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Motivation

• Thousands of new malware samples appear each day

• Automatic analysis systems allow us to create thousands of 

analysis reports

• Now a way to group the reports is needed. We would like to 

cluster them into sets of malware reports that exhibit similar 

behavior.

– we require automated clustering techniques

• Clustering allows us to:

– discard reports of samples that have been seen before

– guide an analyst in the selection of those samples that require most 

attention

– derive generalized signatures, implement removal procedures that

work for a whole class of samples
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Scalable, Behavior-Based Malware 

Clustering

• Malware Clustering: Find a 
partitioning of a given set of malware 

samples into subsets so that subsets 

share some common traits (i.e., find 

“virus families”)

• Behavior-Based: A malware 
sample is represented by its actions 

performed at run-time

• Scalable: It has to work for large 
sets of malware samples 
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Dynamic Analysis

• Based on our existing automatic, dynamic analysis 
system called Anubis
– Anubis is a full-system emulator

– Anubis generates an execution trace listing all invoked 
system calls

• In this work, we extended Anubis with:
– system call dependencies (Tainting)

– control flow dependencies

– network analysis (for accurately describing a sample’s 
network behavior)

• Output of this step: Execution trace augmented with 
taint information and network analysis results
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Extraction Of The Behavioral Profile

• In this step, we process the execution trace provided 

by the ‘dynamic analysis’ step

• Goal: abstract from the system call trace

– system calls can vary significantly, even between programs 

that exhibit the same behavior

– remove execution-specific artifacts from the trace

• A behavioral profile is an abstraction of the program's 

execution trace that accurately captures the behavior 

of the binary
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Reasons For An Abstract Behavioral 

Description

• Different ways to read from a file:

• Different system calls with similar semantics

– e.g., NtCreateProcess, NtCreateProcessEx

• You can easily interleave the trace with unrelated calls:

f = fopen(“C:\\test”);

read(f, 1);

read(f, 1);

read(f, 1);

f = fopen(“C:\\test”);

read(f, 3);

f = fopen(“C:\\test”);

read(f, 1);

readRegValue(..);

read(f, 1);

A:
B:

C:
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Elements Of A Behavioral Profile

• OS Objects: represent a resource such as a file that can be 

manipulated via system calls

– has a name and a type

• OS Operations: generalization of a system call

– carried out on an OS object

– the order of operations is irrelevant

– the number of operations on a certain resource  does not matter

• Object Dependencies: model dependencies between OS objects 

(e.g., a copy operation from a source file to a target file)

– also reflect the true order of operations

• Control Flow Dependencies: reflect how tainted data is used by 

the program (comparisons with tainted data)
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Example: Behavioral Profile

src = NtOpenFile(“C:\\sample.exe”);

// memory map the target file

dst = NtCreateFile(“C:\\Windows\\” + GetTempFilename());

dst_section = NtCreateSection(dst);

char *base = NtMapViewOfSection(dst_section);

while(len < length(src)) {

*(base+len)=NtReadFile(src, 1); len++; }

Op|File|C:\sample.exe

open:1, read:1

Op|File|RANDOM_1

create:1

Op|Section|RANDOM_1

open:1, map:1, mem_write: 1

Dep|File|C:\sample.exe -> Section|RANDOM_1

read – mem_write
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Scalable Clustering

• Most clustering algorithms require to compute the distances 

between all pairs of points => O(n2)

• We use LSH (locality sensitive hashing), a technique introduced 

by Indyk and Motwani, to compute an approximate clustering that 

requires less than n2 distance computations

• Our clustering algorithm takes as input a set of malware samples

where each malware sample is represented as a set of features

⇒we have to transform each behavioral profile into a feature 

set first

• Our similarity measure: Jaccard Index defined as

||/||),( bababaJ ∪∩=
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LSH Clustering

• We are performing an approximate, single-linkage 

hierarchical clustering:

• Step 1: Locality Sensitive Hashing

– to cluster a set of samples we have to choose a similarity 

threshold t

– the result is an approximation of the true set of all near (as 

defined by the parameter t) pairs

• Step 2: Single-Linkage hierarchical clustering
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Evaluating Clustering Quality

• For assessing the quality of the clustering algorithm, we 

compare our clustering results with a reference clustering of the 

same sample set

– since no reference clustering for malware exists, we had to create 

it first

• Reference Clustering:

1. we obtained a random sampling of 14,212 malware samples that 

were submitted to Anubis from Oct. 27th 2007 to Jan. 31st 2008

2. we scanned each sample with 6 different virus scanners

3. we selected only those samples for which the majority of the anti-

virus programs reported the same malware family. This resulted in 

a total of 2,658 samples.

4. we manually corrected classification problems
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Quantitative Evaluation

• We ran our clustering algorithm with a similarity 

threshold t = 0.7 on the reference set of 2,658 

samples.

• Our system produced 87 clusters while the reference 

clustering consists of 84 clusters.

• Precision: 0.984
– precision measures how well a clustering algorithm distinguishes between samples that 

are different

• Recall: 0.930
– recall measures how well a clustering algorithm recognizes similar samples
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Comparative Evaluation

0.9590.60LSH
Jaccard

Index
Our Profile

0.9590.61Exact
Jaccard

Index
Our Profile

0.6560.19Exact
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Syscalls
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Performance Evaluation

• Input: 75,692 malware samples

• Previous work by Bailey et al (extrapolated from their 

results of 500 samples):

Number of distance calculations: 2,864,639,432

Time for a single distance calculation: 1.25 ms

Runtime: 995 hours (~ 6 weeks)

• Our results:

Number of distance calculations: 66,528,049

Runtime: 2h 18min
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Conclusions

• Novel approach for clustering large collections of 

malware samples

– dynamic analysis

– extraction of behavioral profiles

– clustering algorithm that requires less than a quadratic 

amount of distance calculations

• Experiments on real-world datasets that demonstrate 

that our techniques can accurately recognize 

malicious code that behaves in a similar fashion

• Available online: http://anubis.iseclab.org


