
A Security Evaluation of DNSSEC with NSEC3

Jason Bau
Stanford University
Stanford, CA, USA
jbau@stanford.edu

John Mitchell
Stanford University
Stanford, CA, USA

mitchell@cs.stanford.edu

Abstract

Domain Name System Security Extensions (DNSSEC) with
Hashed Authenticated Denial of Existence (NSEC3) is a
protocol slated for adoption by important parts of the
DNS hierarchy, including the root zone, as a solution to
DNS security vulnerabilities such as “cache-poisoning”
attacks. We study the security goals and operation of
DNSSEC/NSEC3 and use Murϕ, a finite-state enumera-
tion tool, to analyze its security guarantees and shortcom-
ings. By checking DNSSEC/NSEC3 security properties in
the presence of a network attacker, we uncover several
weaknesses in the DNSSEC protocol, including incorrect
temporal dependencies in the DNSSEC signature attesta-
tion chain and NSEC3 options that allow a forged name
to be inserted into a DNSSEC domain. We demonstrate
the exploitability of the NSEC3 vulnerability by a browser
cookie-stealing attack on a realistic laboratory DNSSEC
domain. We offer implementation and configuration advice
which minimize the exploitability of the uncovered vulnera-
bilities. After re-incorporating the advised repairs into the
Murϕ DNSSEC model, we demonstrate the updated proto-
col no longer contains vulnerabilities exploitable within our
threat model.

1 Introduction

Domain Name System Security Extensions, or DNSSEC
[4, 5, 6], with Hashed Authenticated Denial-of-Existence
(NSEC3) [7] is a security standard for DNS that has been in
development since at least 1999 [1]. Briefly, DNSSEC adds
cryptographic signatures to standard DNS records to pro-
vide origin authentication and cryptographic integrity, but
not secrecy or improved availability, for those records. Re-
cently, DNS security has garnered quite a lot of interest,
due to the highly publicized DNS “cache-poisoning” vul-
nerability discovered by Dan Kaminsky [14, 21], and sev-
eral actual exploits of this vulnerabilities on ISP-run DNS

servers that resulted in the redirection of popular websites to
attack sites for customers of these ISPs [17]. Though initial
software patches were issued which made cache-poisoning
attacks much less likely to succeed, DNSSEC is proposed
as a long-term solution to DNS data integrity [16] against
cache-poisoning as well as in-path “man-in-the-middle” at-
tackers. As of August 2009, the operators of the .org, .com,
and .net Top Level Domains (TLDs) as well as the oper-
ators of the DNS root zone have all announced plans to
deploy DNSSEC/NSEC3 on their servers. Given so much
current interest in DNSSEC/NSEC3, we feel it worthwhile
to perform a thorough security analysis of the protocol in
order to understand its characteristic guarantees and short-
comings.

In this paper, we review standard DNS and Kaminsky-
style cache-poisoning attacks. We then examine the se-
curity goals and limitations of DNSSEC/NSEC3, explain
its operations, and consider its effectiveness against cache-
poisoning. We perform finite-state model checking of the
DNSSEC/NSEC3 protocol against safety invariants derived
from its stated security goals. By identifying the parts
of DNSSEC packet content possessing cryptographic in-
tegrity, we define the capabilities of network attackers ex-
ecuting a man-in-the-middle attack on DNSSEC packets.
Our model exposes several protocol vulnerabilities, such as
incorrect temporal dependencies in the signature attestation
chain and NSEC3 options that allow forged name insertion
into a DNSSEC domain. To demonstrate the seriousness of
the NSEC3 vulnerability, we implemented an actual attack
on a realistic laboratory DNSSEC domain, exploiting the
vulnerability to steal user browser cookies. We also incor-
porate protocol configuration repairs into the Murϕ model
and verify that there are no longer exploitable vulnerabili-
ties. Finally, we provide recommendations to domain op-
erators, DNSSEC software implementors, and website de-
signers that minimize the exploitability of the discovered
vulnerabilities.

During the process of writing up this work, a presenta-
tion was given by Daniel Bernstein at WOOT ’09 [11] re-
garding DNSSEC vulnerabilities. While Bernstein points

Vulnerability Found Prevent At Prevention Advice Section
Resource Record remains valid in local resolver
cache after expiration of signatures or key
rollover (revocation) higher in attestation chain

Resolver Software Resolver software sets RR TTL to depend
on all signatures in attestation chain to trust
anchor

4.5.1

Resolver software periodically re-acquires
zone keys to re-validate cached attestation
chains

RFC Propagate changes to RFC
Glue records may be forged to direct next
recursive query to attack DNS server

Domain Operator Use all secure delegations 5.1.1
Resolver Software If forgery is suspected, query supposed au-

thoritative zone to obtain signed version of
glue records. (Even if no action is taken, this
vulnerability cannot result in acceptance of
forged RR as final query answer)

NSEC3 opt-out may be used to prepend falsified
owner name in domain, resulting in vulnerability
to cookie-theft and pharming

Domain Operator Do not set NSEC3 opt-out flag 5.1.3

Website Designer Do not use overly coarse cookie “domain”
setting

Replay of still valid A+RRSIG after IP-address
move (Bernstein [11])

Domain Operator Do not relinquish IP-address until all
A+RRSIGs have expired

5.1.4

NSEC3 salt is ineffectual Domain Operator Do not use salt. Increase number of hash
iterations.

5.4

Inter-operation with standard-DNS child zones
means insecure answer returned by DNSSEC re-
solver

Domain Operator Adoption of DNSSEC; Do not interoperate
DNSSEC with DNS

5.1.2

Lack of user-interface indicator of secure vs.
insecure DNSSEC query result exposes end-user
to exploitable insecure DNSSEC query result

User Software Provide DNS security indicators 3.1.2
RFC Disallow insecure answers from DNSSEC

resolvers once DNSSEC adoption ramps up
Network attacker can arbitrarily manipulate
DNSSEC reply header and status bits

Resolver Software Do not trust header bits. Resolver validates
reply only using internal state and signed
RRs.

5.3.1

ISP Cannot trust remote server’s DNSSEC val-
idation. Must request all DNSSEC RRs to
validate at local resolver.

Network attacker can arbitrarily add / subtract /
mangle RRs in DNSSEC reply

Resolver Software Build attested cache for answering user
queries using only authoritative signed RRs
contained in DNSSEC replies.

5.3.1

Table 1. Summary of Contributions

out possible vulnerabilities in DNSSEC, our work goes
farther expose the mechanisms behind the vulnerabilities
and thereby provide configuration/operation advice which
eliminate exposure to attacks. For the replay vulnerabil-
ity caused by signature-expiration mismanagement reported
by Bernstein, we provide simple operational guidelines that
prevent possible attacks. His main overlap with our work is
the relatively minor observation of forgeable glue NS and
A records within DNSSEC response packets. While Bern-
stein correctly concludes this forgery raises security con-
cerns, we explain why this forgery does not actually add
any capabilities for the network attacker and thus does not
create additional exploitable attacks. Also, we found and
experimentally confirmed an attack using NSEC3 opt-out,
overlooked by Bernstein, the does not require cryptoanal-

ysis. In fact, our entire work assumes unforgeable crypto-
graphic signatures in order to study attacks possible even
with adequate cryptography, orthogonally complementing
Bernstein’s thoughts on breaking DNSSEC cryptography.
A summary of the contributions of this work, in terms of
vulnerabilities discovered and attack prevention advice, is
listed in Table 1.

The remainder of this paper is organized as follows. Section
2 reviews standard DNS and cache-poisoning attacks. Sec-
tion 3 gives an overview of the security limitations, goals,
and mechanisms of DNSSEC/NSEC3 and demonstrates its
effectiveness against cache-poisoning. Section 4 presents
our finite-state model of DNSSEC/NSEC3, the network at-
tacker model, and also the inconsistency in DNSSEC at-
testation chain temporal dependencies that we found. Sec-

DNS DNSSEC
RFC Relevance RFC Relevance
1034, 1035 DNS Definition 4033, 4034, 4035 DNSSEC Definition (NSEC)
2671 EDNS0 longer packets (used by

DNSSEC)
5155 NSEC3 Definition

3833 Threat analysis of DNS 4641 DNSSEC operational guidlines
2845 TSIG Channel Security 2535 DNSSEC initial proposal (AD, CD header

bits)
2931 SIG(0) Channel Security 3757 Key Signing Keys (KSKs) and Zone Sign-

ing Keys (ZSKs)

Table 2. Relevant DNS and DNSSEC RFCs

tion 5 presents the rest of the uncovered vulnerabilities as
well as the repairs which cause model-checking completion
without vulnerabilities. Section 6 details our experiment
confirming the exploitability of the discovered NSEC3 vul-
nerabilities. Finally, Section 7 presents our vulnerability-
minimization advice and concludes.

2 Background: DNS Protocol

2.1 DNS Basics

We first review the relevant background information on
DNS. Table 2 lists the relevant RFCs defining DNS. DNS is
a hierarchical distributed database that translates alphanu-
meric domain names, such as www1.example.com, into
(most commonly) IPv4 and IPv6 addresses. DNS lookups
are ubiquitous as they must be performed before any net-
work resource, such as a website or a mail server, is ac-
cessed by its alphanumeric domain name. The domain
names may be thought of as database keys that are used to
lookup a variety of values, called Resource Records (RRs),
associated with the key. (The “key” domain name is called
the RR’s “owner name” in DNS parlance). The most com-
mon RRs are IPv4 addresses (the A RR), IPv6 addresses
(the AAAA RR), mail servers associated with a domain (the
MX RR), and name servers associated with a domain (the
NS RR). The values associated with the MX and NS RRs
are in name and not IP address form. The set of all RRs
of the same type belonging to the same owner name, e.g.
multiple NS or A RRs, is termed a RRSet.

We now use the domain name www.example.com as an ex-
ample to explain DNS terminology as well as its hierarchi-
cal operations. The name www.example.com has a canoni-
cal DNS form of www.example.com.. Each successive la-
bel (“www”, “example”, “com”) in this form corresponds
to a level within the DNS hierarchy (a zone), and the extra
trailing dot (“.”) at the end of the canonical DNS form is in-
serted to signify the presence of the root zone, the top level

of the DNS hierarchy.

A DNS zone is named by zero or more labels, e.g. “ex-
ample.com.” and consists of a set of RRs over which the
zone is authoritative. The concept of authority is best
illustrated by example. For instance, a zone is authori-
tative for all RRs whose owner name is the zone name
– the .com zone is authoritative over the NS and MX
records for .com. A zone server is also authoritative over
RRs where 1) the owner name contain the zone name
as a suffix and 2) no “longer suffix” of the RR’s owner
name is also a authoritative zone. For example, the ex-
ample.com zone is usually authoritative over the A record
for www.example.com., except when www.example.com is
configured as its own zone, (possibly to support a domain
name such as www1.www.example.com).

In addition to authoritative RRs, a zone may also store
glue records that aid in delegation. Glue records are RRs,
typically A and NS, under the authority of child zones
but copied to parent zones for the purpose of “gluing” to-
gether a delegation. For instance, the .com server may
store both the the NS record for example.com, with a value
of ns.example.com, and the A record for ns.example.com,
so that a single query response may contain all the infor-
mation needed to follow a delegation. However, the .com
zone would not be authoritative over either glue record; the
glue records fall under the authority of the example.com
server.

Figure 1 illustrates a typical DNS lookup process, which
involves two types of DNS resolvers, a stub resolver and
a recursive resolver. Consider the name resolution pro-
cess that occurs after a user types www.example.com into
the browser address bar. This triggers the DNS resolution
process of the stub resolver on the user’s PC, which then
issues a query (“www.example.com A?”) to the local ISP-
run DNS server. This server now becomes a local DNS
recursive resolver: it first queries the DNS root server for
the A RR of www.example.com. The root server is not
authoritative for this information, so it issues a delegation
response, pointing the local recursive resolver towards the

User PC

Stub

Resolver

Local

Recursive

Resolver

Root Zone

(".")

TLD Zone

("com.")

Zone for

"example.com."

1

2
3

4

5

6

7

8

Reply RRSets in DNS Reply RRSets added by DNSSEC
3 “com. NS a.gtld.net.”

“a.gtld.net. A 192.5.6.30”
“com. DS”
“RRSIG(DS) by .”

5 “example.com. NS a.iana.net.”
“a.iana.net. A 192.0.34.43”

“com. DNSKEY”
“RRSIG(DNSKEY) by com.”
“example.com. DS”
“RRSIG(DS) by com.”

7 “www.example.com. A 1.2.3.4” “example.com. DNSKEY”
“RRSIG(DNSKEY) by
example.com.”
“RRSIG(A) by example.com.”

8 “www.example.com. A 1.2.3.4”

Figure 1. DNS(SEC) name resolution sequence for query “www.example.com A?" resolving to IP address
“1.2.3.4". Authoritative RRSets are in plain text and glue RRSets are in italic. The stub resolver is not ex-
pected to handle DNSSEC RRs, so none are sent to it.

authoritative server for the .com zone. This query/response
pair occurs again between the recursive resolver and the
.com authoritative server, which leads to the resolver ob-
taining the address of the authoritative DNS server of ex-
ample.com. When the recursive resolver queries the author-
itative DNS server for example.com, it finally obtains an
answer to “www.example.com A?”, which it can then pass
back to DNS stub resolver on the user’s PC that initiated
this entire process.

To reduce DNS network traffic, each DNS server caches
RRs to keep from issuing redundant requests. DNS replies
include the specified caching period (TTL) of a returned
RR, set by the authoritative zone. As an example, sup-
pose that the set of queries and responses in Figure 1 has
occurred recently, so that the TTL of caches records has
not yet expired. When another user of same local recur-
sive resolver requests “mail.example.com A?”, the local re-
solver will be able to bypass steps 2-5 due to caching and
directly query the “example.com.” authoritative server with
“mail.example.com A?”.

2.2 DNS Packet Format

We will now briefly describe the DNS packet format
and transmission characteristics and subsequently discuss
“cache-poisoning” attacks on DNS, conducted via both
“man-in-the-middle” and “out-of-path” means.

The format of a DNS packet is illustrated in Figure 2
(DNSSEC packets are completely identical). DNS queries
and responses are usually contained in a single small packet,
less than 512 bytes, and are usually sent over UDP. This
makes it fairly simple for network attackers to spoof DNS
responses. The only protection that the DNS packet format

provides against spoofing is in the 16-bit TXID (transac-
tion ID) field. A DNS resolver will accept as valid the first
response packet containing a TXID matching the TXID of
an outstanding query. This creates a race condition for at-
tackers: their spoofed responses to the DNS resolver must
match an outstanding TXID before the actual response re-
turns.

2.3 Cache-Poisoning Attack

In a cache poisoning attack, the attacker spoofs a DNS re-
sponse packet so that a DNS resolver accepts and caches
data “poisoned” by the attacker, such as an A RR of a
valid owner name pointing at the IP address of an attack-
ing server. The resolver then provides this poisoned data
to the end user, redirecting common domain name requests
(such as www.google.com) away from the legitimate server
to attacking servers [17].

2.3.1 Man-in-the-Middle

Man-in-the-middle attackers are attackers who have read
and write access to network packets belonging to the victim.
In this scenario an attacker can overhear the queries made
by the local recursive resolver to the remote DNS zones and
inject faux replies from the remote zones. As DNS is un-
encrypted, it is trivial for the man-in-the-middle attacker to
copy the correct TXID to generate an acceptable spoofed
DNS reply, which will then poison the cache of the recur-
sive resolver.

UDP Source Port

0 15 16 23 24 31

UDP Dest Port

UDP Length UDP Checksum

TXID QR Opcode RCODE

UDP Source Port

AA TC RDRA Z ADCD

QDCOUNT ANCOUNT

NSCOUNT ARCOUNT

UDP

Header

DNS

Header

TXID = Transaction ID

QR = Query or Reply

Opcode = Typically 0 (QUERY)

AA = Authoritative Answer

TC = Truncated

RD = Recursion Desired

RA = Recursion Available

Z = Zero Bit

AD = Authenticated Data

CD = Checking Disabled

RCODE: 0 = No Error

 2 = Server Failure or

 Bogus DNSSEC data

DO = DNSSEC OK (in EDNS0 header)

Question Section Answer Section RRs

Authority Section RRs Additional Section RRs DO

Figure 2. DNS and DNSSEC packet format. DO bit is in EDNS0 Header in Additional Section RR

2.3.2 Out-of-Path Attack

We will now discuss out-of-path DNS cache-poisoning at-
tacks, of which the recent work publicized by Dan Kamin-
sky [14] is the most infamous. In a Kaminsky attack, the
attacker does not require the ability to overhear the outgo-
ing DNS requests generated by the local recursive resolver.
Instead, the ingenuity of the Kaminsky attack involves in-
creasing the number of valid outstanding TXIDs, thus in-
creasing the probability that a randomly generated spoof
TXID will match an outstanding one.

The Kaminsky attack works with delegation responses
rather than authoritative answers. The attacker issues
many DNS queries to a DNS recursive resolver for non-
existent names sharing a common suffix zone, e.g. aN-
otExist.example.com, bNotExist.example.com, etc. (The
queries may also be coerced from a user, for instance by
an attacker-crafted web page containing these names in
tags). This creates many valid outstanding TXIDs at
the recursive DNS resolver. Since all of these queries con-
tain a common suffix zone (“example.com”), all responses
coming from the “.com” zone will include NS and A glue
records for the name server of “example.com”. The at-
tacker thus has many chances to poison the RRs for the “ex-
ample.com” name server at the resolver, by sending many
spoofed delegation responses (packet 5 from Figure 1) with
different TXIDs containing altered NS and A glue records.
Since the resolver will accept and cache the glue records
upon finding a match, this creates an instance of the “birth-
day problem” [10] from probability that can lead to success
after only seconds of attacking the 16-bit TXID field. Af-
ter a successful match, the resolver will query the attacking
server to resolve any RRs with owner name ending in “ex-
ample.com”, essentially giving the attacker full control of
the “example.com” zone for users of this resolver. After
the successful attack, all users of a poisoned DNS resolver
that attempt to access “example.com” will be directed to a

server of the attacker’s choosing.

In order to address this vulnerability, Kaminsky worked
with DNS software vendors to randomize the UDP source
port of DNS queries [8, 12]; these random ports become
the destination ports for DNS response packets. This effec-
tively adds 10-11 bits of entropy for the attacker, making
the expected success time of an attack several tens of min-
utes rather than seconds. However, the mitigation does not
fundamentally prevent a spoofing packet success; it only
lowers the probability of such an event. This mitigation
also provides no defense against man-in-the-middle attack-
ers. Therefore, many researchers, including Kaminsky him-
self [8, 16], have been actively supporting DNSSEC as a
long-term solution to DNS security vulnerabilities, includ-
ing cache-poisoning.

3 DNSSEC Protocol

3.1 Stated Security Goals and Limitations

DNSSEC, as the name implies, consists of a set of secu-
rity extensions to the DNS protocol (see Table 2 for the
relevant RFCs). DNSSEC introduces additional security-
related resource records with each reply, for the purpose
of providing cryptographically signed integrity to the orig-
inal DNS resource records. This makes DNSSEC effective
against both types of cache-poisoning attacks described in
Section 2.3. DNSSEC does not guarantee delivery of re-
source records and does not provide integrity for unsigned
portions of packets. Its security goals are described in RFC
4033 as follows:

“The Domain Name System (DNS) security extensions pro-
vide origin authentication and integrity assurance services
for DNS data, including mechanisms for authenticated de-
nial of existence of DNS data.”

In RFC 4033, the authors explicitly distinguish DNSSEC
data (RR) security from channel security. DNSSEC pack-
ets, containing resource records carrying encoded-binary
cryptographic material, are typically carried in the clear
over UDP. Thus, the current paper is largely about the
implications of the DNSSEC design decision to provide
data (RR) security rather than channel security. We will
first discuss the limitations of DNSSEC, and then consider
in turn the three component DNSSEC data integrity goals
from above: origin authentication, data integrity assurance,
and authenticated denial-of-existence, and detail how the
DNSSEC protocol attempts to reach these goals, even with
in-the-clear communications.

3.1.1 “Last-Hop” Limitations

RFC 4033 specifically states the “last-hop” between stub
resolver and recursive resolver (1 and 8 in Figure 1) may
be out-of-scope for DNSSEC, to be protected via DNS
channel security means such as SIG(0) [3] or TSIG [2].
This is because in anticipated DNSSEC deployment, cryp-
tographic signatures are expected to flow from authoritative
servers only to local recursive resolvers, with stub resolvers
on end-user PCs not equipped to handle signature verifica-
tion.

As our finite-state analysis is focused on the DNSSEC pro-
tocol, we consider last-hop security out-of-scope and des-
ignate the recursive resolver as the trusted end-point for
name resolution in the analysis. However, we emphasize
that the channel security of this last hop is critically im-
portant to end-to-end DNSSEC integrity. For example, the
recursive resolver marks the difference between two types
of responses to the stub resolver: verifiably secure answers
and insecure answers, with a single “Authenticated Data”
(AD) bit. Thus, attackers able to manipulate DNS replies
over this last hop may forge secure answers simply by set-
ting the AD bit. In usage scenarios where last-hop security
is absent, such as unencrypted wireless hotspots, DNSSEC
cannot guarantee domain-name lookup integrity to the end
user.

3.1.2 Interoperability with DNS Limitations

Under current specifications, any inter-operation with stan-
dard DNS zones exposes the end-user of a DNSSEC re-
cursive resolver to forgeable query results. When inter-
operating with a standard DNS zone, a DNSSEC recursive
resolver cannot verify the integrity of remote zone data due
to the lack of cryptographic signatures. For compatibil-
ity, the recursive resolver still returns any responses from
the zone to the stub resolver, but without setting the AD

security indicator bit. Thus, whenever a DNSSEC recur-
sive resolver must query a standard DNS zone, the recur-
sive resolver is forced to provide an answer without secu-
rity guarantees to the stub resolver. As of this writing, end-
user software accepts both secure and insecure results from
the stub resolver, without any user-interface elements to in-
dicate the security of the lookup result. Thus, the current
end-user cannot trust the security of DNS lookups even if a
DNSSEC recursive resolver with last-hop channel security
is utilized.

3.2 Origin Authentication

The need for origin authentication is possibly best under-
stood in the context of preventing cache-poisoning attacks.
As we described above, these attacks are possible because
the DNS recursive resolver will accept DNS data sent to
it by any computer connected to Internet (possibly with
a falsified source IP address) as long as the destination
port/TXID fields match. There is no mechanism within
DNS, aside from source IP address, that verifies the data
originates from an authoritative server for a particular zone.
To solve this issue, DNSSEC provides a form of hierarchi-
cal public key infrastructure (PKI) which allows resolvers
to securely obtain the public key for a DNSSEC zone and
to use this for authenticating signed data belonging to the
zone.

DNSSEC introduces three new RRs to support this PKI:
DNSKEY, RRSIG (RR Signature), and DS (Delegation
Signer). The DNSKEY RR contains the binary-text-
encoded public key along with relevant key parameters such
as the encryption algorithm used. The zone uses the corre-
sponding private key to sign all of the RRSets over which it
is authoritative. Each signature over an RRSet is recorded
in a RRSIG RR. The DS verification RR contains a crypto-
graphic digest of a DNSKEY belonging to a child zone in
a delegation. The DS RR is considered under the author-
ity of the parent zone and can thus be signed by the parent
zone (with a corresponding RRSIG). It is returned by the
parent side of a delegation as an authenticated pointer to a
DNSKEY in the child zone. This [Parent DNSKEY

signs→
Parent DS

signs→ Child DNSKEY] sequence forms a link in
an extensible attestation chain that can impart trust to any
public key obtained via the chain, so long as the chain be-
gins at a trust anchor. In the DNSSEC PKI, a trust anchor
is any DNSKEY or DS RR confirmed as trustworthy via
out-of-band means and configured in the resolver as trust-
worthy. With the recent announcement of root zone signing,
this is expected to be the root DNSKEY.

The operation of the DNSSEC PKI is illustrated in Figure 1,
which lists the DNSSEC packet contents for the name res-

olution “www.example.com A?”, for which the DNSKEY
of the “example.com.” zone are needed. Starting with the
DNSKEY of the root zone as the trust anchor, Reply 3 pro-
vides the DS to attest to the DNSKEYs of “com.”. Re-
ply 5 adds the DNSKEY of “com.” and the DS to attest to
the DNSKEY “example.com.”, which is provided by Reply
7.

3.2.1 Origin Authentication with Regular DNS

In order to inter-operate with non-SEC DNS implemen-
tations, DNSSEC must also provide for cases where a
DNSSEC zone has a non-DNSSEC parent or child zone.
In the insecure parent zone case, since the trust chain can-
not be established all the way back to the DNS root, either
the DNSKEY of the secure zone or a DS generated from the
DNSKEY must be manually configured as a trust anchor at
the recursive resolver. When there is no such manually con-
figured trust anchor, no attestation chain can impart trust to
the DNSKEY of the secure zone. In this case, no records
from the secure zone are verifiable by the recursive resolver
and all records ostensibly from the zone will passed on to
the stub resolver as an insecure answer.

In the case of an insecure child zone of a secure zone, an in-
secure delegation will be created with no DS record within
the secure zone pointing at the child zone.

3.3 Integrity Assurance

Given the hierarchical PKI provided by DNSSEC, it is
straightforward for a zone to provide “integrity assurance”
for its existent data. The zone signs all the RRSets over
which it is authoritative and transmits the RRSIG along with
the RRSet in its replies. For example, when responding to
the “www.example.com A?” query, the example.com au-
thoritative server will transmit both the A record and the
RRSIG containing the signature over the A record, as Re-
ply 7 in Figure 1 demonstrates.

DNSSEC allows a zone only to sign RRs over which it is
authoritative. This means that any glue records included in
a delegation response are unsigned, as illustrated in Replies
3 and 5 from Figure 1. As Bernstein has noted and as we
will explain, these glue records may be forged, causing the
local resolver to query an attacking server in its recursive
next step. We show in Section 3.7, however, that this redi-
rection does not add the capability for the network attacker
to influence to end result of name resolution.

3.4 Authenticated Denial of Existence

Thus far, we have discussed how DNSSEC provides in-
tegrity assurance for existent RRs. Authentication and in-
tegrity is also required for responses denying the existence
of any RRs matching a query: If authentication mechanisms
did not exist, for example, an attacker may be able to forge
a response packet denying the existence of an existent do-
main name and have this response cached at the local re-
solver for long periods, creating a directed denial-of-service
attack.

The initial DNSSEC scheme for “authenticated denial of
existence” creates RRs, named Next Secure (NSEC), that
list all of the existent RRs belonging to an owner name
within an authoritative zone, so that a resolver can ver-
ify the non-existence of an RR against the RR list of its
owner name. Each NSEC RR also contains the next existent
owner name in canonical form, so that the non-existence
of an owner name within a zone may be shown by re-
turning a covering NSEC, whose owner and next existent
names bracket the queried name. As an undesirable conse-
quence, the entire contents of a zone may be trivially enu-
merated by following NSEC records and making appropri-
ate queries.

The current scheme for hashed authenticated denial of ex-
istence, named NSEC3 [7], is nearly equivalent to NSEC
except that all owner names are cryptographically hashed
and not available in cleartext. The canonical order of exis-
tent names in NSEC3 is the hashed order. Under NSEC3,
zone enumeration of hashed names remains trivial, but the
attacker must expend computational resources in a dictio-
nary attack to learn the zone contents in cleartext. A single
salt string is also appended to each owner name, which if
kept unknown would increase the search space required for
dictionary attacks. However, NSEC3 strangely makes the
salt string available via a RR query, thus rendering it com-
pletely ineffectual. Thus, NSEC3 is still vulnerable to the
leakage of RR owner names after few days of computation
[11].

With NSEC, all owner names within the zone, including
names only associated with NS records used for delegation,
form the NSEC “next owner” chain. In NSEC3, such an
owner name may “opt-out” of the chain via a bit in the
NSEC3 RR. When the “opt-out” bit is set in an NSEC3
record, one or more unsigned delegations may exist with
owner names that hashes to a value between the two hashed
names in the NSEC3 RR. Thus, even when a resolver re-
ceives a signed opt-out NSEC3 RR covering its queried
name, it must still consult unsigned information, such as
glue records indicating a delegation, to decide whether the
query answer exists lower in the DNS hierarchy. The

NSEC3 opt-out option is thus very dangerous and forms the
basis for the demonstrated attack that we will detail later in
this paper.

3.5 Temporal Specifications

Under DNS, a RR in a DNS reply packet included a spec-
ification of TTL as the time, starting from reply reception,
that the resolver may validly cache the RR. This specifi-
cation of TTL relative to packet reception makes DNS re-
ply packets susceptible to replay attacks. To avoid replay
vulnerability, DNSSEC introduces absolute-time temporal
specifications for its signatures. Each RRSIG RR has a sig-
nature validity period, stated as absolute start and end times.
This introduces a dependency of TTL times upon signature
validity times at the resolver, as TTLs for RRs must not re-
main valid for longer than the valid periods of signatures
attesting to these RRs. The absolute timing eliminates the
possibly of replay after the expiration of the corresponding
RRSIG.

3.6 Packet Format & Attacker Capabilities

Because DNSSEC operates solely by adding RRs to reg-
ular DNS, its packet format is essentially unchanged from
DNS (see Figure 2). The security-related DNSSEC RRs are
carried alongside the original DNS RRs in the same packet
(see Figure 1). DNSSEC does introduces a single enable
bit, DNSSEC OK (DO), located in the EDNS0 header con-
tained in the Additional Section of DNS packets. It also de-
fines two bit in the DNS header: Authenticated Data (AD),
which indicates that the sending server has validated the
RRs in the packet, and Checking Disabled (CD), which tell
upstream servers to not perform RR validation.

The DNSSEC signature scheme only allows for individ-
ual RRSets to be signed by an associated RRSIG record.
Thus, the integrity provided by DNSSEC is at individual
RRSet+RRSIG granularity. Essentially, the only guaran-
tee of DNSSEC is that it is impossible, short of private key
compromise, for a network attacker to create a RRSet and
RRSIG pair containing manipulated data validly signed by
the originating zone. We thus incorporate capabilities for
manipulating all other aspects of DNSSEC packets into our
attacker model, including stripping RRSIGs from RRSets,
changing header bits, inserting and deleting recorded RRs,
etc. See Section 4.4 for a detailed description.

3.7 Robustness Against Cache Poisoning

DNSSEC is effective against the cache-poisoning attacks
described in Section 2.3. In the presence of the attacker
capabilities listed in Section 4.4, which model a man-in-
the-middle network attacker, our finite-state model check-
ing results in Section 5.2 demonstrate that signed DNSSEC
records obtained using only secure delegations are not vul-
nerable to forgery. An end-user trusting only secure query
responses is thus safe from such a network attacker.

We will also now detail how DNSSEC successfully pro-
tects against out-of-path (Kaminsky) cache-poisoning. Re-
call that the Kaminsky attack works by redirecting the IP
addresses associated with glue NS and A records, causing
the recursive resolver to query a DNS server controlled by
an attacker. As noted by Bernstein, redirection of the child
zone query to an attacking DNSSEC server is still possible
under DNSSEC, since glue records are unsigned and forge-
able. However, with the DNSSEC protocol, a DS record
with RRSIG will also be sent in a secure delegation re-
sponse. The authenticity of this signed DS record is veri-
fiable by the recursive resolver via the attestation chain (it
should not follow delegation responses without a signed and
attested DS), thus giving the recursive resolver a way to ver-
ify the public key of the child zone.

With a trusted public key for the child zone, the resolver can
validate whether a RR contained in a response sent by the
attacking server is properly signed by the child zone. Short
of key compromise, the attacking server therefore cannot
falsify any signed RRSets in this child zone, including DS
records for further secure delegation. Since the ultimate
RRs requested by name resolution, usually A or MX, are
available in signed form in their authoritative zone, a re-
solver never has to rely on an unsigned record as its final
answer. Thus, as long as a DNSSEC resolver accepts only
RRSets appropriately signed by their authoritative zone as
final query answers, the response packets may come from
any server, redirected or not, without allowing the attacker
to violate the ultimate integrity of a DNSSEC name resolu-
tion.

In fact, server redirection does not increase the packet
forgery capabilities of the network attacker. Once an at-
tacker has caused a recursive resolver to query its attack-
ing DNSSEC server, it can form any type of response to
the resolver that it chooses except create a valid RRSet
and RRSIG pair signed with the zone’s private key. These
are exactly the same capabilities that we ascribed to the
man-in-the-middle network attacker in Section 3.6, albeit
made more convenient for the attacker by eliminating the
race with a legitimate DNSSEC server. Thus, glue record
forgery does not present any additional security threat to

States Transition Rules
Local Resolver State Local Resolver

Knowledge of TLD and Authoritative Zone Query Generation
Address (and validity) LocalResolverState→ Network
DS (and validity) Reply Handling
DNSKEY (and validity) Network → LocalResolverState

Names to Resolve (name1-name6) TTL and Signature Expiration
Answer (and validity) LocalResolverState→ LocalResolverState

Network Root, TLD, and Authoritative Zone Servers
Set of Packets Query Response

Attacker Knowledge Network → Network
Set of Packets Attackers

Learning Legitimate Replies
Network → AttackerKnowledge

Forgery Generation
AttackerKnowledge, Network → Network

Table 3. Overview of DNSSEC Murϕ Model. Arrows denote StatesRead→ StatesWritten.

DNSSEC beyond the normal capabilities of a network at-
tacker, though it may allow the attacker to more easily in-
hibit DNSSEC performance with rogue packets that, for ex-
ample, consume resolver CPU time.

4 Finite State Model Checking

In order to evaluate the security of the DNSSEC proto-
col, we performed a finite-state “rational reconstruction” of
DNSSEC using Murϕ [13], a Nondeterministic Finite Au-
tomaton (NFA) enumerator to check its operations against
safety invariants derived from its stated security goals. In
the rational reconstruction process, decribed in [20], the
most basic parts of the protocol messages are modeled and
executed in the model checker, to see if any safety invariants
are violated. When invariants are violated, more protocol
components are added until the invariants pass or cannot
be passed. The entire process thus aids in understanding
the component design of the protocol and ensures that the
properties expressed in the invariants test the functionality
of each protocol component.

Furthermore, since Murϕ tries all possible combinations of
modeled attacker capabilities, when the reconstructed pro-
tocol runs to completion without violating any invariants,
we may draw the conclusion that the protocol preserves the
expressed safety invariants against the attacker described in
the model. In this section, we will detail our reconstruction
of the protocol, the network attacker mode, and the secu-
rity invariants. We will also report on an inconsistency in
the temporal dependencies of the DNSSEC attestation chain
found by our modeling.

4.1 Overview of Murϕ Model

Our model is available at http://crypto.
stanford.edu/protocols/murphi_models/
and is based on a typical usage scenario of the DNSSEC
service. Table 3 summarizes this finite-state model. We
model three layers of the DNSSEC hierarchy, representing
root zone servers (“.”), TLD zone servers (“com.”), and
an authoritative server for a single zone (“example.com.”).
The root zone DNSKEY is our modeled trust anchor. In
the state machine, these zone servers are simply modeled
as a set of transition rules on network state; they do not
introduce any additional state themselves. We also model
a local recursive resolver, representing ISP-run DNSSEC
resolvers, as a set of transition rules on network state as
well as local state, representing name resolution status and
knowledge of the DNSSEC hierarchy, such as zone keys,
DS RRs, and server addresses. The network is simply a
set of modifiable packet state structures. The final aspect
of our model is the attacker model, which consists both
of transition rules modifying network state and additional
state representing packet knowledge recorded by the
attacker.

4.2 Root, TLD, and Authoritative Servers
Model

The behaviors of the root, TLD, and authoritative zone
servers require no server state and are entirely described by
network state transition rules. Our modeled root and TLD
behaviors are quite simple. They respond to network state
containing a query packet addressed to them and will write
a response to the network containing either a secure delega-

RR Exis t s

i n Z o n e

R R N o t

I n Z o n e

RR in

Ch i ld Zone

R e t u r n s

S i g n e d R R

S e c u r e

D e l e g a t i o n

I n s e c u r e

D e l e g a t i o n

RR Does

No t Ex i s t

R e t u r n s N S E C 3

C o v e r i n g Q u e r y

O p t - o u t

N S E C 3

N o n - o p t - o u t

N S E C 3

Z o n e R e c e i v e s R R Q u e r y

N S G l u e R e c o r d

i n N S E C 3 C h a i n

N S G l u e R e c o r d n o t

i n N S E C 3 C h a i n

(Opt -ou t)

1

2

3 4 5 6

Figure 3. Zone Response Behavior to an RR Query

Matching RRSets in
Attested Cache Non-Attested

Cache
Action

A Answer
DS NS, A Secure

Delegation
NSEC3 (owner name
matches query, shows
glue NS exists)

NS, A Insecure
Delegation

NSEC3 (covering
query, opt-out)

NS, A Insecure
Delegation

NSEC3 (covering
query, opt-out)

Denial-of-
Existence

NSEC3 (covering
query, no opt-out)

Authenticated
Denial-of-
Existence

Figure 4. Modeled Resolver Action Logic, Depending
on Resolver Cache Contents Matching Query

tion, with DS and RRSIG authoritative RRs and NS and A
glue RRs.

The modeled behavior of the authoritative “example.com.”
server is more complex, as it covers the entire set of zone
responses to an RR query. The full set is enumerated in
Figure 4.1. Response 1 represents the simple case where
the query matches an RR existent in the zone. Responses 2-
4 represent when the query matches an existent delegation
point instead of an RR in the zone. Response 2 is the secure
delegation case. Responses 3 and 4 represent the options
for an insecure delegation: a NS glue record used for inse-
cure delegation in DNSSEC may either be recorded by the
NSEC3 chain (response 3), or unrecorded, with the cover-
ing NSEC3 setting opt-out instead (response 4).

Finally, responses 5 and 6 represent cases when the query
matches neither existent RR nor delegation. The zone must
then indicate non-existence of the queried RR by returning
the covering NSEC3, which may happen to have opt-out set
(response 5), or not (response 6). Our modeled authorita-
tive zone has RR content that will elicit each of these six re-
sponses when queries for name1 through name6 are sent by
the resolver, allowing Murϕ to enumerate all possible states
of an authoritative zone responding to a query.

4.3 Local Recursive Resolver Model

The modeled local recursive resolver tries to resolve the set
of six names that elicit the full range of DNSSEC response
behavior as described in the previous section. These six
names also form the basis of our invariants, as we check that
the information associated with the names in the authori-
tative zone matches the understanding the resolver learns

from replies. The resolver state records the answer supplied
by the authoritative zone to each of the six query targets,
along with the temporal validity of the answer. When any
answer is in the expired state, the resolver will try to re-
solve the corresponding name by writing a query packet to
the authoritative zone server, provided its knowledge of au-
thoritative server address is valid. For the purpose of query-
ing and authenticating replies, the local resolver state also
maintains TLD and authoritative zone address, DNSKEY,
and DS, and will appropriately query when these expire.
(The root server address and DNKSEY are not modeled as
resolver state because they are hard-coded in a resolver im-
plementation).

4.3.1 TTL and Signature Expiration

We model validity expiration for all query answers and all
server addresses, DNSKEYs, and DSs. In DNSSEC, all of
this information is stored as a RR. RRs have an associated
TTL and, if signed, also a signature validity period for the
corresponding RRSIG. As per RFC 4033, TTLs for RRs
must expire when the corresponding RRSIGs expire; this is
strictly enforced in our model by combining RR TTL and
RRSIG validity into a single entity. Also, all modeled va-
lidity states initialize to ’expired’, and transition rules exist
for each record that change a ’valid’ state to an ’expired’
state.

4.3.2 Reply Validation Logic

The local resolver model also contains logic that validates
the contents of a reply packet and decides what actions to

take with regards to the query based on received informa-
tion. This logic is of utmost importance to the security of a
DNSSEC implementation. For example, incorrect resolver
validation behavior that accepts unsigned RRs from an ex-
pected DNSSEC zone opens up a downgrade path for at-
tackers to exploit. We distilled the guidance of RFC 4035
into our model.

In particular, our modeled resolver places RRSets contained
in replies into two separate entities for use in this logic:
an Attested Cache, whose contents are secure RRSets that
have a full attestation chain back to the trust anchor, and a
Non-Attested Cache, whose contents are RRSets the zone
expects to be insecure, such as glue records or data from
regular DNS zones. The attested cache consists of zone
DNSKEYs and DSes as well as signed A and NSEC3 RRs
from reply packets. For instance, to include an A record
signed by the authoritative zone in the attested cache, the
resolver’s TLD and authoritative zone DSes and DNSKEYs
must all be valid. The unattested cache consists of zone
addresses and glue records from reply packets. RRSets de-
termined to be bogus, such as those with invalid signatures,
or indeterminate, such as those with incomplete attestation
chains, are discarded by validation logic. We believe that
the attested/non-attested cache distinction may be useful to
future DNSSEC implementers.

The resolver decides what actions to take on behalf of each
query based on the contents of the attested and non-attested
caches. Table 4 summarizes these logical rules.

4.4 Modeled Attacker Capabilities

Our Murϕ model checks DNSSEC in the presence of a net-
work attacker possessing all reply packet manipulation ca-
pabilities short of key compromise. The attacker’s ultimate
goal is to induce the resolver to accept a corrupted query an-
swer. This is a standard attacker model, used by many pre-
vious studies including [18, 20]. The full list of attacker ca-
pabilities in our finite-state model is summarized here. Due
to the nature of a non-deterministic finite automaton (NFA),
all attacks involving any combination of the capabilities are
exercised. To prevent state-space explosion in Murϕ, only
hostnames recognized by the modeled resolver, i.e., name1
through name6, are used by the attacker model.

1. Attacker may overhear any packets intended for the au-
thoritative, TLD, or root server.

2. Attacker may record any reply packets to the resolver.
3. Attacker may modify any recorded reply packet and

resend them to the resolver. However, the attacker may
not compromise cryptography, thus limiting its packet
modification capabilities to the following:

(a) Attacker may modify any header bits

(b) Attacker may modify the Question section.
(c) Attacker may strip any number of RRs from a

reply, including RRSIGs for other RRs.
(d) Attacker may add any number of recorded A,

NSEC3, DS, NS, or RRSIG RRs to a reply, so
long as the added RRs were not modified by the
attacker.

(e) Attacker may create authoritative A, NSEC3, and
DS RRs with corresponding RRSIGs signed by
the attacker’s own key, and add them to a reply.

(f) Attacker may modify the contents of any A or NS
glue record.

4.5 Security Invariants

We run the DNSSEC model in Murϕ to check if any reach-
able state violates any security invariants. These invari-
ants, which characterize the intended security properties of
DNSSEC, are all logical expressions based on the state of
the local recursive resolver. The first set of invariants checks
that the local resolver has not recorded an spoofed answer
for one of the queried names. Thus, if the answer to name[1-
6] is valid, its answer must be the value intended by the
authoritative server: An A RR with the correct address for
name 1, an indication of secure delegation with the proper
DS for name 2, indications of insecure delegation with the
correct child zone address for names 3 and 4, and indica-
tions of non-existence of names 5 and 6.

Another invariant checks that no key other than the correct
TLD and authoritative zone keys become accepted in re-
solvers attested cache. The next invariants check that the
local resolver’s knowledge of the addresses of the TLD and
authoritative servers have not been spoofed.

The last invariant checks for the integrity of the attestation
chain. We feel that it is a desirable property that a record be
considered valid at the local recursive resolver for only as
long as all of the other records that form this record’s attes-
tation chain back to the trust anchor remain valid. For ex-
ample, for an A RR with owner name www.example.com.,
the RR attestation chain is [1 “. DNSKEY”

signs→ 2 “com.
DS+RRSIG”

signs→ 3 “com. DNSKEY”
signs→ 4 “exam-

ple.com. DS”
signs→ 5 “example.com. DNSKEY”

signs→ 6
“www.example.com. A+RRSIG”]. In our model, this maps
to the invariant that while any of the query answers at the
resolver are valid (representing 6), none of auth DNSKEY
(5), auth DS (4), tld DNSKEY (3), or tld DS (2) should ex-
pire, since this would break the attestation chain to the trust
anchor.

4.5.1 Temporal Inconsistency Discovered

The attestation chain temporal integrity invariant is in fact
violated during our run of Murϕ. The DNSSEC proto-
col only specifies temporal constraints between TTL of a
RR and the signature validity period of its corresponding
RRSIG; there are no constraints between the TTL of an RR
and the validity period of another signature in its attestation
chain. Thus a signature within the attestation chain may ex-
pire before the RR to which it is suppose to attest. This may
cause stale data to persist in the DNS distributed database
longer than desired, which is dangerous in the case of key
compromise.

Using the example above, consider the case where the key
of “example.com.” is compromised, leading to a signed “ex-
ample.com.” DS+RRSIG that validates a key controlled by
the attacker. If the TTLs of RRs under the authority of “ex-
ample.com.”, such as the A RR for “www.example.com.”,
depended upon the validity of all of the signatures tracing
back to the trust anchor, this period of compromise would
at least be bound by the expiration of “example.com.” DS
during the routine key rollover for “example.com.”. How-
ever, if RRs for “example.com.” depend only on the expira-
tion of their associated RRSIG, then the attacker may create
RRSIGs with arbitrarily long validity periods, extending the
period of compromise for RRs under the authority of “ex-
ample.com.” indefinitely, even past key rollover.

Similarly, this example also illustrates another undesirable
trait of the DNSSEC protocol: the lack of support for key
and signature revocation. Assume that the key compromise
has been discovered by the operators of “example.com” and
they roll over the “example.com” key as a result. A recur-
sive resolver caching the A RR of “www.example.com.”
signed with the compromised key may continue to serve
the RR to its users for the entire signature validity period
set by the attackers. Instead, we suggest that the resolver
check for key revocation by periodically validating the sig-
natures forming an attestation chain against the current zone
keys.

Thus, we propose that resolver logic be strengthened be-
yond RFC 4033’s recommendations. The resolver cache
should specify that a RRSet may not have TTL expiration
time after the expiration time of ANY signatures that form
its attestation chain, not just the RRSIG directly associ-
ated with the RRSet. Furthermore, the resolver should also
periodically validate (perhaps with a period of hours) that
the signatures forming the attestation chain of all signed
RRSet within its cache remains valid against a fresh copy
the zone keys. Note that in the normal case, without key-
compromise, this only adds network traffic to re-acquire
zone keys, which should be a small fraction of the resolver
cache, every period. We also hope that these recommenda-

tions proposal will be standardized in the RFC itself.

5 DNSSEC Vulnerabilities and
Guarantees

5.1 Inherent Vulnerabilities

Our Murϕ model checking found several significant vulner-
abilities in the DNSSEC protocol which may be exploitable
by a network attacker. The vulnerabilities are described in
this section and also summarized in Table 1.

5.1.1 Glue Record Redirection Vulnerability

The first vulnerability occurs due to the forgeability of glue
records used in delegations, making all delegations vul-
nerable to redirection. Since attackers may modify un-
signed glue records, Murϕ found invariant violations result-
ing from the attacker changing TLD server and authorita-
tive server addresses stored in local recursive resolver state.
However, even with this server redirection, since the TLD
and authoritative zones in our model are reached by se-
cure delegations, Murϕ did not find forgery of any signed
query answers from the authoritative zone at the recursive
resolver. See Section 5.2 for details of the model checking
result. The mechanism for this protection was previously
described in Section 3.7, which also notes how this redirec-
tion vulnerability allows the attacker to more easily hinder
resolver performance.

Glue record manipulation by the attacker also led to the vi-
olation of invariants checking the integrity of insecure del-
egations returned by the authoritative zone. Redirection of
an insecure delegation, which always points to a standard
DNS child zone, is the exact mechanism of the Kaminsky
attack. Data served by the attacking server is accepted and
cached at the recursive resolver without validation, expos-
ing the end-user to cache poisoning. Such an attack can
only be prevented by the adoption of DNSSEC by the child
zone, which secures the delegation.

5.1.2 Inter-operation with DNS Vulnerability

To generalize the consequences of inter-operation with stan-
dard DNS zones, we note that a DNSSEC local recursive
resolver cannot provide secure answers to the stub resolver
unless the resolution process queries only DNSSEC zones
starting at the trust anchor. An intervening standard DNS
zone requires an insecure delegation, meaning the local

DNSSEC resolver will not be able to form the full attes-
tation chain required to verify the final answer from the
trust anchor. Since it precludes verification at the recursive
resolver, any DNS-DNSSEC inter-operation causes an in-
secure, forgeable answer to be passed to the stub resolver.
Since users are not informed of insecure query results due
to the current absence of software interface indicators, inter-
operation with DNS effectively exposes users trusting in
DNSSEC resolvers to attacker exploitation.

5.1.3 NSEC3 Opt-out Vulnerability

The next class of vulnerabilities result from the attacker be-
ing able to change the content of a DNSSEC reply packet
by subtracting or adding RRs. We found that the attacker
was able to convert an insecure delegation to a unauthen-
ticated denial-of-existence and vice-versa. To understand
this, recall from Table 4 that an insecure delegation using
opt-out requires the presence of an authoritative NSEC3
record with opt-out, its associated RRSIG, and A and NS
glue records, and that an unauthenticated denial of existence
requires an authoritative opt-out NSEC3 record and its as-
sociated RRSIG. The network attacker has the capability to
convert between these two response types simply by adding
or subtracting the glue records.

The conversion from insecure delegation to denial-of-
existence is useful for an attacker as a denial-of-service at-
tack that may linger on the local resolver due to its caching
of denial-of-existence responses. On the other hand, the
ability to insert an insecure delegation may be used by an
attacker to insert any arbitrary RR with an owner name that
hashes between the names on the NSEC3 RR.

For example, an attacker may insert an A RR for
spoof.example.com using an opt-out NSEC3 with
owner name www.example.com and next name
mail.example.com, as long as ’spoof’ hashes between
’www’ and ’mail’. Contrary to comments in [7] suggesting
its insignificance, we will show that this vulnerability
is exploitable by experimentally carrying out a browser
cookie-stealing attack detailed in Section 6. Attacks of this
nature may only be prevented by the domain operator of
“example.com.” not using opt-out and including all owner
names into the NSEC3 chain.

5.1.4 Mismanaged Signature Expiration

In this sub-section, we provide mitigation advice for a vul-
nerability, first mentioned by Bernstein [11], which is actu-
ally another consequence of the lack of signature revocation
in DNSSEC. The vulnerability occurs when the signature

expiration of A RRSets and associated RRSIGs is misman-
aged. RRSIGs have a 30-day validity period according to
the default settings in BIND, and DNSSEC lacks a revoca-
tion mechanism that can hasten the expiration date. Sup-
pose that a domain owner decides to relinquish one set of
IP addresses in favor of another and creates new A RRSets
and RRSIGs. During the period when the RRSIGs asso-
ciated with the old A RRSet are still valid, if attackers gain
control of any IP address relinquished by the domain owner,
they will be able to replay a completely valid DNSSEC re-
sponse pointing an A RR at an attack server. This attack can
be completely mitigated by domain owners not relinquish-
ing IP addresses until they are certain all RRSIGs for RRs
pointing to these IP addresses have expired.

5.2 DNSSEC Guarantees from Model Checking
Completion

After removing the invariant that checked the integrity of
zone server addresses, the invariant that checked the in-
tegrity of the denial-of-existence expressed by NSEC3 with
opt-out, and the invariant that check the integrity of insecure
delegations, our Murϕ model ran to completion, exhausting
all possible network attack combinations, without violating
another invariant. The completion of execution implies that
the modified protocol, not containing opt-out NSEC3 or in-
secure delegations, contains no further vulnerabilities short
of cryptographic compromise. This means that, when ac-
quired by the resolver using a full chain of secure delega-
tions, signed existent DNSSEC RRs and signed non-opt-out
NSEC3 denials-of-existence are safe against forgery by the
network attacker described in our model, which is incapable
of key compromise.

5.3 Faulty Resolver Logic Vulnerabilities

DNSSEC security depends on correct implementation of
appropriate resolver logic. Section 5.1 described DNSSEC
vulnerabilities found even with correct resolver validation
logic – vulnerabilities inherent to the DNSSEC protocol. To
demonstrate the importance of resolver logic to DNSSEC
implementation security, we will discuss some common
attack paths that become exploitable vulnerabilities with
faulty resolver logic. We begin with the attack paths and
then discuss how to prevent them with correct validation
logic.

Attackers may arbitrarily modify headers and add or sub-
tract individual RRs from DNSSEC replies, opening up
downgrade paths to DNS. For instance, an attacker that
strips all RRSIG, DS, and NSEC3 RRs from a DNSSEC
response packet will create a valid DNS packet. Also, an

attacker may modify unsigned packet contents to introduce
inconsistent information into reply packets. For example,
attackers may set the AD (Authenticated Data) in a reply
packet containing a forged RR with an invalid RRSIG, in
an attempt to cause the resolver to accept the indicated suc-
cess of remote validation and forgo its own validation. Fi-
nally, as previously stated, attackers may modify unsigned
RRs contained in the reply packet, such as the glue A
and NS RRs contained within the “additional” packet sec-
tion.

5.3.1 Eliminating Vulnerabilities By Attested Cache
Resolver Design

The resolver must thus be scrupulously designed to min-
imize susceptibility to attack by only trusting the validly
signed content of reply packets. A resolver must not ac-
cept valid DNS responses where DNSSEC responses are
expected, to eliminate downgrade attacks. Resolver logic
must also not trust header fields. As a consequence, each
resolver must perform its own verification of RR data in
reply packets and not rely on upstream servers to indicate
validation and query success/failure.

In effect, to answer user RR queries for a particular zone,
the local recursive resolver must build an attested cache
containing both RRs authoritative to that zone and a full at-
testation chain from the trust anchor to the zone, using only
validly signed RRs contained in reply packets. Glue records
may only be used as guides for which DNSSEC server to
query next in a delegation and cannot be accepted into the
attested cache. (The resolver logic we outlined in Section
4.3.2 is an instance of this attested cache implementation
style.)

The importance of properly treating the unsigned records in
a reply was anecdotally demonstrated during the time that
this paper was being written, as a vulnerability was discov-
ered where BIND incorrectly added unsigned RRs from the
“additional” sections of DNSSEC responses to its cache [9].
The vulnerability was deemed a severe risk for DNSSEC
users of BIND.

Resolvers must only securely answer the user’s query when
all of the information necessary to answer queried RR
with integrity guarantee is contained within this attested
cache, for example when a matching RR with valid RRSIG
along with its full attestation chain exists or when the non-
existence of the queried RR can be proven using NSEC3
RRs with valid RRSIGs and full attestation chains. Secure
answers provided strictly from resolver attested cache are
guaranteed against forgery, short of attacker compromise of
zone keys, and end users may trust the integrity of resolver

answers indicating such authentication via the AD bit, if re-
ceived over a secure channel.

However, we again note that even a completely correct re-
solver cannot excise the inherent DNSSEC vulnerabilities
listed in Section 5.1.

5.4 NSEC3 Salt Weakness

As an aside which was previously mentioned, in the course
of studying the RFC 5155 for this work, we found its use of
salt to be inadequate. The cryptographic hashing of names
in NSEC3 takes a salt as a parameter, ostensibly to increase
the size of any dictionaries that may be computed. However,
RFC 5155 specifies that the value of the salt is publicly ac-
cessible via DNSSEC RR lookup. Thus, any attacker may
obtain the salt to use as input into its dictionary computa-
tion, effectively negating the required increasing in dictio-
nary size. Thus, we urge readers not to consider the NSEC3
salt as a useful security enhancement.

6 Implemented Attack Experiment

In this section, we will describe how we utilized the NSEC3
opt-out vulnerability described in the previous section and
also insecure delegations to insert forged names into an
experimental DNSSEC zone and steal browser-cookies.
While we recognize that a man-in-the-middle network at-
tacker may steal browser-cookies via means other than
DNSSEC, we exploit DNSSEC for cookie theft primar-
ily as a convenient demonstration that our observed pro-
tocol vulnerabilities allow an attacker to successfully sub-
vert a DNSSEC domain and fool existing stub resolver and
end-user software, raising security implications discussed
in Section 6.3.

For our experiment, we set up a server running a BIND
9.6 instance for the hypothetical authoritative DNSSEC
zone “bank.com.”, containing an A record for the name
“www.bank.com”, an opt-out NSEC3 that covers the
name “attack1.bank.com”, and an insecure delegation to
a zone “attack2.bank.com”, so named for illustration pur-
poses. This server also hosts a legitimate web page at
“www.bank.com”, which sets secure and insecure cook-
ies with domain equal to “bank.com”, as well as a third-
party web page containing tags linked to the zones
“attack1.bank.com” and “attack2.bank.com”. We also set
up a user machine running web browsers, the OS stub re-
solver, and another BIND instance operating as the recur-
sive DNSSEC resolver, that communicates with the stub
resolver over the loopback interface. Finally, we set up
an attacker machine which can overhear and inject DNS

Exploit
Legitimate Reply Forged Reply

Signed RRs Unsigned Glue RRs Signed RRs Unsigned Glue RRs
NSEC3
Opt-out

Opt-out NSEC3 covering
“attack1.bank.com”

Opt-out NSEC3 covering
“attack1.bank.com”

“attack1.bank.com.
NS ns.atk.com”
“ns.atk.com A 5.6.7.8”

Insecure
Delega-
tion

“attack2.bank.com
NS ns.a2.bank.com”
“ns.a2.bank.com A
1.2.3.4”

“attack2.bank.com
NS ns.a2.bank.com”
“ns.a2.bank.com A
5.6.7.8”

Table 4. Forged reply packets from “bank.com." zone used in cookie theft attack. 5.6.7.8 is an IP-address owned
by attackers.

packet traffic between the recursive resolver and the zone
server. While this scenario places the experimental attacker
as a man-in-the-middle, the only information used by the
attacker from the overheard DNSSEC request packet is the
TXID. Thus, it is also possible to mount this attack as a via
Kaminsky-style out-of-path means.

6.1 Attacking Name Insertion

In the first exploit step, our attacker attempts to poison
the local recursive DNSSEC resolver by inserting an A
record pointed at the attacker server with owner name con-
taining the suffix “bank.com”. This may be done us-
ing both the the opt-out NSEC3 RR (creating an A RR
for “attack1.bank.com”) and the insecure delegation (“at-
tack2.bank.com”). In either case, the attacker must first
get the user to initiate recursive resolution for the attack-
ing A RR on the local DNSSEC resolver. In our exper-
iment, this was initiated by two means: the user actually
typing the name into the browser address bar, and the user
accessing a third-party page with an image hosted at “at-
tack[12].bank.com”. In the wild the resolution may be initi-
ated via by phishing email, tags on third-party sites,
or other means. Then, while the local recursive resolver
queries the legitimate “bank.com.” DNSSEC server, our at-
tacking server sends a forged DNSSEC reply packet with
TXID matching the query to the local resolver, in a race
with the legitimate reply. Table 4 summarizes the forged
reply packets.

Table 4 also demonstrates how our attack is feasible for an
out-of-path attacker. The signed RRs used in the forged
reply are public and available to the attacker by simply
querying the “bank.com” DNSSEC zone. Thus, the only
“secret” information copied from request to forged reply
is the TXID. The attacker needs only to guess the TXID
to execute this attack without man-in-the-middle capabili-
ties. This implies an out-of-path attacker may also mount a
Kaminsky-style attack that requests many bogus sub-names

of “attack[12].bank.com” to create a birthday-problem in-
stance that matches TXID.

In our experiment, the name-insertion attack succeeds
whenever the forged reply packet arrives at the local re-
solver ahead of the legitimate reply, as the TXID is copied
from request to spoofed response. In both cases, an insecure
delegation is created that causes the resolver to query the at-
tacking server and accept the forged “attack[12].bank.com”
A RR in its reply. This forged A RR also poisons the cache
of the local server, so that subsequent DNSSEC queries for
“attack[12].bank.com” by users of the local resolver return
the attack site address without requiring more injected at-
tack packets.

6.2 Cookie Theft

To steal user cookies once the false names have been in-
serted on the local DNSSEC resolver, the attacker utilizes
browser policy governing the cookie “domain” setting. The
policy specifies that non-secure cookies be sent in all http
requests made to sites which are sub-domains of the cook-
ies’ “domain” setting. In our experiment, the attack web
site at “http://attack[12].bank.com”, hosted on the attack
server, receives in http requests all legitimate non-secure
cookies set with domain equal to “bank.com”. The coarse-
grain setting for cookie domain required for this attack re-
flects a common practice. For example, all of the cook-
ies for PayPal are set with domain equal to “paypal.com”,
even when the actual web pages are served from the address
“www.paypal.com”.

After the name insertion on the local DNSSEC resolver, the
cookie theft succeeds in our experiment any time the user
has active cookies set by “http://www.bank.com” and sub-
sequently makes a http request for any object (images, web
pages, etc.) in the “attack[12].bank.com” domain. Even
if the name insertion has not yet occurred, the http request
to “http://attack[12].bank.com” itself generates a predicate
DNSSEC lookup that creates an opportunity for the spoofed

b r o w s e r +

stub resolver

"bank.com." DNSSEC zone

at tacker

0. User visits www.bank.com,

 Cookies set for "bank.com"

1. User visits www.thirdparty.com,

 containing l ink to

 attack1.bank.com

4a

3. Attacker

 overhears query

2. Query

 "attack1.bank.com A?"

recursive

resolver

same computer

4a. Forged reply

 containing insecure

 delegation

5. Query "attack1.bank.com A?"

6. Reply with A RR pointed at

 attacker

4b. Legit reply

 containing covering

 opt-out NSEC3

5

6

7. http request to attack1.bank.com

 containing "bank.com" cookies

Figure 5. Illustration of NSEC3 Cookie Theft Attack. Packet 4a wins the race against packet 4b.

name insertion. Both the name insertion and the cookie
theft occur automatically after the single originating user
action of visiting the attack site or a third-party site link-
ing to attack site. The cookie theft is also very difficult for
the user to detect, since the stolen payload is carried by in
a request to the attacker, allowing the attacker to return a
visually benign object or make no response at all. Figure 5
illustrates the entire attack using NSEC3 opt-out.

In order to steal secure cookies, the user must open
“https://attack[12].bank.com”, as browser policy will only
send secure cookies over secure https. This makes the attack
slightly more difficult, since the attacker should not pos-
sess Certificate Authority-validated credentials for encrypt-
ing the https connection. In our experiment this limitation
was bypassed by the user clicking through a browser warn-
ing dialog stating incorrect credentials, for Opera and older
version of Firefox and Internet Explorer. The attacker in
the wild may also use one of the CA-spoofing methods de-
tailed during BlackHat USA 2009 [19, 15], where attackers
obtains CA-validated credentials for a domain name con-
taining a null character, such as ’bank.com\0.attacker.com’,
that become valid for the domain name expressed before the
null character due to faulty browser implementation. Using
these certificates, stealing secure cookies becomes as sim-
ple as stealing non-secure ones.

6.3 Vulnerability Implications

We have experimentally demonstrated how a network at-
tacker can exploit NSEC3 opt-out and also insecure dele-
gations to insert an illegitimate name into a DNSSEC zone.
We have also shown the feasibility of such name-insertion

via Kaminsky-style out-of-path means. Illegitimate name
insertion may be used for cookie theft, as we have demon-
strated. Pharming attacks, which are a form of phishing
where attacker page is shown at an address that legitimately
belongs to the victim domain, are also made possible by this
vulnerability.

7 Security Advice and Conclusion

DNSSEC is a complex system containing many options,
some of which have been demonstrated in this paper to lead
to security vulnerabilities. In addition, DNSSEC is oper-
ated by many participants, such as domain administrators,
software implementers, and ISPs. To summarize, in order
to be fully secure from authoritative zone (“example.com.”)
to end-user while still inter-operating with standard DNS,
DNSSEC requires:

1. DNSSEC adoption by authoritative zone
2. Authoritative zone to not use NSEC3 opt-out and to

have no insecure delegations
3. All ancestor zones (root and TLD) to adopt DNSSEC

and guarantee secure delegations at every step from
trust anchor authoritative zone

4. DNSSEC adoption by local recursive resolver
5. Secure channel in the last-hop between stub and recur-

sive resolvers

In addition, to support incremental adoption, DNSSEC also
requires indicators of DNS lookup security to be imple-
mented in end-user interfaces.

It is clear that many parts of the DNS ecosystem need to
participate in DNSSEC in order for anyone to benefit, thus

dampening any enthusiasm for incremental DNSSEC early-
adoption. We hope the planned DNSSEC deployment of
the root and TLD zones generates sufficient momentum to-
wards adopting end-to-end DNS security.

We also observe that several of the DNSSEC security loop-
holes, such as zone enumeration and NSEC3 opt-out, result
from the desire to support off-line signing of authenticated
denial-of-existence. We believe that a better solution for
authenticated denial-of-existence, whether through on-line
signing of responses or a better cryptographically-based off-
line scheme, would lead to a more secure DNSSEC proto-
col.

To conclude this study of DNSSEC security, we offer the
following advice, also summarized in Table 1, to the various
operators and users of DNSSEC to eliminate exploitability
of the vulnerabilities uncovered in this study.

• For administrators running an DNSSEC server author-
itative over a domain such as ’bank.com.’, we advise
that all NSEC3 records NOT use opt-out. We also
advise that any insecure delegations from this zone
be made secure with the adoption of DNSSEC by
the delegation-target zone, to eliminate mechanisms
for falsified name insertion and DNS-DNSSEC inter-
operation.

To eliminate replay attacks, domain owners should
not relinquish IP addresses until they are certain all
RRSIGs for RRs pointing to these IP addresses have
expired.

• For website designers, we urge a fine-grained cookie
“domain” setting. Coarse-grained cookie “domain”
setting, as we have shown, can be utilized as an av-
enue for cookie theft via DNS name insertion. In our
experiment, if the cookie domains were set to a finer-
grain that covers only the web pages that actually re-
quire these cookies, the attack scenario in Section 6
would have been prevented under DNSSEC, since it is
impossible to forge records that prepend a subdomain
to an existent name such as “www.bank.com”.

• For DNSSEC software implementers, we emphasize
the importance of resolver software logic to the secu-
rity of DNSSEC. Our collected resolver software rec-
ommendations are:

– Bound RR TTL lifetime on the signature validity
period of all records forming the attestation chain
to the trust anchor, not just the single RRSIG cov-
ering the RR.

– Do not trust the header bits of DNSSEC reply
packets. As a consequence, all resolvers must
validate the content of DNSSEC reply packets
themselves.

– Build an attested cache only containing signed
RRs with full attestation chain to the trust an-
chor. Answers to user queries are only secure
when formed entirely from contents of this at-
tested cache.

– Use glue records only as indications of delega-
tion and pointers to child zone server address, but
not as data that can enter the attested cache.

• For ISPs, local recursive resolvers must request all
DNSSEC RRs to be included in packets to prove RR
integrity at the closest recursive resolver to the end
user. A secure channel between this recursive resolver
and the end user’s stub resolver is required to guaran-
tee DNSSEC integrity all the way to the end-user.

• For end user software vendors, especially browsers, we
urge the development of user-interface elements indi-
cating the security/insecurity of a DNSSEC lookup.

We believe the adoption of the advice laid out in this sec-
tion will lead to the best possible security practices for
DNSSEC.

References

[1] RFC 2535. Domain Name System Security Exten-
sions.

[2] RFC 2845. Secret Key Transaction Authentication for
DNS (TSIG).

[3] RFC 2931. DNS Request and Transaction Signatures
(SIG(0)s).

[4] RFC 4033. DNS Security Introduction and Require-
ments.

[5] RFC 4034. Resource Records for the DNS Security
Extensions.

[6] RFC 4035. Protocol Modifications for the DNS Secu-
rity Extensions.

[7] RFC 5155. DNS Security (DNSSEC) Hashed Authen-
ticated Denial of Existence.

[8] BIND Security Advisory. DNS Cache Poisoning Issue
(’Kaminsky bug’). https://www.isc.org/sw/
bind/forgery-resilience.php, 07/08/2008.

[9] BIND Security Advisory. BIND 9 Cache Update
from Additional Section. https://www.isc.
org/node/504, 11/23/09.

[10] Wikipedia Article. Birthday Problem. http://en.
wikipedia.org/wiki/Birthday_problem.

[11] Daniel Bernstein. Breaking DNSSEC. 3rd Usenix
Workshop on Offensive Technologies, August 2009.

[12] Microsoft Security Bulletin. Vulnerabili-
ties in DNS Could Allow Spoofing (953230).
http://www.microsoft.com/technet/
security/Bulletin/ms08-037.mspx,
07/08/2008.

[13] David Dill. The Murϕ Verification System. Com-
puter Aided Verification, 8th International Confer-
ence, 1996.

[14] Dan Kaminsky. It’s the End of the Cache as We Know
It. BlackHat USA, Auguest 2008.

[15] Dan Kaminsky. Black Ops of PKI. BlackHat USA,
August 2009.

[16] Dan Kaminsky. DNS 2008 and the New (old) Na-
ture of Critical Infrastructure. BlackHat DC, February
2009.

[17] Robert Lemos. Poisoned DNS Servers Pop Up
as ISPs Patch. http://www.securityfocus.
com/news/11529.

[18] Gavin Lowe. Breaking and Fixing the Needham-
Schroeder Public-Key Protocol using CSP and FDR.
In 2nd International Workshop on Tools and Algo-
rithms for the Constructions and Analysis of Systems,
1996.

[19] Moxie Marlinspike. More Tricks For Defeating SSL.
BlackHat USA, August 2009.

[20] John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern.
Finite-State Analysis of SSL 3.0. In Seventh USENIX
Security Symposium, pages 201–216, 1998.

[21] Erica Naone. The Flaw at the Heart of the Internet.
Technology Review, November/December 2008.

