
CDN-on-Demand:
An Affordable DDoS Defense via Untrusted Clouds

Yossi Gilad
The Hebrew University of Jerusalem

mail@yossigilad.com

Amir Herzberg
Bar-Ilan University

amir.herzberg@gmail.com

Michael Sudkovitch
Bar-Ilan University

sudmike@gmail.com

Michael Goberman
Bar-Ilan University
micgob@gmail.com

Abstract—We present CDN-on-Demand, a software-based de-
fense that administrators of small to medium websites install
to resist powerful DDoS attacks, with a fraction of the cost of
comparable commercial CDN services. Upon excessive load, CDN-
on-Demand serves clients from a scalable set of proxies that it
automatically deploys on multiple IaaS cloud providers. CDN-on-
Demand can use less expensive and less trusted clouds to minimize
costs. This is facilitated by the clientless secure-objects, which is
a new mechanism we present. This mechanism avoids trusting
the hosts with private keys or user-data, yet does not require
installing new client programs. CDN-on-Demand also introduces
the origin-connectivity mechanism, which ensures that essential
communication with the content-origin is possible, even in case
of severe DoS attacks.

A critical feature of CDN-on-Demand is in facilitating easy
deployment. We introduce the origin-gateway module, which
deploys CDN-on-Demand automatically and transparently, i.e.,
without introducing changes to web-server configuration or
website content. We implement CDN-on-Demand and evaluate
each component separately as well as the complete system.

I. INTRODUCTION

The provision of efficient and Denial-of-Service (DoS)
resilient web services has become an important goal for many
websites. This goal is challenged by the unpredictability of
demand for content, including the ‘flash crowds’ phenomenon,
and by increasingly-powerful DoS attacks. One popular ap-
proach for dealing with this problem is to outsource content
distribution to a Content Delivery Network (CDN). CDNs
deploy servers in various locations where they host proxies of
websites, distributing computational and storage resources and
delivering content to clients from a nearby server. CDNs use
various mechanisms to provide scalable and robust services,
including web-caches that reduce latency and communication
volumes, and filters against clogging traffic. In particular, the
dispersed servers and high-capacity connectivity of the CDN
proved to mitigate flooding DoS attacks (e.g., see [31]).

However, for smaller sites the cost of a CDN service can be
prohibitive. Indeed, despite their benefits, CDNs appear to be

0

0.05

0.1

0.15

0.2

1 4 16 64 256 1024 4096 16384

C
D

N
 P

op
ul

ar
ity

Number of Popular Websites (log-scale)

1. Total Sites using CDNs
2. Allow HTTPS and using CDNs
3. Valid HTTPS and using CDNs

Fig. 1: CDN usage by website popularity. We count how many
of X most popular sites use a CDN.

less popular among small and medium websites. In Figure 1 we
present the usage distribution of commercial CDN providers
among the 32K most popular websites (according to Alexa
website-popularity rank [5]).1 Line 1 of Figure 1 confirms
earlier studies [24], [27]: most websites do not use CDNs,
and furthermore, use of CDN declines for less-popular sites
(from the 2000 place onwards). Note that larger organizations
often use their own infrastructure instead of an external CDN
provider.

One reason for the limited use of CDNs is that smaller
organizations may not be able to afford using CDNs on a
regular basis, i.e., when not under attack, while temporal
migration to a CDN introduces substantial administrative effort
and financial costs. In particular, the CDN market is dominated
by a few providers [24], [27], resulting in a less-competitive
market and hence higher costs.

CDN-on-Demand offers an alternative approach for DoS-
resiliency, which may be a better solution for small and
medium websites. Namely, CDN-on-Demand is a software
defense that automatically handles flash crowds and foils DoS
attacks by managing flexible cloud resources, rather than a
service, as offered by CDNs. Since CDN-on-Demand has an
open design, its security, resiliency and performance properties
can be carefully studied and improved, rather than forcing
customers to rely on hard-to-validate claims of full-service
providers which use proprietary mechanisms. Furthermore,
websites can tailor the system to their needs, e.g., to ensure

1We use the method in [24] to identify whether a website uses a CDN: we
query for its A and AAAA DNS records and check whether (1) the records
point using canonical-name to a CDN, or (2) the website delegates DNS
queries for its domain to a CDN’s name server using an NS record; and
(3) we retrieve the homepage of the website and check whether it obtains
web-objects from one of the popular CDNs.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23109

 0

 100

 200

 300

 400

 500

 600

 700

Cloudflare

Amazon Cloudfro
nt

Microsoft A
zure

Fastly
Cdn77

MAXCDN

Cachefly

CDN-on-Demand

(EC2,GCE)

CDN-on-Demand

(ProfitB
ricks,

Virtu
alServer)

U
SD

Fig. 2: Comparative evaluation of CDN service cost per month

desired user experience. In contrast, with service-based CDNs,
even merely comparing and changing providers can be chal-
lenging.

To distribute content in face of strong DoS attacks, CDN-
on-Demand deploys proxy servers on multiple Infrastructure-
as-a-Service (IaaS) cloud providers, optimizing resource use
to minimize expenses. Due to its flexibility, CDN-on-Demand
can significantly reduce costs compared to ‘full’ CDN ser-
vices; Figure 2 compares costs between CDN-on-Demand
and several CDNs, including both widely-known CDNs and
relatively inexpensive CDNs. The figure also compares the
cost of deploying CDN-on-Demand, again comparing costs
using well-known, reputed clouds (EC2 and GCE), to costs
using less-known providers (ProfitBricks and VirtualServer).
CDN-on-Demand costs are significantly lower, and use of the
less-expensive providers can further save over half of the costs.

Less expensive cloud services, are typically less trusted,
e.g., machines shared with other customers or less popular
providers. In order to securely use such less expensive - and
less trusted - providers, CDN-on-Demand does not require
entrusting providers with the website’s private key or certifi-
cate. This also solves an important concern with CDNs [24].
We achieve this property by protecting the website content,
delivered to clients from CDN-on-Demand, using a novel
clientless secure-objects mechanism.

Reducing trust in CDN proxies. Currently, the only content-
security mechanism available using standard web clients is
HTTPS (i.e., SSL/TLS), securing the communication chan-
nel between clients and proxies, but leaving the proxy with
complete access to the content. Furthermore, Liang et al. [24]
show that there are currently two options to support HTTPS
connections using CDNs, both problematic. In the first option,
the website shares its private key with the CDN; this presents
challenges, for example when the website decides to switch
to another CDN provider. In the second option, the website
allows a certification authority to issue the CDN a certificate.
As shown in [24], this approach is also vexed, since websites
have difficulty revoking the certificate issued to the CDN.
Note that even if the CDN operator is honest, one of its
servers may be compromised; it may store copies of the data
or keys in vulnerable locations, or deploy a web-server on

the same host with an attacker’s (allowing a variety of side-
channel attacks, e.g., [34], [44]). We find that most websites
using CDNs either do not support HTTPS connections or do
not present valid certificates (compare line 1 to lines 2, 3 in
Figure 1), illustrating the problem of securing communication
when using CDNs.

Clientless secure-objects form a complementary mecha-
nism to TLS/SSL, that provides security at the HTTP object
level, i.e., each protected object is individually encapsulated
(authenticated and, if needed, encrypted). Our design is client-
less, namely it does not require changes to browsers and
is readily deployable with today’s websites. To support this
mechanism without introducing changes to clients, our imple-
mentation uses a JavaScript agent that clients automatically
download from the content-origin during their first connection
to the website. Web object encapsulation, as an alternative or
complementary mechanism to secure connections, was pro-
posed several times since the very early days of web security
(see [9], [13], [33], [36]). However, all proposals required
installing browser extensions or helper applications to perform
the security functions, e.g., validate authenticity of objects
received, which proved a formidable deterrent to adoption (we
provide an extensive discussion of related works at the end of
the paper). Clientless secure-objects allow CDN-on-Demand
to utilize cheaper untrusted providers and to switch between
providers to optimize costs (without sharing the site’s private
key or certificate), while avoiding the deployment hurdles of
introducing changes to clients (web-browsers).

Ensuring content-origin connectivity. CDNs offer several
effective defenses against DoS. One basic defense is due
to the fact that most of the website’s content is static and
cached by the CDN and therefore provided directly from the
CDN’s servers, which are difficult to attack (by being well
connected, replicated and protected by filtering rules). CDN-
on-Demand, similarly, leverages the robust connectivity and
distributed infrastructure of IaaS cloud providers to efficiently
deliver content. When necessary, e.g., under DoS, CDN-on-
Demand ‘scales-up’ by using more proxy servers in the cloud
to ensure good service.

However, some HTTP requests require communication
with the content-origin, e.g., to support dynamic content or
update web-objects stored on proxies. Such ‘origin-bound
requests’ are vulnerable to additional DoS attacks, focused
on the content-origin and its communication with the proxies.
An attack might clog the connection between the CDN and
the content-origin, blocking requests (or responses). The only
defenses currently offered by CDNs against this threat are (1)
to allow only traffic between the CDN and content-origin,
dropping other packets, and (2) to use a secret, hidden IP
address for the content-origin. These defenses are typically
expensive and not always available. In particular, use of hidden
IP address is often infeasible, especially to smaller websites of
the kind we focus on, who wish to serve clients directly from
their server when traffic load permits. Finally, these defenses
often fail: attackers are often able to discover the ‘hidden’ IP
address (see [40], [26]).

CDN-on-Demand includes the origin-connectivity mech-
anism, which ensures that the origin’s server and website
content remain reachable despite severe DDoS attacks. CDN-

2

on-Demand deploys manager servers that monitor performance
of the content-origin; when loss-rates grow, the managers
deploy proxies over IaaS clouds and modify the website’s
DNS mapping, directing clients to proxies. In order to ensure
that communication between the content-origin and the proxies
remains possible (to support dynamic content, updates and
clientless secure-objects), CDN-on-Demand uses a different
mechanism than suggested by today’s CDNs: the system au-
tomatically establishes a clogging-resilient tunnel between the
content-origin and CDN-on-Demand. This tunneling defense
does not require hiding the content-origin’s IP addresses. In-
stead, it performs efficient whitelist filtering using the proxy’s
IP addresses and randomized service port numbers, to allow
only proxies to access the content-origin server, combined with
redundant coding, to facilitate loss-tolerant communication
with the content-origin.

Organization: Section II presents an overview of CDN-
on-Demand. Section III describes the clientless secure-objects
mechanism. Section IV describes the origin-connectivity
mechanism. Section V describes the origin-gateway module,
which facilitates deployment of CDN-on-Demand with ex-
isting websites. Section VI presents the proxy management
mechanisms and Section VII evaluates CDN-on-Demand’s
performance and cost using our prototype. Sections VIII and
Section IX present related works and our conclusions.

II. SYSTEM OVERVIEW

This section presents an overview of CDN-on-Demand’s
design. We first describe the properties of the system, which
match the goals outlined in the introduction. We then illustrate
the deployment scenario, highlighting the system’s compo-
nents. Lastly, we describe the system’s bootstrap mechanism,
which facilitates its ‘on-demand’ property.

A. Properties

Robustness to DoS attacks. CDN-on-Demand ensures avail-
ability of all website content even when under severe DoS
attacks, in particular, bandwidth-DoS attacks that attempt to
clog communication to the website.

Secure use of untrusted providers. To allow maximal flexi-
bility and reduce costs, CDN-on-Demand deploys over multi-
ple low-cost IaaS-cloud providers. It ensures content-security
against rogue providers or compromised cloud machines.

Efficient resource utilization. To establish an affordable sys-
tem, CDN-on-Demand does not introduce significant overhead
or costs when the website is not under attack or handling a
flash-crowd. When the load on the content-origin server is too
high, CDN-on-Demand automatically allocates the resources
needed to provide sufficiently good service and frees them
when unneeded.

Simple deployment and automated operation. CDN-on-
Demand is easy to deploy and operates automatically, without
requiring the site administrator to modify web-server configu-
ration or website content. In particular, CDN-on-Demand does
not require client-side installation and works with current IaaS-
clouds infrastructure.

Client

Content delivery

Content updates,
monitoring & control

Proxy

Content-origin
Amazon

EC2

Google Compute
 Engine

Legend

Origin-gateway

Manager

Fig. 3: CDN-on-Demand deployed over two clouds

B. Components and Deployment

Figure 3 illustrates CDN-on-Demand deployment, using
two IaaS providers, Amazon Elastic Compute Cloud (EC2) and
Google Compute Engine (GCE). The figure shows the main
components involved in the system’s operation: managers and
proxies, which are deployed on IaaS-cloud instances, and the
origin-gateway, which is deployed at the content-origin.

The managers perform four basic functions: resource man-
agement, authoritative DNS, monitor/watchdog and second-
level cache. (1) The manager manages CDN-on-Demand’s
resources, by invoking and discarding CDN-on-Demand’s
cloud instances (for proxy services), to minimize costs while
ensuring desired service level. To manage cloud instances, the
manager receives (in configuration) the website administrator’s
credentials for using IaaS clouds. (2) The manager provides
the authoritative DNS service for the content-origin’s domain,
mapping clients directly to the content-origin (under normal
conditions, when CDN-on-Demand is dormant) or to CDN-
on-Demand proxy nodes (when CDN-on-Demand is active,
typically due to attack). (3) The manager monitors the avail-
ability of the content-origin, by running a ‘watchdog’ service
(we describe this service as part of the bootstrapping process
below). (4) Finally, the manager keeps an updated copy of all
static, public objects in the content-origin, allowing CDN-on-
Demand to provide this content even when the content-origin is
under attack or otherwise unreachable. Notice that objects are
stored using the clientless secure-objects mechanism, which
ensures security even if cloud machines are corrupt.

For robustness, and to improve reliability and quality of
monitoring, CDN-on-Demand supports deployment of more
than one manager (as illustrated in Figure 3). In this case,
one of the managers performs the resource management func-
tion; we refer to that manager as the resource-manager, and
the others provide backup in case that manager fails. The
other services, namely authoritative DNS, caching and origin-
monitoring, are performed by all managers to distribute load
and reduce latency. (DNS allows to specify multiple name-
server addresses and proxies use the cache near them.)

The origin-gateway module is a software component that
transparently implements the system’s mechanisms at the
content-origin’s side, without requiring changes to the web-
server or site’s content. This simplifies deployment of CDN-
on-Demand with existing websites. In contrast to proxies and
managers, which are deployed on third party IaaS clouds,

3

typically on machines shared with other applications, the
origin-gateway is deployed at the content-origin by the website
administrator and handles client requests (or relays them to
the content-origin). Hence, the origin-gateway is trusted with
private keys and content.

C. System Bootstrap and Teardown

The managers’ watchdog service periodically tests the
content-origin’s availability, by exchanging messages with the
origin-gateway. These messages are exchanged over UDP,
to avoid congestion control mechanisms (e.g., of TCP) and
allow estimating the loss-rate and latency for communicating
with the content-origin. Under normal conditions (i.e., no
attack), watchdogs receive responses in a timely fashion. In
this case clients connect directly to the content-origin, i.e.,
CDN-on-Demand is ‘dormant’ (proxies are not deployed), with
negligible overhead and costs; the origin-gateway relays HTTP
requests and responses between clients and the content-origin.

When the manager identifies that multiple responses are
delayed or do not arrive (over a threshold), it activates CDN-
on-Demand. The resource-manager deploys proxy servers, and
changes the DNS mapping of the site’s domain, directing
clients to a nearby proxy (and also informs other managers, if
deployed). While the system is active, the resource-manager
adjusts the number of proxies based on traffic rates, in order
to ensure sufficiently good service. When traffic rates are back
to normal (e.g., below the capacity of the content-origin link),
and the content-origin is available, the system goes back to
the ‘dormant’ state. Namely, the manager changes the DNS
mapping to point clients directly to the content-origin and
removes the proxies. We describe the proxy-deployment and
client-to-proxy mapping procedures in Section VI.

III. CLIENTLESS SECURE-OBJECTS

CDN-on-Demand is designed to work with any IaaS cloud
provider to deploy proxies, in particular lower cost ones which
are typically less trusted. Hence, we do not entrust the provider
or cloud instances with the content-origin’s private key or
private user-data. In this section we introduce the clientless
secure-objects mechanism, which ensures security for the
data exchanged between the browser and CDN-on-Demand.
This mechanism allows utilization of multiple IaaS providers,
thus improving geo-coverage and reducing system cost, yet
it does not necessitate trusting those providers and compro-
mising on security. The clientless secure-objects mechanism
is complementary to TLS/SSL, which we use to protect the
communication links between clients, proxies and the content-
origin.

We first describe the RootJS client-side agent, the key com-
ponent of the clientless secure-objects mechanism, and present
a simple yet important application of clientless secure-objects,
which can be viewed as a simplified case of untrusted CDN:
secure software downloads using mirror sites. We then describe
the use of clientless secure-objects in CDN-on-Demand. We
conclude this section by discussing the implementation of this
module and its evaluation.

Content-Origin
site.com

Client

Get webpage (secure connection)

Repository
(mirror, HTTP proxy)

site-cdn.com

homepage with inline Loader script, max-age = one month

RootJS retrieves secure-objects from repository

RootJS, max-age = one month

RootJS decapsulates & presents

Loader retrieves RootJS from repository

Loader validates and loads RootJS

Origin
Gateway

homepage

Fig. 4: Supplying the RootJS to new clients

A. Trusted Client-Side Agent

The Root JavaScript (RootJS) is the client-side agent of our
system. This static and short (10KB) script is responsible for
presenting web content to the user. In particular, the RootJS
includes the website’s public signature-verification key and
validates the authenticity of objects that the client retrieves
from untrusted repositories (mirror sites or CDN proxies).

Supplying the RootJS to new clients. Figure 4 illustrates
a new client connecting to a website (site.com) that employs
clientless secure-objects, securely loading the RootJS and then
using it to display secure-objects. To ensure the authenticity of
the RootJS, clients obtain a tiny Loader script from the content-
origin over a secure (TLS) connection when they connect to
the website for the first time. The origin-gateway ‘injects’ the
Loader script into the website’s HTML page in the content-
origin response (i.e., ‘inline script’); the script contains a
hash function implementation (SHA1) and a hard-coded hash
value of the RootJS. The Loader retrieves the RootJS from the
repository, verifies the hash and then loads the script. The size
of the Loader script is only 870Bytes; this is significant since
the Loader is provided from the origin’s site. To allow validation
of objects stored in the repository, we send them with the Cross
Origin Resource Sharing (CORS) header:

Access-Control-Allow-Origin: site.com

Specifying that the content-origin website (and only that
website), site.com, may access objects from its repository,
site-cdn.com.

When CDN-on-Demand is active, the manager (operating
the authoritative DNS server) maps the website’s domain name
to proxy IP addresses. The client then opens a secure connec-
tion to the proxy machine in order to retrieve the website’s
homepage, which includes the Loader script and imports the
RootJS. Since in our design the CDN does not hold the content-
origin’s private TLS key, it cannot handle the communication;
the proxy merely relays the raw TLS communication to and
from the content-origin. As we explain in Section IV, CDN-
on-Demand’s origin-connectivity mechanism leverages the sys-
tem’s control of both communication endpoints (proxies and
origin-gateway) to establish a robust communication channel
between them.

Caching, updating and revoking the RootJS. Because the
RootJS is static, we use the browser’s caching mechanism to

4

minimize latency and communication with the origin site in
future connections. Specifically, the website’s homepage with
the Loader script and the RootJS are sent with the following
HTTP header, to cache them at the client:

Cache-Control: public, max-age = one month

The clientless secure-objects mechanism allows forcing the
Loader and RootJS out of the client’s cache to facilitate code
patches or revoke the website’s private key if it was exposed.
The mechanism works by distributing a small ‘timestamp’
object, via the repository, that approves use of the current
RootJS version. This timestamp object is cached (both by
the repository and at the client’s browser) for a short period
of time, much shorter than the RootJS (e.g., one day). The
origin-gateway signs the ‘timestamp’ object and updates it
on the repository (e.g., daily). To sign this sensitive object,
the origin-gateway uses a dedicated private key (e.g., kept on
an offline machine). The RootJS verifies the signature with
the corresponding public key. If the client does not have the
‘timestamp’ object in the cache, the RootJS tries to fetch it
from the repository. If it fails or the signature is invalid, then
the RootJS circumvents the browser’s caching mechanism (by
specifying the Cache-Control: max-age = 0 HTTP header in the
request) and retrieves a new version of the Loader from the
content-origin as well as a new RootJS from the repository.

B. Securely-using Mirror Sites

Mirror sites may be viewed as a limited and inexpensive
alternative to CDNs: a website peers with other sites to allow
its clients to download files (typically software) from a server
near them. Malicious or insecure mirror sites may modify
the files hosted on their servers, e.g., to distribute malware.
To address this threat, many websites using mirrors publish
the hash of the download software file, and instruct users to
validate authenticity of the file by computing the hash over
its content and comparing with the published hash-value. In
practice, however, only a small portion of savvy users perform
such validation; many users do not, e.g., due to unwillingness
or inability to install or use the validation tools [12]. We
next explain how clientless secure-objects mechanism allows to
protect users of software mirror sites. This simple application,
limited to file downloads, helps understand the more involved
application to CDN-on-Demand (distributing rich web con-
tent).

Instead of relying on users to validate the content of
download files, the clientless secure-objects mechanism uses
the RootJS to automate the validation. The content-origin signs
the file together with an expiration date and its Uniform
Resource Identifier (URI), which are ‘linked’ in the content-
origin website. This ensures that a malicious mirror cannot
change the file content, including change to obsolete version
or another mirrored file. The website stores on the mirror the
encapsulated version of the file, which includes the content
(in plain-text), metadata such as URI, and a signature over
all these fields. When users click on the download link at the
website, they invoke the RootJS which fetches the file from the
mirror site and validates its content. If successful, the RootJS
calls the saveAs command which prompts to the user to save
the original file’s content.

Signature
(on hash)

 Data
(content and rendering info)

Hash
(of data, URI and cach headers)

(a) Public object

MAC

Encrypted Data
(content and rendering info)

(on enc. data, URI, cache headers)

(b) Private object

Fig. 5: Encapsulated objects (stored on repository)

C. Securely-using Untrusted Web Proxies

CDN-on-Demand ensures authenticity and confidentiality
of web-content by storing encapsulated web-objects on its
proxies. The origin-gateway performs the encapsulation auto-
matically, when proxies retrieve web-objects from the content-
origin (see details in Section V).

In order to support decapsulation of dynamic objects
(AJAX), and avoid changing the original website, the RootJS
‘hooks’ the XMLHttpRequest’s OnReadyStateChange method.
Namely, the RootJS replaces the callback method that is in-
voked to handle dynamic objects to be the object-decapsulation
method. If decapsulation is successful, the hook method passes
the content to the original handler method, otherwise the
RootJS discards the object.

In the following two subsections, we discuss the encapsu-
lation and rendering procedures, for public and then for private
web-objects.

D. Public Objects

All users may access the website’s public objects, which
comprise much of the content in many sites such as online
newspapers and stores. We ensure that public objects are
not modified by malicious or compromised caching service.
Figure 5a illustrates the encapsulated public object structure,
which generalizes encapsulation of files stored on mirrors (see
above) to support HTML rendering and HTTP caching options.
Each encapsulated object specifies the parameters required to
render its content (e.g., type and height/width parameters). The
origin-gateway signs the object with its URI and HTTP caching
directives (‘Last-Modified’, ‘Expires’ and ‘max-age’). The content
is stored in plain-text on the proxy along with the signature.

Decapsulation and Rendering. To display a web-page, the
RootJS retrieves it from one of the CDN proxies, decapsulates
it and validates its authenticity by verifying the content-origin’s
signature. Next, the RootJS displays the page to the user (by
updating document.documentElement.innerHTML) and continues to
retrieve the objects embedded in that page from the proxy,
using the secure-objects’ rendering information to display them
on the page.

User Authentication. One particularly important public object
is the login form, in which the user typically enters her
credentials (e.g., username and password). Clientless secure-
objects allow the client to securely retrieve the public login
page from the CDN and send the user’s credentials to the
content-origin for verification. When the user authenticates,
she receives from the origin-gateway her secret user-key and a
signed cookie, which identifies the user (we provide details in

5

URI Encrypted Key

PetPic Enc
Alice-key

(k
PetPic

)

AlicePic Enc
Alice-key

(k
AlicePic

)

(a) Alice’s object table

URI Encrypted Key

PetPic Enc
Bob-key

(k
PetPic

)

BobPic Enc
Bob-key

(k
BobPic

)

(b) Bob’s object table

Fig. 6: Alice and Bob’s object-tables. Alice and Bob share a
picture of their pet (PetPic).

Section V). The user’s key is stored at the client in local storage
(available since HTML 5). This key is never shared with CDN
proxies and allows the RootJS to display private content for that
user (see next subsection). In contrast, the cookie is attached
to all HTTP requests that the RootJS sends (by the browser), it
allows the CDN proxies to enforce privacy policies in which
only authorized users can retrieve private objects, as we next
describe. The cookie also has an expiration date, which forces
users to re-authenticate periodically.

E. Private Objects

Private objects are available only to a specific set of
authorized users, therefore, we ensure confidentiality and au-
thenticity of these objects. Private objects are encrypted and
authenticated with symmetric object-keys. Figure 5b illustrates
an encapsulated private object.

Each user is associated with an object table, illustrated
in Figure 6, which maps the user’s private objects’ URIs
to their keys. This allows users to share private objects by
adding their keys to the corresponding users’ object tables, i.e.,
without duplicating objects. The object-keys specified in the
table are kept encrypted under the user-key which is not shared
with the CDN (see discussion on user authentication above).
Namely, the object table maps URIs to encrypted object-keys
(see Figure 6). The content-origin caches copies of the users’
object tables on CDN proxies. To present a private object,
the RootJS retrieves the encrypted object and its encrypted
object-keys from the proxy. Using the user’s key, the RootJS
decrypts the object’s authentication and encryption keys, and
then decapsulates and presents the private object.

F. Implementation and Evaluation

1) Implementation: Cryptographic computations introduce
significant overhead in JavaScript (i.e., the RootJS). Measure-
ments on a commodity mobile device (Samsung Galaxy S3)
show that computations of SHA1 and AES-128bit require 2.1
and 3.4 milliseconds (ms) for processing a 100KB object,
verifying an RSA-2048bit signature requires 14.5ms. Such
overheads introduce noticeable delays to webpage load-time.
However, the network round-trip time (RTT) is typically 10ms
to 200ms, hence most of the time loading an object is spent
waiting to receive its content. We optimize secure-object
decapsulation by incrementally computing cryptographic oper-
ations: when the RootJS receives a data block, it processes that
block while waiting for the remainder of the object’s content
to arrive.

Doing such incremental processing is simpler for pri-
vate objects, which are protected by incrementally-computed,

shared-key encryption and message-authentication mecha-
nisms (e.g., AES and SHA1 process their input ‘block-by-
block’). To incrementally verify the signature over public
objects, we take advantage of the common ‘hash then sign’
paradigm. To encapsulate, the origin-gateway computes the
hash of the object to be signed, and sends it at the beginning
of the encapsulated object, along with the signature (see
Figure 5a). The RootJS receives the hash and signature prior
to the object’s content; this allows to validate that the given
hash is properly-signed while receiving the rest of the content.
The RootJS computes the hash of the content incrementally, as
it arrives. When the response completes, the RootJS compares
the result with the hashed value at the beginning of the object.

2) Empirical Evaluation with Real Web-Content: In the
following set of experiments, we measured the overhead of
the clientless secure-objects mechanism for handling and dis-
playing content from popular websites. To obtain the web-
content for this test we downloaded the homepages of the 2048
most popular websites according to Alexa [5] and the objects
embedded in them. We stored these pages on a proxy server
(deployed on EC2) and fetched them over HTTPS. We com-
pare between their load times in three cases:

1) Base Case: we measure the time to load the home-
pages insecurely, i.e., without deploying clientless
secure-objects.

2) Public Objects: we measure loading time when the
homepages and objects within are encoded as secure
public-objects, using SHA-1 and RSA2048.

3) Private Objects: we measure loading time when the
homepages and objects within are encoded as secure
private-objects, and protected using AES-128 and
SHA1-HMAC. We assume that the user is logged-
in (and hence has the user-key).

We measured these cases in two network scenarios: when
the client connects to the Internet via Ethernet network, and
when the client connects via cellular network (using LTE).
The client machine is a PC with Core-i3 processor and 4GB
of RAM, running Chrome browser (v44). Figure 7 illustrates
our results.

We observe that presenting a private web-page introduces
0.04%-0.2% delay to the display time, and presenting a public
web-page introduces a higher overhead of 0.5%-1.8% delay
to the display time. Notably, we find that the overhead in
using clientless secure-objects is lower when the client con-
nects via a cellular network, due to the increase in latency,
which allows the RootJS to finish processing one block of
the object’s data before the next one arrives. These values
are reasonable for most websites, and may be improved by
using native cryptography and with further optimizations such
as authenticating multiple public objects using Merkle trees
(requiring one signature).

IV. ORIGIN-CONNECTIVITY

CDN-on-Demand, like ‘regular’ CDNs, delivers static con-
tent from the proxies – which in turn, populate their cache by
requesting new objects from managers (serving as a second-
level cache; see description in Section II-B). Thus, for static
objects, no communication is required with the content-origin
itself. This significantly reduces the impact of DoS attacks

6

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8 16 32 64 128 256 512 1024 2048

D
is

pl
ay

 T
im

e
(s

ec
on

ds
)

Number of Popular Websites (log-scale)

1. Base Case (not using secure-objects)
2. Secure Public Objects
3. Secure Private Objects

(a) Ethernet connection

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

8 16 32 64 128 256 512 1024 2048

D
is

pl
ay

 T
im

e
(s

ec
on

ds
)

Number of Popular Websites (log-scale)

1. Base Case (not using secure-objects)
2. Secure Public Objects
3. Secure Private Objects

(b) Cellular connection

Fig. 7: Clientless secure-objects, performance evaluation. The average display time for each of the X most popular sites.

on the content-origin. However, some Origin-to-CDN com-
munication is essential, e.g., for delivering content-updates
and providing dynamic services. In CDN-on-Demand, this
communication channel has another critical role: it is required
to securely distribute the Loader script which validates the
RootJS (see Section III).

In the following subsections we describe and evaluate
CDN-on-Demand’s mechanisms ensuring resilient communi-
cation between the managers and the content-origin, in spite
of clogging attacks on the content-origin: dynamic whitelist
filtering, loss-resilient tunnel and origin quotas.

A. Dynamic Whitelist Filtering

In whitelist filtering, all packets sent over a congested
link or router are dropped, with the exception of whitelisted
packets. This is one of the most effective defenses against
bandwidth-DoS (BW-DoS) attacks.

Traditional whitelist filtering is static. Namely, the cus-
tomer provides to its ISP a list of legitimate source/destination
IP addresses. The ISP then discards (filters) packets sent to that
customer from other source addresses. Static whitelist filtering
is one of the main anti-clogging defenses offered by current
CDNs [10], [37]. It efficiently blocks non-spoofed bandwidth
DoS attack packets, sent directly to the victim, as illustrated
by Attacker 1 in Figure 8. In practice, non-spoofed attack
packets are widely used in BW-DoS attacks, as they are easier
to generate by attackers, since they can be sent by benign
reflectors [29], [35], and clients running unprivileged malware
and/or behind NATs or ingress-filtering routers.

However, static whitelisting may not prevent clogging by
attackers able to send spoofed packets, illustrated by Attacker 2
in Figure 8. IP-spoofing attackers can often send significant
amounts of traffic using fake source addresses, mainly by
botnets; a recent study shows that about 15% of surveyed
hosts are able to send spoofed packets [1], [7]. Although the
amount of spoofed traffic that the attacker can send is therefore
typically smaller than that of non-spoofed traffic, it may yet
suffice to clog the limited link of the content-origin (a web-
server of a small/medium site). The main defense currently
adopted by CDNs against this threat, is to use a ‘hidden IP
address’ for the content-origin, i.e., the address is known only
to the CDN (e.g., SOS [22], CloudFlare [10], Akamai [2]).
The hope is that attackers will not be able to clog the link

ISP
CDN

Attacker 3
(Crossfire)
Src IP: Attacker
Dst IP: Decoy

Attacker 1
(non-spoofing)
Src IP: Attacker
Dst IP: Origin

Real Src IP

Crossfire Attack
Spoofed Src IP

Packet-loss
resilient tunnel

HTTP traffic

Decoy
servers

Clients

IP-FW Port-FW

Proxy

Attacker 2
(spoofing)
Src IP: Manager
Dst IP: Origin
Dst Port: ?

Origin-Gateway
& Content-

OriginManager

Fig. 8: Bandwidth-DoS attacks against the content-origin

to the content-origin, since they do not know its address.
Recent works, however, show that these ‘hidden’ addresses
can often be exposed by simple and efficient attacks [40],
[26]. Furthermore, hiding the content-origin server address is
not applicable to small sites, which want to use the same IP
address when under attack (to communicate via the CDN), as
when not under attack (to communicate directly with clients).

Hence, CDN-on-Demand does not depend on keeping the
content-origin address hidden. Instead, to prevent clogging
by spoofed packets, CDN-on-Demand uses dynamic whitelist
filtering, using the source port and IP of the manager nodes,
and the destination port of the content-origin (more specifi-
cally, of the origin-gateway); see illustration in Figure 9. The
origin-gateway has a key shared with all managers, and each
manager has a key shared with the origin-gateway (provided
in configuration). Every refresh-interval τ (e.g., one hour),
the origin-gateway selects a new service port by using its
key to compute a pseudo-random function over the current
time (in resolution τ , e.g., in hours). The managers perform
a similar computation every τ interval to identify the new
service port. Similarly, each manager also selects a new client
port every τ interval, and the origin-gateway learns the new
ports by computing the pseudo-random function using the
managers’ keys. After each change in ports there is a small
grace period, where whitelist filtering allow both old and new
ports. Using randomized ports to deploy filters against spoofing
DoS attackers was studied in [6], [17]; we present experiments

7

Content-
Origin

HTTP GET balance.php?Alice

Decapsulate

Encapsulate Request Src = 1.2.3.4, Dst-Port = 4444
Dst = 5.6.7.8, Dst-Port = 8888

IDA-encoded(HTTP GET home.php?Alice)

Content-
Origin’s

ISP

image.gif not in cache,
request from content-origin

Src = 5.6.7.8, SrcPort = 8888
Dst = 1.2.3.4, DstPort = 4444

IDA-encoded(100$)

Decapsulate
HTTP 200: image.gif

Manager
1.2.3.4:4444

Whitelist Filtering:
Src = 1.2.3.4, Src-Port = 4444
Dst = 5.6.7.8, Dst-Port = 8888

Proxy
Origin

Gateway
5.6.7.8:8888

HTTP GET balance.php?Alice

100$

Encapsulate

Check: user = Alice does not exceed quota

Fig. 9: Origin-connectivity mechanisms: dynamic whitelist-
filtering, loss-resilient tunnel and quotas for dynamic queries.

showing effective deployment with CDN-on-Demand.

B. Loss-Resilient Tunnel

Many ISPs provide a whitelisting service, however this is
not universal and the filtering service may introduce additional
costs. Moreover, even when available, whitelist filters do not
prevent attackers from clogging one of the links en-route to
the content-origin with packets sent to other destinations, see
Attacker 3 in Figure 8. This attack vector was introduced
in [21], [38], and is considered difficult to filter (in particular
using whitelists) since the victim is not the destination of
the attack traffic. In this subsection we present our loss-
resilient tunnel construction, a mechanism against DoS attacks
which complements whitelist filters. The tunneling mechanism
is deployed on the origin-gateway and CDN proxies; it is
independent of third-party support such as the content-origin’s
ISP, which simplifies its deployment and allows to integrate
with all sites.

Tunnel operation. The loss-resilient tunnel is invoked when
the manager’s origin-monitoring (i.e., watchdog) process de-
tects significant loss-rates, which extensively reduce TCP’s
throughput; see Section II. Note that CDN-on-Demand proxies
are deployed already at lower loss rates, i.e., usually earlier.
Since the amount of traffic sent between the cloud nodes and
the content-origin is very limited (as static content is served
directly from the managers, deployed on the clouds), the tunnel
is only required when the failure rate is high, as to cause TCP
to seriously degrade or possibly fail.

In such case, the manager begins to use error-correcting
codes to encode the traffic sent to the content-origin, typi-
cally HTTP requests. Complementary, if the origin-gateway
identifies significant loss rates, it encodes the content-origin’s
responses to the managers; see illustration in Figure 9. Us-
ing error-correcting codes allows to recover communication
despite high losses, as we next explain. The origin-gateway

facilitates transparent deployment of this resilient-tunneling
mechanism; we describe that in Section V.

The tunnel works at the transport layer, using UDP to send
encoded data without waiting for acknowledgments. We use
error-correcting encoding of m TCP packets into n > m
UDP packets. Specifically, we employ Rabin’s Information
Dispersal Algorithm [32], which proves to be efficient and
allows recovery of all original m segments, as long as at least
m encoded segments arrive.

The choice of m is relevant to performance, not to security,
and depends on the network delay and transmission speed; in
typical congestion situation, delays are high, and accordingly
in our experiments we used m = 100. The number n of packets
encoding the m input packets, is selected as a function of m
and of the measured packet loss probability p. More precisely,
senders calculate n such that the probability for losing more
than n −m packets is less than a pre-configured probability
(e.g., 5%). Namely, for given channel loss rate p, we find the
minimum n such that the probability that at least n−m packets
arrive is sufficiently large, e.g., over 95%; see Equation 1. (We
approximate the sum in Equation 1 to the normal distribution
using the central limit theorem to compute n efficiently).

n−m∑
i=0

(
n

i

)
pi(1− p)n−i ≥ 0.95 (1)

As we confirm in experiments below, the loss-resilient
tunneling mechanism improves throughput significantly in
case of attack causing high loss (despite the communication
overhead). Since the tunnel is only established between the
cloud and the content-origin, clients connecting to website
need not change – they communicate with the proxies using
standard web-protocols (HTTP/S over TCP).

One concern with the use of such mechanism, is that in
response to packet loss, it increases transmission rates (by
increasing redundancy), instead of slowing down (as done by
TCP’s congestion control mechanism). Hence, if the losses are
result of ‘regular’ network congestion rather the DoS attack,
this could increase (benign) congestion. To prevent this, the
resource-manager maintains strict limits over the amount of
traffic and requests sent, by each specific customer and in
total; see next subsection. Furthermore, the traffic sent to and
from the content-origin when CDN-on-Demand ‘kicks-in’ is
much reduced (static content is cached, and provided to proxies
from managers on the cloud), allowing (limited) redundancy
in transmissions, without causing congestion.

C. Origin Quotas

The provision of static content from CDN proxies to
clients significantly reduces the consumption of content-origin
resources by legitimate clients. However, malicious clients
may intentionally make bandwidth-consuming dynamic re-
quests which cannot be provided by the proxies, and consume
precious content-origin resources, in particular, bandwidth.
Furthermore, attackers may send their requests for dynamic
objects through multiple proxies, making it harder to identify
an attack and utilizing higher bandwidth of multiple proxy
nodes; see [39], [26].

8

To deal with such situations, and avoid excessive consump-
tion of content-origin resources, CDN-on-Demand deploys
quotas. Namely, the amount of resources consumed by each
client is restricted. The details differ between authenticated
clients and new or sporadic clients.

Authenticated users can be partially trusted, to be ‘well-
behaved’ and not to launch DoS attacks against the content-
origin. CDN-on-Demand identifies connections by such cus-
tomers via the authentication cookie provided to the client
from the content-origin upon authentication (see Section III-C).
The resource-manager allocates a fair fraction of the maximal
bandwidth it allows for communicating with the content-origin
for each authenticated customer, up to a limit; see illustration
in Figure 9.

To enforce quotas for new and sporadic users, CDN-on-
Demand uses the client’s IP address. As long as the total
load on the content-origin is not too high, CDN-on-Demand
allocates a limited amount of resources for each such client
(limited per IP address). When the overall load on the content-
origin resources is excessive, these clients cannot initiate any
dynamic requests (priority given to authenticated users). CDN-
on-Demand is still able to provide service to new and sporadic
clients, even under high load conditions, or when their specific
resource-requirements exceed a threshold, provided that their
browser has a cached copy of the RootJS. Specifically, in this
case, the manager will return a CAPTCHA which the RootJS
will request the user to solve. Such mechanisms are well-
studied, e.g., see [4], [25], [41]. 2

D. Implementation and Evaluation

We implemented the defenses presented in CDN-on-
Demand to ensure connectivity with the content-origin. We
next present experimental evaluation, focusing on the dynamic
filtering and loss-resilient tunnel mechanisms.

Setup. We deployed CDN-on-Demand using Amazon EC2 and
Google Compute Engine IaaS clouds to deploy the system’s
proxies, and connected clients from different geographic re-
gions using Planet-Lab machines [30]. We used a desktop
machine to host the content-origin and connect it to the net-
work via a 50Mbps link through another machine simulating
its ISP which has 500Mbps link. We perform the experiments
while our system handles 8K clients that repeatedly connect
to the CDN and download a dynamic (non-cacheable) 50KB
object from the website. To evaluate the origin-connectivity
mechanisms, we use the manager to measure loss-rates when
communicating with the content-origin, and use the clients to
measure the response time from the CDN.

1) Dynamic Whitelist Filters: In this set of measurements
we evaluate direct flooding attacks (i.e., Attackers 1 and 2
in Figure 8), where the attacker sends clogging traffic to the
content-origin. We run the content-origin monitoring mecha-
nism and employ the dynamic whitelisting mechanism (using
dynamic IP-addresses and randomized service ports) presented
above.

2An alternative to asking the users to solve a CAPTCHA, is for the RootJS
to solve a Proof-of-Work (client puzzle), see e.g. [28]; however, this may
benefit attackers who may use native code to quickly solve the puzzle, while
legitimate clients use JavaScript.

Results. Lines 1 and 2 in Figure 10a show that by sending
traffic to the content-origin, even at modest rates, the at-
tacker can cause substantial packet loss rates and significantly
increase the response time, eventually breaking most TCP
connections between the manager and the content-origin. We
observe a significant decline in throughput, e.g., throughput
is only 2.45Mbps when the attacker transmits at 40Mbps
(80% of the content-origin link capacity). We find that the
whitelist filtering mechanism mitigates the direct attack vector;
compare lines 1, 2 to lines 3, 4 in Figure 10a. In particular,
the throughput of communication with the content-origin is
43.9Mbps, 18-times higher than without the filters. We note
that the results of both spoofed and non-spoofed attack flavors
are similar, hence we present their average in a single graph.

2) Loss Resilient Tunnel: In this set of experiments we
assume that whitelist filtering is unavailable for the content-
origin (e.g., not supported by its ISP) or that flooding traffic
can circumvent whitelist filters deployed at the ISP (e.g.,
Attacker 3 in Figure 8), and evaluate the effect of a flooding
DoS attack against the content-origin with and without the loss
resilient tunnel defense. The length of encoded data blocks
in the tunnel is 150KB, encoding responses for 3 requests
made via the manager (possibly by different proxies and
clients); since network MTU is typically 1.5KB we get that
m = 150KB

1.5KB = 100.

Results. Our measurements, illustrated in Figure 10b, show
that an attacker sending clogging traffic at over twice the
content-origin’s link capacity, can cause loss rates of over
84%, crippling TCP connections (see lines 1 and 2). The loss-
resilient tunneling mechanism described above is enabled when
loss rate is high (over 5%), to ensure sufficient quality of
service. We observe with the tunneling mechanism installed,
the loss-rate is kept steady below 5% and the response time
moderately increases to 2.11 seconds (compare lines 1 and 2
to lines 3 and 4 in Figure 10b).

At the peak of the attack, causing high 84% loss-rate,
the tunneling mechanism encodes every 100 packets to 640.
Despite the overhead we find that this mechanism allows
reasonable response time. This result is contrasted with normal
TCP connections, which collapses when loss rates are signifi-
cant.

V. THE ORIGIN-GATEWAY

The origin-gateway is an easy-to-install module, acting as a
gateway for the content-origin server; it facilitates transparent
deployment of CDN-on-Demand’s defense mechanisms with-
out introducing changes to web-server configuration or website
content. The origin-gateway has two main functions: First,
the origin-gateway captures and converts web-objects that
the content-origin sends into secure-objects (see Section III).
Second, the origin-gateway implements the monitoring and
resilient tunnel protocols at the origin’s side (see Section IV).
In this section we describe the operation and implementation
of both origin-gateway functions.

A. Automated Conversion to Secure-Objects

The origin-gateway is a trusted component, deployed in
the content-origin’s network and managed by its administrator

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.025 0.05 0.1 0.2 0.4 0.8 1.6
0.5

1

2

4

8

16
P

ac
ke

t L
os

s
R

at
e

T
im

e
in

 s
ec

on
ds

 (
lo

g-
sc

al
e)

Attacker Rate / Origin Capacity (log-scale)

1. Loss-Rate
2. Response Time
3. Loss-Rate, ISP Filters Attacker Traffic
4. Response Time, ISP Filters Attacker Traffic

(a) Dynamic whitelist filtering defense

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1
0.5

1

2

4

8

16

P
ac

ke
t L

os
s

R
at

e

T
im

e
in

 s
ec

on
ds

 (
lo

g-
sc

al
e)

Attack Rate / Link Capacity

1. Loss-Rate
2. Response Time
3. Loss-Rate, Loss-Resilient Tunnel
4. Response Time, Loss-Resilient Tunnel

(b) Loss-resilient tunnel defense

Fig. 10: Evaluation of DoS attacks against the content-origin

(cf. to CDN-on-Demand proxies). The administrator provides
the origin-gateway with the website’s private TLS key, and
it serves as the TLS-endpoint at the origin side. Namely, it
observes all requests and responses in clear-text. If CDN-
on-Demand is dormant, i.e., there is no DoS attack, and the
content-origin serves clients directly, then the origin-gateway
only relays requests and responses, to and from the content-
origin. In this case the origin-gateway only maintains a cache
of encapsulated objects, in order to facilitate rapid transition
to CDN-on-Demand when needed. We next describe the auto-
mated provisioning process of this cache.

To automatically encapsulate public objects, the origin-
gateway periodically connects to the content-origin and
‘crawls’ the website (as an unauthenticated user). It identi-
fies new public objects, retrieves and encapsulates them as
described in Section III-C; see step 1 in Figure 11. When a
request for one of the public objects arrives, the origin-gateway
delivers the (encapsulated) secure-object in response. Namely,
the origin-gateway acts as a cache; see step 2 in Figure 11.

Private objects, in contrast, are associated with specific
users and are inaccessible to the origin-gateway while it crawls
the website. To allow automated encapsulation of private
objects, the administrator configures the origin-gateway with
the name of the authentication cookie. The encapsulation
mechanism for private objects is invoked when a GET request,
which specifies an authentication cookie, arrives for an object
not marked as public (identified in the ‘crawling phase’). If the
object is not already stored in the origin-gateway’s cache, then
the origin-gateway forwards the request to the content-origin;
the origin-gateway also forwards the request when the object is
cached but not associated with this user (i.e., object key is not
in user’s object-table), but then it changes the request type to
HEAD, to only receive indication of success/failure. Namely,
the origin-gateway uses the content-origin as an ‘oracle’ for
checking whether the user is authorized to receive the object.
If the response indicates success (HTTP 200 code), then the
origin-gateway encapsulates the object for the user; see step 3
in Figure 11. We next describe the private-object encapsulation
process performed by the origin-gateway.

The origin-gateway selects ‘on the fly’ a symmetric object-
key (if the object does not already have one) and a user-
key (if no key is already mapped to the user’s authentication

Client
Origin-
Gateway

Content-
Origin

Periodic crawling of
Content-Origin

New public objects

encapsulates newly
discovered objects

Request for a public object

Encapsulated object
retrieved from cache

Request for a private object
+ auth-cookie

requested object not in cache or
unassociated with user (identified by auth-cookie)

relay client’s request

HTTP 200 OK

cache enc_object object and associate
with user (identified by auth-cookie)

Encapsulated private object

1

2

3

Fig. 11: Automated Conversion to Secure-Objects

cookie). The origin-gateway then encapsulates the object using
the object’s key and saves the secure-object in cache. Next, the
object-key is encrypted with the user’s key and saved in her
object-table (see details in Section III-C). The origin-gateway
also keeps track on the authentication cookie’s expiration date;
when the cookie expires and the user needs to re-authenticate,
the origin-gateway deletes the user-key associated with the
cookie and the corresponding object-table. When the user re-
authenticates and receives a fresh cookie, the origin-gateway
creates a new user-key and uses it to re-encrypt the user’s
private object-keys (as described above). This process, per-
formed online, is very efficient: only symmetric cryptography
is involved, objects are encrypted once and object-keys are
only encrypted when the user authenticates.

Implementation. The origin-gateway keeps a cache of secure-

10

objects which maps an object’s name to its encapsulated
version and a flag that marks whether that object is public. In
addition, for each user (identified by authentication cookie) the
origin-gateway keeps an object-table, which maps the object
name to the corresponding key (stored encrypted under the
user’s key). We use the BeautifulSoup library (v4.4) to crawl
the content-origin website and identify public objects. To de-
liver content updates to CDN-on-Demand, the origin-gateway
application uses the MitMProxy library (v0.13), which allows
to register custom methods for processing HTTP requests and
responses. The response-handler receives web-objects from the
content-origin, encapsulates them and stores in its cache. If the
object is private, then it also encrypts the object’s key and saves
it in the user’s object-table.

B. Transparent Content-Origin Connectivity Module

When the origin-gateway identifies a significant loss rate p
(e.g., p > 5%), it begins encoding messages with redundancy,
using the Information Dispersal Algorithm (IDA) [32] (see
Section IV-B). Namely, the TCP communication between the
origin-gateway and CDN-on-Demand’s managers (deployed on
the clouds) is encoded in UDP packets. The tunneled traffic
carries redundant information to allow content-recovery in
case of significant loss. The origin-gateway also implements
the receiving-end of the loss-resilient tunnel, to decode IDA-
encoded requests from the CDN-on-Demand managers. It
decodes tunneled traffic (i.e., reconstructs the content despite
loss) and then feeds the recovered (TCP) frames to the network
stack, simulating arrival from the network.

Implementation. We use the NetfilterQueue library (v0.3) which
allows to register methods for manipulating packets when
they are emitted and received. We implement two methods:
The first, encoding-method, captures TCP packets just before
they leave the origin-gateway machine to one of the CDN-on-
Demand managers (identified by their addresses). This proce-
dure queues TCP segments until it aggregates m segments to
encapsulate. The method then encodes these segments into n
frames and sends them in UDP packets, all specifying an
identifier that marks they were encoded together.

The second, decoding-method, captures tunneled traffic as
it arrives (UDP traffic to the tunnel’s service port). It queues
the packets until it receives at least m out of the n packets with
the same identifier to allow data recovery. The method decodes
the data and recovers the underlying TCP communication, it
then discards the UDP packets and inserts the recovered TCP
segments into the TCP/IP handling stack instead.

VI. PROXY SELECTION AND PLACEMENT

In Section II we described how and when the resource-
manager decides to activate CDN-on-Demand and to serve
clients from the proxies. In this section we address two related
questions: how to map each client to a server, and where to
deploy proxy servers.

A. Mapping Clients to Web-Servers

An efficient mapping between clients and proxies is key to
reducing latency, which is an important benefit of CDNs. In
the client-to-server mapping process, illustrated in Figure 12,

Client Proxies

HTTP GET site-cdn.com/proxy-list

A B C

HTTP response: proxy-list = [A,B,C]

HTTP HEAD A/test, B/test, C/test

HTTP 200 OK, Host = A

2. Find proxy providing shortest response time

1. Identify available proxies

3. RootJS retrieves secure-objects from proxy A

Fig. 12: Client-to-server mapping in CDN-on-Demand

each client finds and connects to the most responsive proxy in
its region. To find the best proxy for a client we integrate a
‘proxy-selection’ module into the RootJS, which periodically
retrieves the list of all active proxies in the client’s geographic
region (in parallel to handling the content from the web server).

The RootJS retrieves the list of available proxies from the
CDN’s domain, e.g., fetching https://site-cdn.com/proxy-list.
If CDN-on-Demand is dormant, then that domain is mapped
to the content-origin’s IP address, the request reaches the
origin-gateway who provides an empty list. In this case, the
RootJS circumvents the clientless secure-objects mechanism,
and loads content directly from the origin at site.com, over
secure connection. If CDN-on-Demand is active, then the au-
thoritative DNS servers (that managers run) map site-cdn.com
to one of the proxies near the client. The client receives
the proxy-list object from that proxy, which contains the
addresses of available proxy web-servers (a non-empty list).
The resource-manager updates the proxy-list when it deploys
or decommissions a proxy (see the following subsection). Note
that the private TLS key for the site-cdn.com is shared with
the CDN (in contrast to site.com’s key).

The RootJS evaluates the response time provided to the
client by each proxy in the list (in case CDN-on-Demand is
active) by sending a short HEAD request for a test object to
each proxy and measuring the response time. Then, the RootJS
begins using the first responding proxy. The RootJS caches
the selected proxy for the next connections and periodically
refreshes it by repeating the selection process.

B. Proxy Placement and Selection

We now explain how CDN-on-Demand manages the place-
ment of proxy instances, i.e., where and which cloud instances
to invoke, use and close down. The resource-manager monitors
the utility of proxy machines in each region, using the cloud-
provider APIs, which allow access to a variety of metrics
such as CPU and network usage. We modify the number of
proxies in a region when utility crosses a high/low threshold;
in that case, the resource-manager executes the placement
procedure to find the best cloud for hosting an additional
proxy, or the best proxy to remove. For scale-up (adding a
proxy), the procedure also evaluates the expected utility from

11

adding a proxy, and computes the utility/cost ratio; if beneath
a threshold, the proxy is not added.

Placement procedure. We next describe the placement pro-
cedure upon a scale-up, i.e., deployment of additional proxy
(scaling-down is performed in a similar fashion). To detect
which cloud is the best for deploying the new proxy, the
resource-manager temporarily powers-on one machine on each
cloud for a brief time interval (one minute in our implemen-
tation). The candidate machines are not active proxies, but
used to compare and select the best one. After the evaluation,
each candidate machine either becomes an active proxy, or is
turned off. Deployment of candidate machines for the brief
evaluation step has a low cost; we measured less than 10−4$
per evaluation-step, with our CDN-on-Demand deployment.

During the evaluation step the active CDN proxies dis-
tribute the addresses of candidate machines to their clients,
each client receives one address. Let Cm denote the set of
clients participating in the evaluation of machine m. Through
the RootJS, each client c compares the response time of the
candidate machine m against the response time of the proxy
that it uses. It then reports to the proxy δ(c,m) ≥ 0, which is
the ‘potential improvement’. This is essentially the response
time of the proxy minus the response time of the candidate ma-
chine m (or zero, if m has longer response time). The resource-
manager collects the clients’ reports from the proxies; for each
candidate machine m, it evaluates the average improvement
in response time achieved by activating that machine, up to
a maximal improvement δMAX, preventing one or few values
from disproportionately influencing the outcome.

∆(m) =

∑
c∈Cm

min {δMAX, δ(c,m)}
|Cm|

(∀m,∆(m) ≥ 0) (2)

The resource-manager then deploys a new proxy on the
machine that provides the highest improvement in response
time, provided that the improvement is over a minimum
threshold, and powers-off all other candidate machines.

VII. IMPLEMENTATION AND EVALUATION

In this section we use a prototype implementation of CDN-
on-Demand (deployed over two commercial clouds) to evaluate
the performance and cost of the whole system. To motivate
adoption of CDN-on-Demand and allow the community to
validate our empirical measurements and results, we pro-
vide source-code of CDN-on-Demand in the project’s web-
site, https://autocdn.org. (Some modules are not yet available
and would be added as soon as we complete a stable version.)

A. Setup

We deployed CDN-on-Demand over EC2 and GCE IaaS
clouds with two managers (one employed as backup), see
deployment in Figure 3. The managers were implemented
in Python, configured to use EC2 and GCE APIs to man-
age the proxy machines running Squid HTTP proxy (v3.5).
The content-origin server runs Nginx server (v1.9) and the
origin-gateway is implemented by Python applications running
on a Linux machine (Ubuntu Server 14.04.2). To simulate
geographically-diverse clients accessing the website, we de-
ployed 8K clients over Planet-Lab machines [30] located in

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60
0.225

0.23

0.235

0.24

0.245

0.25

0.255

0.26

R
at

e
(m

bp
s)

C
os

t i
n

M
ill

ic
en

t U
S

D
 (

10
-5

$)

Time (minutes)

1. Avg. Download Rate

2. Avg. Cost per Client

128

256

512

1024

2048

4096

8192

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

C
lie

n
ts

 (
lo

g
-s

ca
le

)

P
ro

xi
e

s

Time (minutes)

3. Clients Served (simultaneously)

4. Deployed Proxies

DoS Attack
on Origin

Server
Crash

DoS Attack
on Origin

Server
Crash

Fig. 13: CDN-on-Demand: Performance evaluation

different continents (each machine runs 16 clients). Each client
repeatedly connects to CDN-on-Demand and downloads a
web-page containing a 50KB image from the hosted website.
The website’s content (web-page and image) is cached by the
proxies and managers for a configured one minute period;
when these objects become stale, they request them again from
the content-origin, simulating the content-update aspect of the
CDN system.

B. Performance Evaluation

Figure 13 illustrates the scaling mechanism of CDN-on-
Demand, dynamically adapting the system to changes in traffic
volumes, client distribution, and server failures. We performed
this set of experiments over a period of 70 minutes. We
introduced events to the system every three minutes and
measured the system’s performance by comparing the traffic
rates, cost, number of clients and number of proxies. We began
the evaluation with the system serving the clients directly from
the content-origin. At this point, the system cost is very low
since the only chargeable instances running are the managers
that monitor content-origin.

To test our system’s resistance to flash crowds, we doubled
the number of clients in the setup, six times, from 128 to
8192 (see lower part of Figure 13). We observe that CDN-on-
Demand quickly detected the load and scaled-up accordingly
(from no servers, i.e., only using content-origin, to 15 servers
during peak load). This is also reflected by the momentary
drops in the rate of service provided (top part of Figure 13).

Next, we initiated a BW-DoS (clogging) attack on the
limited content-origin’s link, for three minutes. We used 256
planet lab machines as zombies, sending UDP traffic to the
content-origin IP address at full speed; total transmission rates
were over 200mbps, well above the content-origin’s link limit,
50mbps. Loss-resilient tunnels were automatically established
to protect the communication between the content-origin and

12

Fig. 14: CDN-on-Demand deployment and service snapshot.
Each line represents connections with 16 clients. The system
deploys proxies on GCE (blue pins) and EC2 (red pins).

the CDN (see details in Sections IV, V). We observed only a
small effect on the average download rate (see Figure 13).

Following this, we simulated an IaaS provider failure, by
abruptly powering-off all the proxies in one data-center, which
served 12% of the clients. This caused an immediate decrease
in the average transmission rate, followed by system recovery,
automatically deploying new proxies in a near-by data-center.

We then reduced the number of connected clients (i.e.,
disconnected clients), from 8192 back to 128, again in six
steps, to trigger the scale-down procedure and measure its
impact. We observed that scaling-down the system decreases
utility costs, but does not reduce the transmission rates. The
reason is that most remaining clients still received service from
nearby proxies.

Figure 14 illustrates the geographic distribution of clients
and proxies. This system snapshot was taken 24 minutes into
the experiment, when CDN-on-Demand deployed 5 proxies to
serve 512 clients. The map illustrates the geographic coverage
of CDN-on-Demand and shows that isolated clients connect
to distant proxies, namely, CDN-on-Demand evaluates that
deploying proxies near these clients will not significantly
improve its performance.

C. Pricing: Survey and Comparison

In this subsection we evaluate the cost of CDN-on-Demand
in typical scenarios and compare it with commercial CDNs.

Commercial providers offer a variety of pricing plans;
in particular, some offer only fixed-price plans while others
sell optional premium services such as DoS-protection. The
service’s cost varies according to the geographic location of
deployed servers and connecting clients. These pricing models
for committing service packages are contrasted against CDN-
on-Demand, which leverages flexible IaaS clouds to deploy
proxies only when needed, i.e., to handle flash-crowds or DoS
attacks. In benign scenarios, CDN-on-Demand is dormant,
employing only minimal number of machines to monitor
the content-origin server, incurring negligible costs (see Sec-
tion VI).

Methodology. We collected pricing data from several popular
commercial CDNs and compared the costs of egress traffic
(ingress traffic is typically free), fixed monthly fees and traffic
filtering they provide. To estimate the cost of operating CDN-
on-Demand we additionally account for the cost of operating
cloud machines (managers and proxies). Under normal condi-
tions (no attack/flash crowd), this cost is very low since the

CDN Provider
Out-Traffic
(USD/GB)

Fixed fee
(USD/month)

1TB/month Cost
(USD/month)

Akamai not published not published
Refuses service to

small sites

Cloudflare 0 200 200

Amazon Cloudfront 0.08 600 680

Microsoft Azure CDN 0.0725 39 111.5

Fastly 0.08 140 220
Cdn77 0.0395 58.25 97.75

MAXCDN 0.0575 39 96.5
Cachefly 0.2945 99 393.5

Cloud Machine
(USD/hour)

Out-Traffic
(USD/GB)

Fixed fee
(USD/month)

1TB/month Cost
(USD/month)

CDN-on-Demand (on EC2 & GCE),
no DoS/flash crowds 0.017 0.0619 0 5.04
CDN-on-Demand (on EC2 & GCE),
DoS/flash crowds 5% of the time 0.017 0.0619 0 16.605
CDN-on-Demand
(on ProfitBricks & VirtualServer),
DoS/flash crowds 5% of the time 0.005 0.027 0 8.136

TABLE I: Cost comparison with CDN providers. Price quotes
collected during June-July 2015.

system is dormant; the cost increases only when the website
is under heavy-load that causes CDN-on-Demand to scale-up.

It is challenging to compare costs between providers due to
the varying pricing plans provided by each CDN; we therefore
establish a comparable use-case. We evaluate the service cost
per month, assuming a small/medium HTTPS website (i.e.,
requiring SSL/TLS support) that opts-in to using defenses
against DoS attacks (if provided by the CDN), and serves 1TB
of data to legitimate clients. For CDNs charging according to
clients location, we leniently assume only the nearest, ‘lowest-
cost’, clients connect (providing a lower bound for their price).
We then evaluate cost of operating CDN-on-Demand in two
scenarios: (1) a benign month without flash-crowds or DoS
attacks (i.e., CDN-on-Demand is dormant), and (2) a month
with DoS floods or flash crowds happening 5% of the time.
We study these scenarios under two deployment cases: using
EC2 and GCE – the two popular IaaS providers, and using
ProfitBricks and VirtualServer which are cheaper less-popular
ones.

Cost comparison. Our price survey, illustrated in Table I and
in Figure 2, shows that CDN-on-Demand’s price-tag in benign
months is only a few USD and at least one order of magnitude
lower than the ‘next in line’ commercial CDN services. In the
second case, when the system handles flash crowds and DDoS
attacks, CDN-on-Demand’s cost is 5.8 times lower than the
following commercial CDN service when deployed on popular
IaaS clouds (EC2 and GCE) or 12 times lower when deployed
over less popular ones (ProfitBricks and VirtualServer). We
note that although some CDN providers advertise free DoS
protection, there are complaints that these services are very
limited and do not suffice to cope even with flash-crowds (e.g.,
see [11], [19]). Finally, we note that Akamai (one of the
most popular providers) refuses to provide service to smaller
websites which are the focus of this paper.

13

VIII. RELATED WORKS

We survey previous works in two categories, most related
to the CDN-on-Demand architecture: (1) serving web clients
from untrusted cache or proxy, and (2) using CDN and cloud
services to cope with DoS attacks.

A. Secure Storage and Distribution

There were several proposals to allow secure websites to
use CDNs without sharing their private keys.

SSL-Splitting [23] separates between encryption and au-
thentication of SSL records. In SSL-Splitting, the CDN keeps
objects in plain-text; the content-origin performs the SSL hand-
shake with the client and provides only the negotiated encryp-
tion key to the CDN. For each SSL record, the CDN encrypts
the data and the content-origin provides the authentication
code, preventing the CDN from modifying the content. Since
SSL-Splitting keeps the content-origin involved throughout the
connection, it remains vulnerable to clogging DoS.

SINE [13] addresses this problem by having the content-
origin compute an authentication tag for web-pages, rather than
SSL-records. The client retrieves the tags from the content-
origin over a secure (HTTPS) connection and the web-pages
from the CDN. In SINE, the content-origin is only involved
at the beginning of the connection for sending authentication
tags. In HTTPi [36] authentication tags are attached to web-
objects to allow object-caching while securing transmissions
over HTTP. Choi et al. [9] suggest an alternative protocol
to HTTPS; their protocol only provides authentication, and
requires changes to the current Internet caching mechanisms.

All of these proposals [9], [13], [36], [23] introduce mod-
ifications to clients (web-browsers), for parsing and verifying
the authentication tags before presenting web-content. Such
changes usually involve significant deployment efforts and will
force websites to support legacy clients even after the changes
have been accepted to major browsers.

Recent work on Information-Centric Networking (ICN) ties
security to objects. In particular, the Named Data Networking
paradigm [43], a part of the ICN efforts, suggests that the
sender signs all web-objects that it sends [15]. However, sup-
porting ICN requires major changes to Internet infrastructure,
see [3], [16]. In contrast to these works, the clientless secure-
objects mechanism establishes a trusted JavaScript agent (the
RootJS), thereby avoiding any changes to clients’ browsers
or to CDN/cloud infrastructure. As we show in experiments,
clientless secure-objects provide a practical and lightweight
implementation for some ICN paradigms.

Liang et al. studied the current practices of supporting
HTTPS websites in CDNs [24]. They found that most CDNs
use the website’s private key to handle HTTPS clients. . To
remedy these issues, they suggest using DANE [18], a recently
proposed DNS extension, relying on DNSSEC and requiring
changes to the clients’ certificate validation mechanisms. These
are formidable obstacles.

B. CDN-like DoS Defenses using Clouds

CDN-on-Demand uses low-cost, untrusted IaaS-clouds, to
protect websites against DoS attacks. The idea of using IaaS

clouds as a lower-cost alternative to fully-managed CDN
services was proposed by Broberg et al. [8]. They proposed
to use storage clouds as a lower-cost alternative to the basic
CDN services, i.e., to provide services using multiple machines
located closer to the clients. However, Broberg et al. did not
address DoS attacks or other security challenges. In fact, their
cost-savings reflect simply the high premium of CDN providers
at the time. In contrast, CDN-on-Demand allows significant
cost savings by using cloud resources only when necessary, to
handle DoS attacks or flash-crowds.

The use of clouds to provide scalable DoS-prevention
services was proposed in several works. Most of these works
focus on using clouds to filter different types of DoS traffic;
see [42] for a comprehensive treatment of this subject, also
providing extensive bibliography. Some works, such as [20],
take a different approach and migrate the service (permanently)
to the cloud, reassigning tasks to different cloud nodes to deal
with DoS attacks. This work takes a different ‘on-demand’ ap-
proach, and therefore focuses on different problems: ensuring
content security via untrusted providers, and mitigating BW-
DoS attacks on the communication with the content-origin.

There are many proposals and commercial products for
mitigating bandwidth-DoS (clogging) attacks, a basic chal-
lenge in ensuring Internet availability, see survey in [14].
CDN-on-Demand mechanisms for ensuring connectivity to the
content-origin build on some of these ideas. First, we facilitate
DoS defenses by routing via the cloud-nodes, essentially
creating an overlay network; this is related to many works
on mitigating DoS attacks using overlay routing, e.g., [22].
Second, we use very efficient port-based filtering of spoofed
traffic, extending the technique in [6].

IX. CONCLUSIONS AND FUTURE WORK

Website operators face many challenges in ensuring ef-
ficient, low-latency, high-availability, and secure service to
globally dispersed users. In particular, network conditions may
change rapidly, most notably due to flash-crowds and DoS
attacks. CDNs typically meet these challenges by offering
automated and scalable content distribution.

However, many sites cannot afford CDN services and
prefer to use one or several self-managed servers or cloud
machines. This option offers reduced costs under normal
conditions, but does not address DoS attacks.

To tackle this challenge we presented CDN-on-Demand, an
automated system allowing websites, even small, to mitigate
powerful DoS attacks with minimal operational costs and easy,
automated deployment. CDN-on-Demand uses Infrastructure-
as-a-Service (IaaS) cloud services to deploy proxy servers,
but only when required. CDN-on-Demand does not require
trusting the IaaS providers with long-term keys and secrets,
and mitigates attacks targeting the essential communication
between the content-origin and the cloud nodes.

Future Work. We leave several directions open for research.
First, extending the clientless secure-objects to mitigate traffic
analysis attacks where proxies learn the set of users sharing a
private object or when they access it. Second, the performance
of public object decapsulation may be improved, e.g., by
encapsulating several objects on the same page under one

14

signature. Third, a kernel module implementation of the loss-
resilient tunnel application at the origin-gateway may allow to
improve performance under saturating conditions.

ACKNOWLEDGMENTS

This work was supported by grant 1354/11 from the Israeli
Science Foundation (ISF), and by grants from the Check Point
Institute for Information and Security (CPIIS) and the Ministry
of Science, Technology and Space, Israel.

REFERENCES

[1] ADVANCED NETWORK ARCHITECTURE GROUP. Spoofer Project. http:
//spoofer.csail.mit.edu, May 2015.

[2] AFERGAN, M., ELLIS, A., SUNDARAM, R., AND RAHUL, H. Method
and System for Protecting Web Sites from Public Internet Threats,
Aug. 21 2007. US Patent 7,260,639.

[3] AHLGREN, B., DANNEWITZ, C., IMBRENDA, C., KUTSCHER, D.,
AND OHLMAN, B. A Survey of Information-Centric Networking. IEEE
Communications Magazine 50, 7 (2012), 26–36.

[4] AHN, L. V., BLUM, M., HOPPER, N. J., AND LANGFORD, J.
CAPTCHA: Using Hard AI Problems for Security. In EUROCRYPT
(2003), Springer-Verlag, pp. 294–311.

[5] ALEXA WEB INFORMATION COMPANY. Top Sites. http://www.alexa.
com/topsites, 2015.

[6] BADISHI, G., HERZBERG, A., AND KEIDAR, I. Keeping Denial-of-
Service Attackers in the Dark. IEEE Transactions on Dependable and
Secure Computing 4, 3 (2007), 191–204.

[7] BEVERLY, R., KOGA, R., AND CLAFFY, K. Initial Longitudinal
Analysis of IP Source Spoofing Capability on the Internet. Internet
Society Article, July 2013.

[8] BROBERG, J., BUYYA, R., AND TARI, Z. MetaCDN: Harnessing
Storage Clouds for High Performance Content Delivery. Journal of
Network and Computer Applications 32, 5 (2009), 1012–1022.

[9] CHOI, T., AND GOUDA, M. G. HTTPI: An HTTP with Integrity.
In Computer Communications and Networks (ICCCN) (2011), IEEE,
pp. 1–6.

[10] CLOUDFLARE INC. CloudFlare Advanced DDoS Protection. https:
//www.cloudflare.com/ddos.

[11] EASTDAKOTA. How Much Traffic is Too Much Traffic For CloudFlare?
Online at Hacker News, Jan 2013.

[12] FU, K., KAASHOEK, M. F., AND MAZIERES, D. Fast and Secure
Distributed Read-only File System. In Symposium on Operating System
Design & Implementation (2000), USENIX Association, pp. 13–34.

[13] GASPARD, C., GOLDBERG, S., ITANI, W., BERTINO, E., AND NITA-
ROTARU, C. SINE: Cache-Friendly Integrity for the Web. In Workshop
on Secure Network Protocols (2009), IEEE, pp. 7 – 12.

[14] GEVA, M., HERZBERG, A., AND GEV, Y. Bandwidth distributed denial
of service: Attacks and defenses. IEEE Security & Privacy 12, 1 (2014),
54–61.

[15] GHALI, C., TSUDIK, G., AND UZUN, E. Network-Layer Trust in
Named-Data Networking. Computer Communication Review 44, 5
(2014), 12–19.

[16] GHODSI, A., SHENKER, S., KOPONEN, T., SINGLA, A., RAGHAVAN,
B., AND WILCOX, J. Information-Centric Networking: Seeing the
Forest for the Trees. In HotNets (2011), ACM, pp. 1–6.

[17] GILAD, Y., AND HERZBERG, A. LOT: A Defense Against IP Spoofing
and Flooding Attacks. ACM Transactions on Information and System
Security 15, 2 (July 2012), 6:1–6:30.

[18] HOFFMAN, P., AND SCHLYTER, J. The DNS-Based Authentication
of Named Entities (DANE) Transport Layer Security (TLS) Protocol:
TLSA. RFC 6698 (Proposed Standard), Aug. 2012.

[19] HOSTGATORHOST. Cloudflare Free Plan. Web Hosting Talk, Mar 2014.
[20] JIA, Q., WANG, H., FLECK, D., LI, F., STAVROU, A., AND POWELL,

W. Catch Me If You Can: A Cloud-Enabled DDoS Defense. In
International Conference on Dependable Systems and Networks (June
2014), pp. 264–275.

[21] KANG, M. S., LEE, S. B., AND GLIGOR, V. D. The Crossfire Attack.
In IEEE Symposium on Security and Privacy (2013), IEEE Computer
Society, pp. 127–141.

[22] KEROMYTIS, A. D., MISRA, V., AND RUBENSTEIN, D. SOS: Secure
Overlay Services. In SIGCOMM (2002), vol. 32, 4 of Computer
Communication Review, ACM Press, pp. 61–72.

[23] LESNIEWSKI-LAAS, C., AND KAASHOEK, M. F. SSL Splitting:
Securely Serving Data from Untrusted Caches. Computer Networks
48, 5 (2005), 763–779.

[24] LIANG, J., JIANG, J., DUAN, H., LI, K., WAN, T., AND WU, J. When
HTTPS Meets CDN: A Case of Authentication in Delegated Service.
In IEEE Symposium on Security and Privacy (2014).

[25] LIU, X., YANG, X., AND LU, Y. To Filter or to Authorize: Network-
Layer DoS Defense Against Multimillion-Node Botnets. In SIGCOMM
(2008), ACM, pp. 195–206.

[26] MIU, T. T., HUI, A. K., LEE, W., LUO, D. X., CHUNG, A. K., AND
WONG, J. W. Universal DDoS Mitigation Bypass. Black Hat USA
(2013).

[27] NEUSTAR. State of DDoS Protection, 2012.
[28] PARNO, B., WENDLANDT, D., SHI, E., PERRIG, A., MAGGS, B. M.,

AND HU, Y.-C. Portcullis: Protecting Connection Setup from Denial-
of-Capability Attacks. In SIGCOMM (2007), J. Murai and K. Cho,
Eds., ACM, pp. 289–300.

[29] PAXSON, V. An Analysis of Using Reflectors for Distributed Denial-
of-Service Attacks. Computer Communication Review 31, 3 (2001),
38–47.

[30] Planet-lab. http://www.planet-lab.org/.
[31] PRINCE, M. The DDoS That Almost Broke the Internet. CloudFlare

Blog, April 2013.
[32] RABIN, M. O. Efficient Dispersal of Information for Security, Load

Balancing, and Fault Tolerance. Journal of the ACM 36, 2 (1989),
335–348.

[33] RESCORLA, E., AND SCHIFFMAN, A. The Secure HyperText Transfer
Protocol. RFC 2660 (Experimental), Aug. 1999.

[34] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE, S. Hey,
You, Get Off of My Cloud: Exploring Information Leakage in Third-
Party Compute Clouds. In Computer and Communications Security
(2009), ACM, pp. 199–212.

[35] ROSSOW, C. Amplification Hell: Revisiting Network Protocols for
DDoS Abuse. In NDSS (February 2014).

[36] SINGH, K., WANG, H. J., MOSHCHUK, A., JACKSON, C., AND LEE,
W. Practical End-to-End Web Content Integrity. In WWW (2012),
ACM, pp. 659–668.

[37] SITARAMAN, R. K., KASBEKAR, M., LICHTENSTEIN, W., AND JAIN,
M. Overlay Networks: An Akamai Perspective. In Advanced Content
Delivery, Streaming, and Cloud Services. John Wiley and Sons, 2014.

[38] STUDER, A., AND PERRIG, A. The Coremelt Attack. In ESORICS
(2009), vol. 5789 of LNCS, Springer, pp. 37–52.

[39] TRIUKOSE, S., AL-QUDAH, Z., AND RABINOVICH, M. Content
Delivery Networks: Protection or Threat? In ESORICS (2009), vol. 5789
of LNCS, Springer, pp. 371–389.

[40] VISSERS, T., GOETHEM, T. V., JOOSEN, W., AND NIKIFORAKIS,
N. Maneuvering Around Clouds: Bypassing Cloud-based Security
Providers. In CCS (2015), ACM.

[41] VON AHN, L., MAURER, B., MCMILLEN, C., ABRAHAM, D., AND
BLUM, M. reCAPTCHA: Human-based Character Recognition via Web
Security Measures. Science 321, 5895 (2008), 1465–1468.

[42] YU, S. Distributed Denial of Service Attack and Defense. Briefs in
Computer Science. Springer, 2014.

[43] ZHANG, L., ESTRIN, D., BURKE, J., JACOBSON, V., THORNTON,
J. D., SMETTERS, D. K., ZHANG, B., TSUDIK, G., MASSEY, D.,
PAPADOPOULOS, C., ET AL. Named Data Networking (NDN) Project,
2010.

[44] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T. Cross-
VM Side Channels and Their use to Extract Private Keys. In CCS
(2012), ACM, pp. 305–316.

15

