend
of a friend of a friend” relations). Since such relations
are not used in practice, we do not consider them fur-
ther here.

C1, . . . ,Cn ← A.getFriends(MB): This method takes as
input the caller’s maskMB and returns the list of A’s
friends that accept indirect relations. Notice that B
must be in a direct social relation with A and the iden-
tities of A’s friends that do not accept indirect social
relations are not disclosed.

The API additionally comprises standard functions to deal
with access control lists (e.g., creation and modification).
Since these operations are local, they do not need any cryp-
tographic infrastructure and, for the sake of readability, we
omit them throughout this paper.

3. Overview of the Cryptographic Protocols

We now describe the cryptographic protocols imple-
menting the API described in Section 2.

3.1. Preliminaries

In the following, we let sign(M, skB ) denote the
signature on message M with B ’s signing key skB ,
check(S,M, vkB ) denote the verification of the signature
S on message M with B ’s verification key vkB (the ver-
ification succeeds if and only if S = sign(M, skB )),
enc(M, ekB ) denote the encryption ofM with key ekB , and
dec(E, dkB ) denote the decryption of E with B ’s decryp-
tion key dkB (the decryption succeeds and returns M if and
only if E = enc(M, ekB )).

Borrowing the notation introduced by Backes et al. [6],
we write ZK[stm; M1, . . . ,Mm; N1, . . . , Nn] to sym-
bolically represent a non-interactive zero-knowledge proof



of knowledge of the statement stm with private values
M1, . . . ,Mm (these values are also called witnesses) and
public values N1, . . . , Nn. The private values are kept se-
cret by the proof while the public ones are revealed. The
statement is built on place-holders αi for the i-th private
value and βj for the j-th public values. In a way of ex-
ample, ZK[check(α1, α2, β1); sign(M, skB ),M ; vkB ] is a
proof that the prover knows a signature made by B . No-
tice that the zero-knowledge proof reveals neither the sig-
nature nor the signed message; just the verification key is
revealed. ZK[check(α1, β1, β2); sign(M, skB ); M, vkB ] is
similar but the message M is revealed to the verifier. We
finally write ver(ZK , stm) to denote the verification of the
zero-knowledge proof ZK (the verification succeeds if ZK
is a zero-knowledge proof of statement stm and this state-
ment holds true after replacing the place-holders with the
corresponding private and public values). As we will see,
the zero-knowledge proofs used in our cryptographic real-
ization enjoy the non-malleability property, i.e., both secret
and public values can be seen as hard-coded into the proof
in such a way that they cannot be changed without recom-
puting the proof. The cryptographic implementation is de-
scribed in detail in Section 4.

3.2. Pseudonyms

Pseudonyms are used to authenticate with friends, who
know the binding between pseudonyms and principals. A
basic property of pseudonyms is to be uniquely binding,
meaning that only their owners should be able to use them
for authentication purposes. This can be easily achieved
in our framework by employing a technique inspired by
the Pseudo-Trust protocol [36]: given a one-way function
f , a principal can generate a random number r and let its
pseudonym be f(r). To avoid impersonation attacks, it suf-
fices to send in the registration and authentication protocols
a zero-knowledge proof of knowledge of the preimage of
f(r), which is hard to compute for any other principal given
the one-way function property.

3.3. Revocation

Equipping pseudonym systems such as Pseudo
Trust [36] and our API with a revocation mechanism
is an open problem. In Pseudo Trust and in our API, a
zero-knowledge proof shows possession of a credential. As
this credential is hidden by the proof, credential-based re-
vocation is hard to achieve. Typical revocation mechanisms
such as revocation signatures also fail since one would have
to prove that no revocation signature exists (this is a false
statement, since the revocation signature exists even if it
has not been computed yet).

Nonetheless, we can circumvent credential revocation

while still obtaining similar results. In the spirit of anony-
mous webs of trust [4], we can periodically re-issue all cre-
dentials based on a global interval. The authenticating zero-
knowledge proof would then additionally prove that the sig-
nature is valid, i.e., it belongs in the current interval.

One might also draw inspiration from Sun et al. [45]
and use a broadcast encryption scheme to mimic revocation:
when answering a get-request, the resource is encrypted us-
ing the broadcast encryption; a revoked receiver would not
be able to decrypt the resource. Before accepting a put-
request, a challenge-response protocol is executed to ensure
that the key of the requester has not been revoked yet.

3.4. Cryptographic Protocols

We now give a detailed description of the cryptographic
protocols implementing the API methods.

R ← A.register(B , pB ): The protocol is depicted in Fig-
ure 1. B starts the registration procedure by encrypting
two messages for A: a signature and a non-interactive
zero-knowledge proof of knowledge. The signature is
on A’s identifier, a pseudonym pB , and a fresh (sym-
metric) session key k to be used in the response. The
zero-knowledge proof shows that the pseudonym is of
the form f(r) and that the prover knows the preim-
age r, thus ensuring that principals can only regis-
ter with their own pseudonyms. Notice that the zero-
knowledge proof does not reveal r, which is crucial to
avoid impersonation attacks. We attach the intended
receiver’s identifier A to the proof, to ensure that A
cannot reuse this proof to impersonate B with other
users.4 A replies by encrypting a signature on pB and
a signature on the tagR describing the social relation.5

While the encryptions prevent potential eavesdroppers
from learning the identity of the parties, the signatures
used in this protocol ensure the integrity of the regis-
tration request and the registration response. The sig-
natures in the response also constitute the basis of our
zero-knowledge proofs. We remark that social rela-
tions are unidirectional but they can straightforwardly
be made bidirectional by running twice the registration
protocol.

hdl(res1), . . . , hdl(resn)← A.getHandles(MB): The
protocol is depicted in Figure 2. B sends a zero-
knowledge proof in encrypted form to authenticate

4Recall that our zero-knowledge proofs are non-malleable, i.e., the
messages attached to the proof cannot be changed without re-computation
of the proof, which requires knowledge of the secret witnesses.

5The presence of two distinct signatures as opposed to one signature
on the concatenation of the two messages makes the generation and verifi-
cation of the zero-knowledge proofs employed in the other protocols more
efficient: if we were to sign the pseudonym and the tag together, we should
split this pair in zero-knowledge in the other protocols, which would in-
volve a higher number of range proofs.



A B

k←GENkey

enc((sign((A,pB ,k),skB ),ZK),ekA)oo

ver(ZK,β1=f(α1))
?
=true

encsym((sign(pB ,skA) , sign(R,skA)),k) //

ZK := ZK[β1=f(α1); r; pB ,A]

Figure 1. Protocol for register

A B

k←GENkey

enc(ZK,ekA)oo

ver(ZK,stm)
?
=true

encsym(result,k) //

Pseudonymous Authentication:
ZK := ZK[stm; sign(pB ,skA),r; pB ,vkA,k,S]

stm := check(α1,β1,β2) ∧ β1=f(α2)

Relation Authentication:
ZK := ZK[stm; sign(R,skA); R,vkA,k,S]

stm := check(α1,β1,β2)

Anonymous Authentication:
ZK := ZK[stm; sign(R,skA),R; vkA,k,S]

stm := check(α1,α2,β1)

Figure 2. Protocol for getHandles,getResource,putResource, getFriends

with A. We provide three authentication modali-
ties, namely, pseudonymous authentication, relation
authentication, and anonymous authentication. In
the pseudonymous authentication, B proves the
knowledge of a signature from A on the pseudonym
pB , which is revealed by the proof, as well as the
knowledge of the preimage of pB . In the relation
authentication, B proves the knowledge of a signature
from A on the tag R, which is revealed by the
proof. In the anonymous authentication, B proves the
knowledge of a signature from A, without revealing
the signed message. A fresh session key k to be used
in the response is attached to the zero-knowledge
proof. A verifies the proof, checks which resource
handles the prover has the permission to read, and
sends them to the prover encrypted with the session
key received in the first message. This protocol is
used to implement also the getResource, putResource,
getFriends methods. The only difference is that the
additional arguments (e.g., hdl(res) in the case of
getResource) are attached to the proof (denoted as
S in the picture) and the message encrypted in the
response is in general the result of the method call
(denoted as result in the picture).

The three authentication modalities give different
anonymity guarantees and their usage depends on the
required service (or resource) and on the access control
list. For instance, if a certain resource res is protected
by the access control list [(pB , rw), (friends, r)], then
B can run the relation authentication protocol to read

res but B has to run the pseudonymous authentication
protocol, thus revealing its identity to A, to write on
res . In general, there is a trade-off between the restric-
tiveness of access control lists and the anonymity of
requesters.

RCB ← A.indirectRegister(RAB , pB ,C ): The protocol
is depicted in Figure 3. B sends an encrypted zero-
knowledge proof to C , proving to be the owner of
the pseudonym pB . A session key k to be used in
the final response from C is attached to this proof.
B also sends an encrypted zero-knowledge proof to
A, proving to be in a certain social relation RAB

with A. The pseudonym pB is also attached to this
proof. A verifies the proof and sends to C another
zero-knowledge proof, showing to be in the social
relation RCA with C and stating to be in the social
relation RAB with the owner of pB (RAB and pB are
attached to the proof). C verifies the proof and sends
in encrypted form to B a signature on the pseudonym
pB and a signature on a tag RCA describing an
indirect social relation obtained from the relations
RCA andRAB .

In order to allow for fine-grained access control poli-
cies, we additionally enable a similar protocol in which
A authenticates with C by revealing its pseudonym pA
instead of the social relationRCA. This variant allows
C to build more precise access control lists, built on re-
lations of the form “friends-of-pA” instead of “friends-
of-friends”.



C A B

k←GENkey

enc(ZK1,ekC )oo

enc(ZK2,ekA)oo

ver(ZK2,stm2)
?
=true

enc(ZK3,ekC )oo

ver(ZK1,stm1)
?
=true

ver(ZK3,stm3)
?
=true

encsym((sign(pB ,skC ) , sign(RCA,skC )),k) //

ZK1 := ZK[stm1; r; pB ,k,C ]

stm1 := β1=f(α1)

ZK2 := ZK[stm2; sign(RAB ,skA); RAB ,vkA,pB ,C ]

stm2 := check(α1,β1,β2)

ZK3 := ZK[stm3; sign(RCA,skC ); RCA,vkC ,pB ,RAB ]

stm3 := check(α1,β1,β2)

Figure 3. Protocol for indirectRegister

Concerning the anonymity guarantees provided by this
protocol, A does not learn the identity of B , and C
learns neither the identity of A nor the one of B (at
most, the pseudonym of A is revealed to C in the
pseudonymous authentication variant). Finally, since
the session key is sent directly by B to C , A can nei-
ther read nor modify the signatures sent by C to A.

3.5. Discussion

Assumptions. Our protocols assume an established public-
key infrastructure (PKI), i.e., all public keys are bound to
their owner and this binding is verifiable. This can be re-
alized by classical PKIs (e.g., VeriSign [52]), webs of trust
(e.g. PGP [41]), or off-band communication (e.g., key sign-
ing parties [35]). Further, we assume an anonymous chan-
nel, i.e., a channel from which protocol participants can
anonymously read and onto which they can anonymously
write. In practice, such a channel can be realized using
onion routing techniques [32, 26] or mix nets [18].

Attacker model and privacy properties. The attacker
model considered in this paper comprises external observers
eavesdropping the communication channel as well as at-
tackers compromising the servers (e.g., by malware or co-
ercion), reading the data stored thereon, and monitoring the
subsequent incoming requests. The goal of our API is to
preserve the privacy of social relations and to guarantee
the anonymity of parties. Intuitively, external observers do
not learn any information since all communication is en-
crypted. The only data revealing information about the so-
cial relations are the signatures released in the register and
indirectRegister protocols. These signatures do not have
to be stored on the servers, since they are proven in zero-
knowledge, the verifier does not need them to verify the
proof, and the prover only needs them while requesting a
specific resource (they can be stored, for example, on a
portable device and be hidden or destroyed in case of an

attack). If a coercer asks the resource provider for the link
between pseudonyms and principal identities, the resource
provider can cheat and give fake associations since these
cannot be verified by the coercer. Therefore, an attacker
taking the control over the server of a principal does not
gain any information about the social relations of that prin-
cipal. In addition, a principal A can authenticate by reveal-
ing either its pseudonym, in which case A implicitly re-
veals its identity to the verifier who knows the link between
pseudonyms and identities, or its social relation, in which
case A obtains a form of k-anonymity in that its identity
is hidden behind the number of people in the same social
relation. We conducted a formal security analysis that is
described Section 6.

Zero-knowledge proofs as anonymous signatures. We
remark that the verification of the zero-knowledge proofs
deployed in our protocols does not involve any secret in-
formation. In fact, these proofs can be verified by every-
body, not only the intended verifier, and can thus serve as
a kind of publicly verifiable anonymous signatures. In a
way of example, the zero-knowledge proofs involved in the
putResource protocol can be attached to the resource (e.g.,
a comment on A’s wall) to provide a publicly verifiable in-
formation on the origin of that resource (e.g., a “friend of
A”).

4. Cryptographic Implementation

We now introduce the basic building blocks of our proto-
cols and describe how they can be combined to achieve the
desired zero-knowledge property. In the following we use
the notation e ∈R S to denote that e is drawn uniformly at
random from the set S.

Camenisch-Lysyanskaya signature. This signature
scheme was introduced Camenisch and Lysyanskaya [14]
together with some zero-knowledge proofs. A public key is



a tuple vk = (a, b, c, n) where n = p · q is a special RSA
modulus, i.e., p = 2 · p′ + 1, q = 2 · q′ + 1, and p, p′, q, q′

are primes. The numbers a, b, and c are uniformly random
elements of QR(n), the group of quadratic residues modulo
n. The corresponding secret key is sk = p. Since factoriz-
ing n is assumed to be hard, the attacker cannot efficiently
compute sk.

To sign a given message m ∈ [0, . . . , 2`m), one chooses
a random prime e of length `e ≥ `m+2 and a random num-
ber s ∈R [0, . . . , 2`m+`n+`) where `m is an upper bound of
the length of the messages to be signed, `n is the bit-length
of n, and ` is a security parameter. In practice, ` = 160 is
considered secure. Finally, one computes v such that:

v ≡n (am · bs · c)1/e (1)

Here and throughout this paper, we write v ≡n u to say that
u is equivalent to v modulo n. If the modulus is clear from
the context, we often write v = u to denote v ≡n u. Notice
that the factorization of n is used to efficiently compute 1/e.
The signature on message m is the tuple sigm = (e, s, v).

Given vk = (a, b, c, n), m, and sigm = (e, s, v), the
verification of the signature sigm is performed by checking
that 2`e−1 < e < 2`e along with the following equivalence:

ve ≡n (am · bs · c) (2)

This equation constitutes the cryptographic instantiation of
the predicate check(sigm,m, vk) discussed in Section 2.
Under the commonly used strong RSA assumption, the
Camenisch-Lysyanskaya signature scheme is secure against
existential forgery attacks. Security against existential
forgery is the standard notion of security when dealing with
signature schemes.

Definition 1 (Strong RSA Assumption). Upon input of an
RSA modulus n and an element u ∈ Z∗n, it is hard to com-
pute values e > 1 and v such that ve ≡ u mod n. More
formally, for all polynomial-time circuit families {Ak},
there exists a negligible function µ(k) such that

Pr[n← RSAmodulus(1k);u← QRn;
(v, e)← Ak(n, u) : e > 1 ∧ ve ≡n u] = µ(k)

Zero-knowledge proofs. Zero-knowledge proofs were first
introduced by Goldwasser, Micali, and Rackoff [33] and
have since then become a key element of many crypto-
graphic protocols. A zero-knowledge proof is an interac-
tive proof system (P, V ) between two parties: the prover
P and the verifier V . Both parties obtain the statement to
be proven as input, the prover additionally receives a wit-
ness to the given statement. Besides the usual complete-
ness and soundness properties, the zero-knowledge prop-
erty ensures that even a malicious verifier cannot learn any

information on the prover’s witness.6 Our zero-knowledge
scheme builds on a very efficient class of zero-knowledge
protocols, called Σ-protocols [21]. We briefly review below
the basic building blocks of our scheme.

Σ-protocols and their properties. Σ-protocols comprise
three message exchanges: commitment (com), challenge
(ch), and response (resp), sent by the prover, the verifier,
and the prover respectively. The protocols below enjoy the
special soundness and the special honest verifier statistical
zero-knowledge (SHVSZK) properties [21].

Special soundness is a strong form of proof of knowl-
edge and guarantees that a prover is in possession of a wit-
ness. This property says that, given two protocol transcripts
with the same commitment but different challenges, one can
extract a witness to the proven statement. Honest verifier
zero-knowledge is a variant of the zero-knowledge prop-
erty where the verifier chooses the challenge uniformly at
random from the challenge space and, in particular, inde-
pendently of the commitment sent by the prover.7 We write
{ZK(α̃) : S} to denote a proof of knowledge of witnesses
α̃ for statement S.

Σ-protocols can be combined together to prove logi-
cal conjunctions and disjunctions of their respective state-
ments [21].

Commitments. A commitment scheme consists of the
commit phase and the open phase. Intuitively, it is not pos-
sible to look inside a commitment until it is opened (hiding
property) and the committing principal cannot change the
content while opening (binding property). Using commit-
ments, we hide the witnesses of a proof and, at the same
time, we are able to perform computations on them. We
use the integer commitment scheme by Damgård and Fu-
jisaki [30, 25].

A commitment key comprises a special RSA modulus n
of length `n, g ∈R QR(n), and h ∈R 〈g〉 where 〈g〉 denotes
the group generated by g. To commit to an integer x, one
draws r ∈R Zn and computes the commitment C ≡n gxhr.
To open a commitment, one sends the tuple (x, r) to the
verifier who checks whether C ?

= gxhr or not. We let JCK
denote the value committed to in C.

Representation proofs. These proofs are used to show
knowledge of a representation of an element y with re-
spect to base elements (g1, . . . , gm). In particular, we use

6The zero-knowledge property is formalized using a simulator that,
without having access to the witness to a given statement, creates simu-
lated proof transcripts that are indistinguishable from actual protocol tran-
scripts. Intuitively, this guarantees that the proof cannot be used to gain
any information on the witness.

7In general, zero-knowledge implies honest-verifier zero-knowledge
but the converse does not necessarily hold. In our setting, however, fo-
cusing on honest verifiers does not restrict the power of the attacker since
the proof will eventually be made non-interactive using the Fiat-Shamir
heuristic [29], which lets the prover herself choose the challenge by using
the random oracle, without interacting with the verifier.



these proofs to show ownership of a pseudonym, i.e., to
prevent impersonation attacks on pseudonyms. We write
{ZK((αi)i=1,...,m) : y =

∏m
i=1 g

αi
i } to denote such repre-

sentation proofs. If we use the base elements from the com-
mitment scheme, we often write {ZK(α) : JCK = α} to de-
note {ZK(α, ρ) : C = gαhρ}.

We use the representation proofs suggested by Fujisaki
and Okamoto [30]. The prover chooses r1, ..., rm ∈R
(0, 2`+t+`m) and sends w ≡n

∏m
i=1 g

ri
i to the verifier. The

prover responds to the challenge ch sent by the verifier with
si := ri − ch · xi, for i = 1, . . . ,m. The verifier accepts if
and only if w = ych

∏m
i=1 g

si
i .

Proofs of equality of discrete logarithms. These proofs
are used to show that two commitments y1 and y2 contain
the same value (i.e., Jy1K = Jy2K). Such proofs can be used
to “glue” together individual proofs. For instance, one can
prove the knowledge of two discrete logarithms and addi-
tionally show that they coincide. We use the proof variant
suggested by Camenisch and Lysyanskaya [14].

The prover chooses r ∈R (0, 2`+t+`m) and r1, r2 ∈R
(0, 2`+t+s · n), and computes the commitments w1 ≡n
gr1h

r1
1 and w2 ≡n gr2h

r2
2 . The prover responds to the

challenge ch sent by the verifier with sc = r − ch · x
(in Z), s1 = r1 − ch · x1 (in Z), and s2 = r2 −
ch · z2 (in Z). The verifier accepts the proof if and
only if w1 = ych · gsc1 hs11 and w2 = ych2 · gsc2 hs22 .We
write {ZK(α, ρ1, ρ2) : y1 = gα1 h

ρ1 ∧ y2 = gα2 h
ρ2} to de-

note proofs of the equality of discrete logarithms.

Range proofs. We use the range proofs proposed by
Boudot [13]. A range proof guarantees that a certain com-
mitted value lies in the interval (A,B), where A and B
are integers. Range proofs enable us to show the range
requirement on the prime number e of the signature ver-
ification equation (2) in zero-knowledge. This proof will
be denoted by {ZK(α) : JCK = α ∧ A < α < B}. No-
tice that this proof does not reveal α, just the commitment
C, and the bounds A and B of the interval. For technical
reasons, these range proofs require an external commitment
key (gc, hc, nc) such that the discrete logarithm of hc in ba-
sis gc as well as the factorization of nc are unknown. We
hide this detail for the sake of readability.

Proving knowledge of a signature on a committed value.
Given a commitment key (g, h, n), a commitment Dx ≡n
gxhrx on a message x, commitments De ≡n gehre , Ds =
gshrs , and Dv ≡n vgw on the signature (e, s, v) of x, and
a verification key vk = (a, b, c, n) that verifies the signa-
ture on x, the protocol in Figure 4 proves that (De, Ds, Dv)
are commitments to a signature on the value x commit-
ted to in Dx, verifiable by vk with auxiliary commitments
Dw ≡n gwhrw . The two range proofs enforce the signa-
ture verification (2) requirement that the message x is at
least two bits less in size than the prime number e. This

protocol constitutes the cryptographic implementation of
the proof ZK[check(α1, α2, β1); sign(m, sk),m; vk] from
Section 3. ZK[check(α1, β1, β2); sign(m, sk); m, vk], the
proof in which message m is revealed, is obtained by open-
ing the commitment to m. Camenisch and Lysyanskaya
prove the following theorem as Lemma 15 [14].

Theorem 1. The proof in Figure 4 constitutes a special
honest verifier statistical zero-knowledge proof of knowl-
edge (SHVSZK) with special soundness of a signature on
message x.

It remains to show how to prove pseudonym ownership,
how to make a proof non-interactive, and how to attach mes-
sages to a proof in a non-malleable way.

Pseudonyms. As mentioned in Section 3.5, given a one-
way function f , a principal can enforce the uniqueness of
its pseudonym by generating a random number r and letting
its pseudonym be f(r). To avoid impersonation attacks, it
suffices to send in the registration and authentication pro-
tocols a zero-knowledge proof of knowledge of the preim-
age of f(r) to demonstrate ownership of the corresponding
pseudonym.

We use modular exponentiation gr = p in a group
〈g〉, where computing discrete logarithms is intractable,
and representation proofs to show the knowledge of preim-
ages. Intuitively, only the owner of a pseudonym can cre-
ate the corresponding representation proof as this requires
the knowledge of the discrete logarithm r which is as-
sumed to be hard to compute given only g and p. This
proof constitutes the cryptographic realization of the proof
ZK[β1 = f(α1); r; pB ] from Section 3. Being a Σ-
protocol, this proof can be combined with the proof of Fig-
ure 4 to prove the logical conjunction of the two statements
(cf. the pseudonymous authentication protocol from Fig-
ure 2).

Non-interactive proofs and non-malleability. All the
zero-knowledge proofs discussed so far are interactive
protocols. The Fiat-Shamir heuristic [29] allows us to
turn the aforementioned interactive Σ-protocols into non-
interactive zero-knowledge proofs of knowledge in the ran-
dom oracle model. Intuitively, a random oracle is a black-
box that can be queried by protocol participants: each re-
sponse to a query returns a uniformly random answer that
is consistent with previous queries. Using the Fiat-Shamir
heuristic, the statement and the commitment (i.e., the first
message sent in a Σ-protocol) are hashed by the prover and
the resulting value is used as a challenge. Since the prover
can compute all these values herself, the proof consists of
one single message sent by the prover to the verifier. This
message consists of the commitment and the response (the
verifier must recompute the challenge). In practice, we im-
plement the random oracle as a cryptographic hash-function



 ZK(χ, σ, ϕ, ω, (ρi)i=1,2,3) :
c = Dε

v · (1/a)χ · (1/b)σ · (1/g)ϕ ∧ Dw = gωhρ1 ∧ 1 = Dε
w · (1/g)ϕ · (1/h)ρ2 ∧ Dx = gχhρ3 ∧

2`e−1 < ε < 2`e ∧ 0 ≤ χ < 2`m


Figure 4. Zero-knowledge proof of knowledge of a signature on value χ.

from the SHA or the MD family such as SHA-1 or MD6.
We refer the interested reader to a study by Coron et al. [20]
for a detailed discussion about the properties of these fami-
lies.

The Fiat-Shamir heuristic can also be used to attach ad-
ditional values v to a proof. The trick is to hash the at-
tached values along with the statement and the commitment
while computing the challenge. The resulting proof is non-
malleable, as changing the attached values results in a dif-
ferent challenge (and hence a verification error).

Encryption schemes. Our cryptographic implementation
is parametric in the deployed encryption scheme. Since the
encryption scheme is merely used to protect the privacy of
data and does not play any role in zero-knowledge proofs,
we can in fact choose any off-the-shelf encryption scheme.

5. Experiments

Since Σ-protocols may be efficient or tremendously ex-
pensive, depending on which properties are proven and
which values are kept secret,8 we developed a prototypi-
cal implementation to test the computational and commu-
nication complexity of our cryptographic framework. We
conducted the experimental evaluation on a standard note-
book with a 2.5 GHz dual core processor and 4 GB memory.
Our prototype is written in Java with NTL [44] accelerated
with GMP [48] for the mathematical operations. We set the
security parameters discussed in Section 4 to the following
commonly used values: ` := 80, s := 160, and t := 80. To
determine the size of a proof, we serialized the correspond-
ing Java object and used a compression algorithm to reduce
the overhead caused by the Java serialization routine.

Proofs of knowledge of a signed relation tag. Figure 5 and
Figure 6 show the generation time, the verification time, and
the proof size of the zero-knowledge proofs of knowledge of
a signed relation tag that are deployed in the protocol from
Figure 2 (relation authentication9 and anonymous authenti-
cation variants). In Figure 5, we fix the size of the signed

8For instance, proving the mathematical exponentiation of two secret
(i.e., committed) values is very expensive [15].

9The results for the proofs ZK2 and ZK3 from Figure 3 are the same
as the ones for the proof used in the relation authentication variant of the
protocol from Figure 2.

messages (20 bytes, which typically suffice to describe so-
cial relations) and let the key size vary (in the interval 512-
4096 bits). The time required to generate and verify these
proofs is less than 1 second for key sizes up to 2560 bits.
NIST classifies 2048-bit keys as secure until 2030 [40]. The
size of these proofs is very small, just a few kilobytes. In
Figure 6, we fix the key size (2048 bits) and let the size of
the signed message vary (in the interval 16-128 bytes). The
experimental results show that increasing the size of signed
messages has an irrelevant impact on the efficiency of these
proofs.

Proofs of pseudonym ownership. Figure 7 shows the gen-
eration time, the verification time, and the proof size of the
zero-knowledge proofs of ownership of a pseudonym that
are deployed in the protocols from Figure 1 and Figure 3.
The experimental results show that these proofs do not have
a noticeable impact on the overall performance of our pro-
tocols: generating and verifying these proofs takes a few
milliseconds and their size is negligible.

Proofs of knowledge of a signed pseudonym. Figure 8
shows the generation time, the verification time, and the
proof size of the proof of knowledge of a signed pseudonym
that is deployed in the pseudonymous authentication variant
of the protocol from Figure 2. Since both the key-size and
the pseudonym-size are determined by the security param-
eter n, we let them vary together (in the interval 512-4096
bits). The experimental results are very similar to the ones
in Figure 5, as expected given the similarities between these
proofs.

Signatures and encryptions. Figure 9 shows that sig-
natures have a modest impact on the overall performance
of our protocols, which is largely determined by zero-
knowledge proofs. We finally recall that our protocols do
not put constraints on the encryption scheme and thus one
can choose any efficient one.

Scalability. The computational and communication com-
plexity of zero-knowledge proofs is essentially independent
of the size of attached messages (i.e., those messages that
do not serve as witnesses). The reason is that these mes-
sages are hashed together into the challenge of the zero-
knowledge proof and hash-functions such as SHA-1 can
hash several hundred megabytes of payload per second [24].
Such hashes can even be performed offline by storing the



1,024 2,048 3,072 4,096
0

1,000

2,000

3,000

Key-size in bits

G
en

er
at

io
n

tim
e

in
m

s
Anonymous Authentication

Relation Authentication

1,024 2,048 3,072 4,096
0

500

1,000

1,500

2,000

2,500

Key-size in bits

V
er

ifi
ca

tio
n

tim
e

in
m

s

1,024 2,048 3,072 4,096
0

10

20

30

40

50

Key-size in bits

Si
ze

in
kB

Figure 5. Proofs of knowledge of signed relation tags (fixed tag size, 20 bytes).

32 64 96 128
0

200

400

600

800

Message-size in bytes

G
en

er
at

io
n

tim
e

in
m

s

Anonymous Authentication
Relation Authentication

32 64 96 128
0

200

400

600

Message-size in bytes

V
er

ifi
ca

tio
n

tim
e

in
m

s

32 64 96 128
0

10

20

30

Message-size in bytes

Si
ze

in
kB

Figure 6. Proofs of knowledge of signed relation tags (fixed key size, 2048 bytes).

state of the hash-function together with the message itself.
This means that our zero-knowledge proofs can be used
even in settings where users want to transfer large-size data
(e.g., movies).

Users typically store two signatures for each person they
register with. As signatures small in size, managing one
thousand friends requires only about 50 MB of storage, i.e.,
significantly less than the capacity of modern a USB stick.

We finally remark that the prime numbers that are needed
to sign messages can be computed offline. Signing relation
tags that average 50 bytes10 requires 402-bit prime num-
bers, which can be sampled quickly. Signing a pseudonym
computed with a 2048-bit prime number, instead, requires
a 2050 bit prime number, whose sampling takes more time.
The pseudonym size, however, is fixed and such large prime
numbers can be precomputed offline.

The combination of efficient zero-knowledge proofs, fast
hash-functions, small signature sizes, and the possibility to
pre-compute primes enables our framework to easily scale
to large size OSN.

6. Formal Verification

Although we have shown in Section 4 that the
zero-knowledge proofs fulfill the desired statistical non-
interactive zero-knowledge property, we have still to prove

10“friend of a friend” requires 18 bytes

that the protocols as a whole do not suffer from attacks ex-
ploiting the protocol logic (e.g., unexpected interleavings
between different protocol sessions, impersonation attacks,
etc.) and provide the intended security properties. This
is achieved by conducting a formal and automated secu-
rity analysis. More precisely, we model our protocol in
the applied pi-calculus [3], we formalize access control and
secrecy as trace properties, we characterize the anonymity
guarantees provided by our protocols in terms of obser-
vational equivalence relations, and we verify our model
with ProVerif [12, 2], a state-of-the-art automated theorem
prover that provides security proofs for an unbounded num-
ber of protocol sessions. We model zero-knowledge proofs
following the approach by Backes et al. [6], for which com-
putational soundness results exist [7]. The ProVerif scripts
are available online [5].

6.1. Verification of Access Control and Secrecy
Properties

We define access control and secrecy properties as trace
properties and we verify that all the execution traces of the
applied pi-calculus processMtrace, formalizing our model,
fulfill these properties. The idea is to decorate the protocol
with events (i.e., logical predicates) and to verify that in
all execution traces these events are executed under some
conditions and in a certain order. For instance, we want



1,024 2,048 3,072 4,096
0

20

40

60

80

100

120

Pseudonym-size in bits

C
om

pu
ta

tio
n

tim
e

in
m

s

Proof generation
Proof verification

1,024 2,048 3,072 4,096
0

1

2

3

4

Pseudonym-size in bits

C
om

pu
ta

tio
n

tim
e

in
m

s

Pseudonym Ownership

Figure 7. Proofs of pseudonym ownership.

1,024 2,048 3,072 4,096
0

1,000

2,000

3,000

4,000

Key- and pseudonym-size in bits

G
en

er
at

io
n

tim
e

in
m

s

Pseudonymous Authentication

1,024 2,048 3,072 4,096
0

500

1,000

1,500

2,000

2,500

Key- and pseudonym-size in bits

V
er

ifi
ca

tio
n

tim
e

in
m

s

1,024 2,048 3,072 4,096
0

10

20

30

40

50

Key- and pseudonym-size in bits

Si
ze

in
kB

Figure 8. Proofs of knowledge of a signed pseudonym.

1,024 2,048 3,072 4,096
0

50

100

150

200

250

Key-size in bits

Si
gn

at
ur

e
ge

ne
ra

tio
n

tim
e

in
m

s 4096 bit message
2048 bit message

1,024 2,048 3,072 4,096
0

50

100

150

200

250

Key-size in bits

Si
gn

at
ur

e
ve

ri
fic

at
io

n
tim

e
in

m
s

1,024 2,048 3,072 4,096
0

0.5

1

1.5

2

2.5

Key-size in bits

Si
gn

at
ur

e
si

ze
in

kB

Figure 9. Signatures.

to check that whenever a principal sends a resource to a
friend, then a friend must have requested that resource and
an external observer does not learn that resource.

System description and attacker model. In our model we
consider an unbounded number of users running the proto-
cols of our API. For the sake of simplicity, we consider just
one social relation, namely “friends”, we partition the set of
users into trusted and untrusted ones, and we assume that
the resources of each trusted principal can be accessed only
by its friends.

The attacker is a standard Dolev-Yao active adversary
with full control over the public channels. The attacker
may compromise and take the control over untrusted users.
The attacker additionally dictates the protocols executed by
trusted users and, in particular, rules their friendship rela-

tions. Since we are interested in protecting the resources
against users that are not authorized to access them, we keep
the invariant that untrusted users are never in the “friends”
relation with trusted ones. Notice that this invariant is not
a restriction and is actually necessary to make the access
control properties meaningful: they would vacuously hold
if also the attacker could legitimately access honest princi-
pals’ resources.

Protocol annotations and trace properties. In the fol-
lowing, we concentrate on the register protocol from Fig-
ure 1, the getResource protocol from Figure 2, and the
indirectRegister protocol from Figure 3. We first show the
events used to decorate these protocols and then introduce
the corresponding trace properties. We omit the events and
the trace properties for other protocols from Figure 2, which



are, however, similar to the ones for the getResource proto-
col.

The annotations for the register protocol are shown
in Figure 10. Before starting the protocol to register
with A under the pseudonym pB , B raises the event
BeginReg(pB ,A,B). Before establishing a social relation
R with B under the pseudonym pB , A raises the event
Reg(R, pB ,A,B). Finally, after receiving the response
from A, B raises the event EndReg(R,A,B). The trace
property is as follows

EndReg(R, pB ,A,B)⇒
(Reg(R, pB ,A,B)⇒ BeginReg(pB ,A,B))

(3)

meaning that all occurrences of events of the form
EndReg(R, pB ,A,B) have to be preceded by the event
Reg(R, pB ,A,B), which has in turn to be preceded by the
event BeginReg(pB ,A,B).

The getResource protocol is annotated as shown in Fig-
ure 10. The only subtlety is that the binding between the
handle h and the resource m is expressed via the event
isHandleOf(h,m). Initially, this event is raised with h =
hdl(m). Whenever the putResource protocol is executed,
the binding between h and the new resource m′ is updated
by raising the event isHandleOf(h,m′).11 The trace prop-
erty for this protocol is as follows:

RcvdRes(R,m) ⇒
((ReleaseRes(R,m) ⇒ RequestRes(R, h)) &
isHandleOf(h,m))

(4)

The annotations for the indirectRegister protocol are
shown in Figure 11. The trace property for the
indirectRegister protocol is as follows:

EndReg2(RCB , pB ,C ,A,B) ⇒
(Reg2(RCB ,RCA,RAB , pB ,C ) ⇒
(Med(RCA,RAB , pB ,C ,A) ⇒
BeginReg2(RAB , pB ,A,B ,C )))

(5)

Even though this property might resemble property (3),
there are some subtle, yet important, differences. Most
notably, in the indirectRegister protocol neither C nor A
knows who requested a relationship, which is reflected by
B ’s missing identifier in the events Reg2 and Med.

We are finally interesting in verifying that the attacker
cannot learn any of the resources shared by trusted princi-
pals (cf. below). Such resources are ranged over by m in
the process Mtrace. This secrecy property is expressed in
ProVerif as:

¬ attacker(m) (6)

11ProVerif does not support the removal of events; hence, the trace prop-
erty captures the fact that released resource must have been bound at some
point to the handle of interest, without necessarily being the resource cur-
rently bound to it. This is just an artifact due to the theorem prover used in
the analysis.

Analysis results. The aforementioned trace properties have
successfully been analyzed using ProVerif. This static anal-
ysis constitutes an automated proof of the following theo-
rem.

Theorem 2 (Trace Properties). The trace properties for-
malized in equations (3), (4), and (5) and the secrecy prop-
erty formalized in equation (6) hold true in all execution
traces of the applied pi-calculus processMtrace.

6.2. Verification of the Anonymity Property

Intuitively, we formalize the anonymity property as a
cryptographic game where a distinguisher D has to tell
whether the protocols of our API are executed by princi-
pal P1 or principal P2. If it is not possible to distinguish
between these two scenarios, then the protocols guarantee
anonymity. In ProVerif such an indistinguishability prop-
erty is formalized as an observational equivalence rela-
tionMAnon

1 ≈ MAnon
2 between two processesMAnon

1 and
MAnon

2 . Figure 12 depicts the most important features of
this observational equivalence relation. For the sake of pre-
sentation, we concentrate on the register protocol and the
getResource protocol.

System description and attacker model. The indistin-
guishability game is set up as follows. The attacker is a
standard Dolev-Yao active adversary with full control over
the public channels. In both processes, P1 and P2 may
register with both honest principals and compromised ones
(i.e., controlled by the attacker). P1 and P2 can also run
the getResource protocol with any of the principals they
are registered with. We consider a strong attacker model in
which the distinguisher dictates the protocols executed by
all the users, including P1 and P2. Hence, the distinguisher
controls the topology of the whole social graph.

Indistinguishability game for the register protocol. At
some point, the distinguisher may ask the test principal (i.e.,
P1 in the processMAnon

1 and P2 in the processMAnon
2 ) to

run the registration protocol with a certain trusted princi-
pal (cf. Figure 12). The attacker should not be able to tell
which of the two processes is executed, i.e., who between
P1 and P2 is running the registration protocol. In this case,
the attacker is an external observer that can just look at the
exchanged messages. Notice that the attacker cannot ask
the test principal to register with a compromised user, since
parties have to reveal their identity in the register protocol.

Indistinguishability game for the getResource protocol.
At some point, the distinguisher may also ask the test prin-
cipal to run the getResource protocol with a certain trusted
principal or with a compromised one. In the former case,
the distinguisher may ask the test principal to run any of
the three authentication variants, while in the latter case, we



BA BA

EndReg(R, pB , A, B)

Reg(R, pB , A, B)

A.Register(B, pB)

BeginReg(pB , A, B)

ReleaseRes(R, m)

RcvdRes(R, m)

A.getResource(R, h)

RequestRes(R, h)

isHandleOf(h, m)

Figure 10. register protocol and getResource protocols annotated with events.

A.indirectRegister(RAB , pB , C)

A BC

BeginReg2(RAB , pB , C, A, B)

Med(RCA, RAB , pB , C, A)

Reg2(RCB , RCA, RAB , pB , C)

EndReg2(RCB , pB , C, A, B)

Figure 11. indirectRegister protocol annotated with events.

≈
P2

A

A.getR
esource(M, hdl(m))

B.getResource(R, hdl(m))
B

P1

A

B.getR
esource(R, hdl(m))

A.getResource(M, hdl(m))

B
A: trusted principal
B: untrusted principal

MAnon
2MAnon

1

P2P1 A2≈A1 Register Register

MAnon
1 MAnon

2

A1, A2: trusted principals

≈
P2

A

A.getR
esource(M, hdl(m))

B.getResource(R, hdl(m))
B

P1

A

B.getR
esource(R, hdl(m))

A.getResource(M, hdl(m))

B
A: trusted principal
B: untrusted principal

MAnon
2MAnon

1

P2P1 A2≈A1 Register Register

MAnon
1 MAnon

2

A1, A2: trusted principals

Figure 12. Observational equivalence relation for the getResource protocol.

disallow the pseudonymous authentication variant, as this
variant is meant to reveal the identity of the requester. In the
former case the distinguisher is a mere external observer,
in the latter case it controls the resource provider. In both
cases, A and B must be both registered with the resource
provider.

Indistinguishability game for the other protocols. The
indistinguishability game for the other protocols from Fig-
ure 2 is similar to the one for the getResource protocol,
while the indistinguishability game for the indirectRegister
protocol is similar to the one for the register protocol.

Analysis results. The observational equivalence rela-
tion described above has successfully been analyzed using
ProVerif, which constitutes an automated proof of the fol-
lowing theorem.

Theorem 3 (Anonymity). For the two processes MAnon
1

and MAnon
2 , the observational equivalence relation

MAnon
1 ≈MAnon

2 holds true.

7. Conclusion

We presented a framework for achieving access con-
trol, privacy of social relations, secrecy of resources, and
anonymity of users in social networks. Our framework re-
lies on signatures to establish social relations and efficient
zero-knowledge proofs to show the existence of such re-
lations. Users can authenticate with each other by reveal-
ing their pseudonyms, their social relations, or by demon-
strating to be in a certain social relation without reveal-
ing it. These authentication modalities provide different
anonymity guarantees and allow for fine-grained access
control policies. The usage of cryptography makes our
framework an ideal plug-in for distributed social networks.
The cryptographic protocols underlying our framework are
very efficient and scale to large-size OSN.

We have developed a prototypical implementation of our
API as a Facebook application [5]. This application allows
users to protect their resources with expressive access con-
trol policies, to keep their social graph private, and to en-
gage in anonymous communication. We are also looking
at distributed social networks with the idea of developing a
generally applicable plug-in.



Acknowledgments

This work was partially supported by the initiative for excel-
lence and the Emmy Noether program of the German fed-
eral government and by the Miur Project SOFT (Security
Oriented Formal Techniques).

References

[1] C. Abadi. Iran, facebook, and the limits of on-
line activism. Foreign Policy, 2010. http:
//www.foreignpolicy.com/articles/2010/
02/12/irans_failed_facebook_revolution.

[2] M. Abadi, B. Blanchet, and C. Fournet. Automated verifica-
tion of selected equivalences for security protocols. In Proc.
20th Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS), pages 331–340. IEEE Computer Society Press,
2005.

[3] M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. In Proc. 28th Symposium on Prin-
ciples of Programming Languages (POPL), pages 104–115.
ACM Press, 2001.

[4] M. Backes, S. Lorenz, M. Maffei, and K. Pecina. Anony-
mous webs of trust. In Proc. 10th Privacy Enhancing Tech-
nology Symposium (PETS), pages 130–148. Lecture Notes
in Computer Science, 2010.

[5] M. Backes, M. Maffei, and K. Pecina. Source code
and proverif models for trace properties and observational
equivalences. http://lbs.cs.uni-saarland.de/
sapi/.

[6] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in
the applied pi-calculus and automated verification of the di-
rect anonymous attestation protocol. In Proc. 29th IEEE
Symposium on Security & Privacy, pages 202–215. IEEE
Computer Society Press, 2008.

[7] M. Backes and D. Unruh. Computational soundness of sym-
bolic zero-knowledge proofs against active attackers. In
Proc. 21th IEEE Symposium on Computer Security Founda-
tions (CSF), pages 255–269. IEEE Computer Society Press,
2008.

[8] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and
D. Starin. Persona: An online social network with user-
defined privacy. In Proc. 2009 ACM SIGCOMM conference
on Data communication, pages 135–146. ACM Press, 2009.

[9] J. C. Baumgartner and J. S. Morris. Myfacetube politics: So-
cial networking web sites and political engagement of young
adults. Social Science Computer Review, 28:24–44, Febru-
ary 2010.

[10] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss,
A. Lysyanskaya, and H. Shacham. Randomizable proofs and
delegatable anonymous credentials. In Advances in Cryp-
tology - CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 108–125. Springer-Verlag, 2009.

[11] M. Bellare, H. Shi, and C. Zhang. Foundations of group sig-
natures: The case of dynamic groups. In Topics in Cryptol-
ogy - CT-RSA 2005, volume 3376 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2005.

[12] B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. In Proc. 14th IEEE Computer Se-
curity Foundations Workshop (CSFW), pages 82–96. IEEE
Press, 2001.

[13] F. Boudot. Efficient proofs that a committed number lies
in an interval. In Advances in Cryptology - EUROCRYPT
2000, volume 1807 of Lecture Notes in Computer Science,
pages 431–444. Springer-Verlag, 2000.

[14] J. Camenisch and A. Lysyanskaya. A signature scheme
with efficient protocols. In Proc. 3rd International Confer-
ence on Security in Communication Networks (SCN), vol-
ume 2576 of Lecture Notes in Computer Science, pages 268–
289. Springer-Verlag, 2002.

[15] J. Camenisch and M. Michels. Proving in zero-knowledge
that a number is the product of two safe primes. In Advances
in Cryptology - EUROCRYPT 1998, volume 1592 of Lec-
ture Notes in Computer Science, pages 107–122. Springer-
Verlag, 1998.

[16] J. Camenisch and M. Stadler. Efficient group signature
schemes for large groups. In Advances in Cryptology -
CRYPTO 1997, volume 1294 of Lecture Notes in Computer
Science, pages 410–424. Springer-Verlag, 1997.

[17] B. Carminati and E. Ferrari. Privacy-aware access con-
trol in social networks: Issues and solutions. In Privacy
and Anonymity in Information Management Systems, Ad-
vanced Information and Knowledge Processing, pages 181–
195. Springer-Verlag, 2010.

[18] D. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM,
24(2):84–88, 1988.

[19] D. Chaum and E. van Heyst. Group signatures. In Advances
in Cryptology - EUROCRYPT 1991, volume 547 of Lec-
ture Notes in Computer Science, pages 257–265. Springer-
Verlag, 1991.

[20] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-
damgård revisited: How to construct a hash function. In Ad-
vances in Cryptology - CRYPTO 2005, volume 3621 of Lec-
ture Notes in Computer Science, pages 430–448. Springer-
Verlag, 2005.

[21] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of par-
tial knowledge and simplified design of witness hiding pro-
tocols. In Advances in Cryptology - CRYPTO 1994, volume
839 of Lecture Notes in Computer Science, pages 174–187.
Springer-Verlag, 1994.

[22] L. A. Cutillo, R. Molva, and T. Strufe. Safebook: Secure
social network. http://www.safebook.us/.

[23] L. A. Cutillo, R. Molva, and T. Strufe. Privacy preserving so-
cial networking through decentralization. In Proc. 6th Inter-
national Conference on Wireless On-Demand Network Sys-
tems and Services, WONS’09, pages 133–140. IEEE Com-
puter Society Press, 2009.

[24] W. Dai. Crypto++. http://www.cryptopp.com/
benchmarks.html.

[25] I. Damgård and E. Fujisaki. An integer commitment scheme
based on groups with hidden order. In Proc. 8th Interna-
tional Conference on the Theory and Application of Cryp-
tology and Information Security: ASIACRYPT 2002, volume
2501 of Lecture Notes in Computer Science, pages 125–142.
Springer-Verlag, 2001.

http://www.foreignpolicy.com/articles/2010/02/12/irans_failed_facebook_revolution
http://www.foreignpolicy.com/articles/2010/02/12/irans_failed_facebook_revolution
http://www.foreignpolicy.com/articles/2010/02/12/irans_failed_facebook_revolution
http://lbs.cs.uni-saarland.de/sapi/
http://lbs.cs.uni-saarland.de/sapi/
http://www.safebook.us/
http://www.cryptopp.com/benchmarks.html
http://www.cryptopp.com/benchmarks.html


[26] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The
second-generation onion router. In Proc. 13th USENIX Se-
curity Symposium, pages 303–320. USENIX Association,
2004.

[27] F. Fassihi. Iranian crackdown goes global. The Wall
Street Journal, 2009. http://online.wsj.com/
article/SB125978649644673331.html.

[28] A. Fiat and M. Naor. Broadcast encryption. In Advances
in Cryptology - CRYPTO 1993, pages 480–491. Springer-
Verlag, 1994.

[29] A. Fiat and A. Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Ad-
vances in Cryptology - CRYPTO 1987, volume 263 of Lec-
ture Notes in Computer Science, pages 186–194. Springer-
Verlag, 1987.

[30] E. Fujisaki and T. Okamoto. Statistical zero knowledge pro-
tocols to prove modular polynomial relations. In Advances
in Cryptology - CRYPTO 1997, volume 1294 of Lecture
Notes in Computer Science, pages 16–30. Springer-Verlag,
1997.

[31] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity or all languages in NP have zero-
knowledge proof systems. Journal of the ACM, 38(3):690–
728, 1991.

[32] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion
routing for anonymous and private internet connections.
Communications of the ACM, 42(2):39–41, 1999.

[33] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on
Computing, 18(1):186–208, 1989.

[34] D. Grippi, M. Salzberg, R. Sofaer, and I. Zhitromirskiy. DI-
ASPORA*. http://www.joindiaspora.com.

[35] https://secure.wikimedia.org/wikipedia/
en/wiki/Key_signing_party.

[36] L. Lu, J. Han, Y. Liu, L. Hu, J.-P. Huai, L. Ni, and J. Ma.
Pseudo trust: Zero-knowledge authentication in anonymous
p2ps. IEEE Transactions on Parallel Distributed Systems,
19(10):1325–1337, 2008.

[37] G. Mezzour, A. Perrig, V. Gligor, and P. Papadimitratos.
Privacy-preserving relationship path discovery in social net-
works. In Proc. 8th International Conference on Cryptol-
ogy and Network Security, pages 189–208. Springer-Verlag,
2009.

[38] E. Morozov. Foreign policy: Iran’s terrifying
Facebook police. National Public Radio, 2009.
http://www.npr.org/templates/story/
story.php?storyId=106535773.

[39] A. Narayanan and V. Shmatikov. De-anonymizing social
networks. In Proc. 30th IEEE Symposium on Security &
Privacy, pages 173 – 187. IEEE Computer Society Press,
2009.

[40] T. N. I. of Standards and Technology. Recommendataion
for key management – part 1: General. NIST Special Pub-
lications, 800–57, 2007. http://csrc.nist.gov/
groups/ST/toolkit/key_management.html.

[41] http://www.pgp.com/.
[42] V. Ponce, J. Wu, and X. Li. Improve peer cooperation using

social networks. International Journal on Parallel, Emer-
gent and Distributed Systems, 24(3):189–204, 2009.

[43] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a
secret. In Proc. 7th International Conference on the The-
ory and Application of Cryptology and Information Secu-
rity: ASIACRYPT 2001, volume 2248 of Lecture Notes in
Computer Science, pages 552–565. Springer-Verlag, 2001.

[44] V. Shoup. NTL: A library for doing number theory. http:
//www.shoup.net/ntl.

[45] J. Sun, X. Zhu, and Y. Fang. A privacy-preserving scheme
for online social networks with efficient revocation. In Proc.
29th conference on Information communications, pages
2516–2524. IEEE Computer Society Press, 2010.

[46] G. Swamynathan, C. Wilson, B. Boe, K. Almeroth, and B. Y.
Zhao. Do social networks improve e-commerce?: a study
on social marketplaces. In WOSP ’08: Proceedings of the
first workshop on Online social networks, pages 1–6. ACM,
2008.

[47] T. A. Team. Appleseed Project. http://opensource.
appleseedproject.org.

[48] T. G. Team. The GNU multiple precision arithmetic library.
http://gmplib.org.

[49] http://www.facebook.com/.
[50] A. Thurston. DSNP: The distributed social network proto-

col. http://www.complang.org/dsnp.
[51] A. Tootoonchian, S. Sarouis, Y. Ganjali, and A. Wolman.

Lockr: Better privacy for social networks. In Proc. 5th In-
ternational Conference on emerging Network Experiments
and Technologies (CoNEXT), pages 169 – 180. ACM Press,
2009.

[52] http://www.verisign.com/.
[53] H. Wang and H. Yu. A novel signer-admission ring signature

scheme from bilinear pairings. In Proc. 1st International
Workshop on Education Technology and Computer Science,
pages 631–634. IEEE Computer Society Press, 2009.

[54] D. Wolman. Cairo activists use Facebook to rat-
tle regime. WIRED Magazine, 2008. http:
//www.wired.com/techbiz/startups/
magazine/16-11/ff_facebookegypt.

http://online.wsj.com/article/SB125978649644673331.html
http://online.wsj.com/article/SB125978649644673331.html
http://www.joindiaspora.com
https://secure.wikimedia.org/wikipedia/en/wiki/Key_signing_party
https://secure.wikimedia.org/wikipedia/en/wiki/Key_signing_party
http://www.npr.org/templates/story/story.php?storyId=106535773
http://www.npr.org/templates/story/story.php?storyId=106535773
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://www.pgp.com/
http://www.shoup.net/ntl
http://www.shoup.net/ntl
http://opensource.appleseedproject.org
http://opensource.appleseedproject.org
http://gmplib.org
http://www.facebook.com/
http://www.complang.org/dsnp
http://www.verisign.com/
http://www.wired.com/techbiz/startups/magazine/16-11/ff_facebookegypt
http://www.wired.com/techbiz/startups/magazine/16-11/ff_facebookegypt
http://www.wired.com/techbiz/startups/magazine/16-11/ff_facebookegypt

	. Introduction
	. A Core API for Social Networking
	. Overview of the Cryptographic Protocols
	. Preliminaries
	. Pseudonyms
	. Revocation
	. Cryptographic Protocols
	. Discussion

	. Cryptographic Implementation
	. Experiments
	. Formal Verification
	. Verification of Access Control and Secrecy Properties
	. Verification of the Anonymity Property

	. Conclusion

