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  Has evolved from a collection of simple and static 
pages to fully dynamic applications 
 Applications are more complex than they used to be 
 Many complex systems have web interfaces 

  As a consequence: 
 Web security has increased in importance (e.g. 

OWASP) 
 Attack against web apps constitute 60% of attacks on 

the Internet 
 Application being targeted for hosting drive-by-

download content or C&C servers 
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  A lot of work done to detect injection type flaws: 
 SQL Injection 
 Cross Site Scripting 
 Command Injection 

  Injection vulnerabilities have been well-studied, and 
tools exist 
 Stored procedures 
 Sanitization routines in languages (e.g., PHP) 
 Static code analysis (e.g., Pixy) 
 Dynamic techniques (e.g., Huang et al.) 
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  A new class of Injection Vulnerability called HTTP 
Parameter Pollution (HPP) is less known 
 Has not received much attention 
  First presented by di Paola and Carettoni at OWASP 2009 

  Attack consists of injecting encoded query string 
delimiters into existing HTTP parameters (e.g. GET/
POST) 
  If application does not sanitize its inputs, HPP can be used to 

launch client-side or server-side attacks 
 Attacker may be able to override existing parameter values 

and exploit variables out of a direct reach 
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  To create the first automated approach for 
detecting HPP flaws 
 Blackbox approach, consists of a set of tests and 

heuristics 
  To find out how prevalent HPP problems were on 

the web 
  Is the problem being exaggerated? 
  Is this problem known by developers? 
 Does this problem occur more in smaller sites than 

larger sites? 
 What is the significance of the problem? 
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  During interaction with web application, client provides 
parameters via different channels (GET or POST) 
  http://www.site.com/login?login=alice 

  What happens when the same parameter is provided 
twice? 
  http://www.site.com/login?login=alice&login=bob 
  If parameter is provided twice, language determines which is 

returned, e.g.: 
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  An HTTP Parameter Pollution (HPP) attack occurs 
 When a malicious parameter Pinj, preceded by an 

encoded query string delimiter (e.g. %26 for &), is 
injected into an existing parameter Phost 

  Typical client-side scenario: 
 Web application for election and two candidates 
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  pool_id is vulnerable and Attacker creates URL: 
  http://host/election.jsp?poll_id=4568%26candidate%3Dgreen 

  The resulting page now contains two “polluted” links: 
  <a href=vote.jsp?pool_id=4568&candidate=green&candidate=white> 

Vote for Mr. White </a> 

  <a href=vote.jsp?pool_id=4568&candidate=green&candidate=green> 
Vote for Mrs. Green </a> 

  If the developer expects to receive a single value 
  JSP’s Request.getParameter(“candidate”)returns the 1st value 

 The parameter precedence is consistent… 
 Candidate Mrs. Green is always voted! 



Parameter Pollution – More uses 

8th Feb 2011	

NDSS 2011, San Diego	



9	



  Cross-channel pollution 
 HPP attacks can also be used to override parameters 

between different input channels (GET/POST/Cookie) 
 Good security practice: accept parameters only from 

where they are supposed to be supplied 

  HPP to bypass CSRF tokens 
 E-mail deletion attack against Yahoo Mail 
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  Main components: browser, crawler, two scanners 



Main Components 

8th Feb 2011	

NDSS 2011, San Diego	



11	



①  Instrumented browser fetches the webpages and 
renders their content 

  Full support for client-side scripts (e.g. Javascript) and 
external resources (e.g. <embed>) 

  Extracts all links and forms 
②  Crawler communicates with browser, determines URLs 

to visit and forms to submit. Passes the information to 
two scanners: 

③  P-Scan: Determines page behavior when two parameters 
with the same name are injected 

④  V-Scan: Tests and attempts to verify that site is vulnerable 
to HPP 
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  P-Scan 
 Analyzes a page to determine the precedence of 

parameters when multiple occurrences of the same 
parameter are submitted 

  Take parameter par1=val1, generate a similar value 
par1=new_val 
  Page0 (original): app.php?par1=val1 

  Page1 (test 1)  : app.php?par1=new_val 

  Page2 (test 2)  : app.php?par1=val1&par1=new_val 

 How do we determine precedence? Naïve approach: 
  Page0==Page2 -> precedence on First parameter 
  Page1==Page2 -> precedence on Second parameter 
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  In practice, naïve technique does not work well 
 Applications are complex, much dynamic content 

(publicity banners, RSS feeds, ads, etc.) 
 Hence, we perform pre-filtering to eliminate dynamic 

components (embedded content, applets, css 
stylesheets, etc.) 

 Remove all self-referencing URLs (as these change when 
parameters are inserted) 

 We then perform 4 different tests to determine 
similarity 
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  Identity test 
  Is the tested parameter considered by the application? 

  Page0=Page1=Page2 

  Base test 
  Test assumes that the pre-filtering works perfectly (seldom the 

case) 
  Join test 

 Are the 2 values combined somehow together? 
  Fuzzy test 

  It is designed to cope with dynamic pages 
  Similarity between pages 
  Based on the Gestalt Pattern Matching algorithm 
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  For every page, URL-encoded parameter is injected 
  E.g., “%26foo%3Dbar” 
  Then check if the “&foo=bar” string is included inside 

the URLs of links or forms in the answer page 

  V-Scan starts by extracting the list PURL=[PU1,PU2,…
PUn] of the parameters that are present in the page 
URL, and the list Pbody=[PB1,PB2,…PUm] of the 
parameters that are present in links or forms 
contained in the page body 
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  PA = PURL ∩ PBody : set of parameters that appear 
unmodified in the URL and in the page content (links, 
forms) 

  PB = p | p ∈ PURL ∧ p /∈ PBody : URL 
parameters that do not appear in the page. Some 
of these parameters may appear in the page under 
a different name 

  PC = p | p /∈ PURL ∧ p ∈ PBody : set of 
parameters that appear somewhere in the page, 
but that are not present in the URL 
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  E.g., one of the URL parameters (or part of it) is 
used as the entire target of a link 

  Similar issues with printing, sharing functionalities 

  To reduce false positives, we use heuristics 
 E.g., the injected parameter does not start with http:// 
  Injection without URL-encoding 
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  PAPAS: Parameter Pollution Analysis System 
  http://papas.iseclab.org 

  The components communicate via TCP/IP sockets 
  The browser component has been implemented as a Firefox 

extension 
 Advantage: We can see exactly how pages are rendered 

(cope with client-side scripts) 
  PAPAS is fully customizable: 

  Three modes are supported 
  Fast mode, extensive mode, assisted mode 

  E.g., scanning depth, number of performed injections, page 
loading timeouts, etc. 
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  PAPAS does not support the crawling of links 
embedded in active content 
 E.g., flash 

  PAPAS currently only focuses on client-side exploits 
where user needs to click on a link 
 HPP is also possible on the server side – but this is more 

difficult to detect 
 Analogous to detecting stored XSS 
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  Only client-side attacks. The server-side have the 
potential to cause harm 

  We provided the applications with innocuous 
parameters (&foo=bar). No malicious code. 

  Limited scan time (15min) and activity 
  We immediately informed, when possible, the 

security engineers of the affected applications 
 Thankful feedback 
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  Two sets of experiments: 
①  We used PAPAS to scan a set of popular 

websites (Alexa TOP 5000) 
 The aim: To quickly scan as many websites as 

possible and to see how common HPP flaws are 
  In 13 days, we scanned 5016 websites, more than 

149,000 unique web pages 

②  We then analyzed some of the sites we 
identified to be HPP vulnerable in more detail 
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  Tested categories 



Evaluation – Parameter Precedence 
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  Inconsistent: the website has been developed using a 
combination of heterogeneous technologies (e.g. PHP 
and Perl) 

  This is perfectly safe if the developer is aware of the 
HPP threat… this is not always the case 
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  PAPAS discovered that about 1500 (30%) websites 
contained at least one page vulnerable to HTTP 
Parameter Injection 
  The tool was able to inject an encoded parameter 

  Vulnerable != Exploitable 
  Is the parameter precedence consistent? 

  702 applications are exploitable 
  The injected parameter either overrides the value of an 

existing one or is accepted as “new parameter” 
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  False positives: 10 applications (1.12%) use the injected 
parameter as entire target for one link 
 Variation of the special case we saw in slide 18 (V-Scan: 

special cases) 
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  We investigated some of the websites in more 
detail 
 Facebook, Google, Symantec, Microsoft, PayPal… 
 We notified security officers and some of the problems 

were fixed 
 Several shopping cart applications could be 

manipulated to change the price of an item 
 Some banks were vulnerable and we could play 

around with parameters 
 Facebook: share component 
 Google: search engine results could be manipulated 
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①  We presented the first technique and system to 
detect HPP vulnerabilities in web applications. 
•  We call it PAPAS, http://papas.iseclab.org 

②  We conducted a large-scale study of the Internet 
•  5,000 webapps 

③  Our results suggest that Parameter Pollution is a 
largely unknown, and wide-spread problem 

We hope our work will help raise awareness about HPP! 



Questions? 

Contact: Marco Balduzzi <balduzzi@iseclab.org>	
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