
Recursive DNS Architectures and Vulnerability Implications

David Dagon1, Manos Antonakakis1, Kevin Day2, Xiapu Luo1, Christopher P. Lee3, and Wenke Lee1

1College of Computing, Georgia Institute of Technology,
{dagon,manos,csxpluo,wenke}@cc.gatech.edu

2 your.org
kevin@your.org

3College of Engineering, Georgia Institute of Technology,
chrislee@gatech.edu

Abstract

DNS implementers face numerous choices in architecting
DNS resolvers, each with profound implications for security.
Absent the use of DNSSEC, there are numerous interim tech-
niques to improve DNS forgery resistance. We explore how
different resolver architectures can affect the risk of DNS poi-
soning.

The contributions of this work include: (A) We create a
comprehensive, accurate model of DNS poisoning. We show
how this model is more sensitive than other previous ex-
planations of DNS poisoning. (B) We further catalog the
major architectural choices DNS implementers can make in
query management. We note real-world instances where these
choices have weakened the security of resolvers, and mea-
sure the impact on security using our model. Our study re-
vealed numerous, previously unknown vulnerabilities in com-
mon DNS servers.

1 Introduction

The Domain Name System (DNS) [32, 33] plays a critical
and often unexamined role in Internet communications. The
importance of DNS comes from two essential properties:

• DNS resolution happens first, as a precursor to almost
every other protocol, and

• with few exceptions, successful DNS resolution is essen-
tial to the operation of all other protocols (mail, web,
VOIP). Without a working, secure resolution system,
other protocols are at risk.

Security problems have plagued DNS implementations for
years. One class of security flaws is DNS poisoning, where
remote attackers forge DNS responses to pollute recursive re-
solvers with malicious records. DNS poisoning attacks can
transcend vendor-specific implementations. Most recently, se-
curity researcher Dan Kaminsky [23] noted a flaw in the DNS
protocol that allowed quick, deterministic DNS poisoning of
nearly every RFC-compliant resolver. This required the rapid
update of millions of DNS servers, used by hundreds of mil-
lions of users—a near replacement of the existing DNS foot-
print on the Internet.

In a general sense, there are two classes of complementary
solutions to DNS poisoning: long-term improvements to resist
forgery attacks that implement cryptographic protections and
short-term solutions that help the Internet transition to more
secure architectures. Long term solutions, such technologies
as DNSSEC [6–8] and DNSCurve [13], generally require re-
placement of both the recursive and authority servers of the ex-
isting DNS tree. This has proven to be a complex, multi-year
process. By contrast, solutions that affect just the recursive
servers have proven easier to adopt. For example, source port
randomization (to mitigate the Kaminsky-class of poisoning
attacks) only requires a change to recursive server software.

Despite efforts to correct known bugs, there is a high poten-
tial for further vulnerabilities in the DNS protocol and specific
DNS server implementations. This potential has driven inter-
est in interim security solutions—technologies that fall short
of DNSSEC, but still make servers more resistant to DNS forg-
eries. DNS-0x20, for example, is an encoding technique used
by recursive domain name servers and makes it harder, but
not impossible, to poison caches [15]. By randomly flipping
upper and lower case characters in domain names (e.g. ex-
ample.com transformed to ExAMpLe.CoM), and observing
the identical pattern repeated in the answer, this technique in-

troduces an extra source of entropy for the DNS transactions.
For the most part, DNS-0x20 requires only changes to the
DNS initiator’s recursive; the stub resolver is unaware of the
encoding scheme. Having DNS-0x20 functionality in recur-
sives significantly improves the entropy for all iterative DNS
transactions. One drawback is that the entropy increases ex-
ponentially to the length of the domain name. Consequently,
small domain names (e.g ibm.com) and domain names with
few 0x20 capable characters (e.g., 163.com) will not signif-
icantly benefit from DNS-0x20.

The IETF working group on DNS, DNS Extensions (DNS-
EXT) [19], has seen a tremendous number of proposals that
improve DNS security and make recursive resolution more
resistant to poisoning. The proliferation of DNS protective
solutions creates numerous options for DNS implementers:
they can choose between DNS-0x20, source port randomiza-
tion (SPR), tighter bailiwick logic [10], or other interim fixes.
These solutions are described in other papers and IETF pro-
posals [2, 15]. In general, because some solutions result in
unwanted “on path” resolution failures, or come with high re-
source costs, not every vendor will pick the same mix of in-
terim technologies. Source port randomization, for example,
has proven to be resource intensive and may not be appropri-
ate for marginal platforms (e.g., embedded devices offering
DNS resolution). DNS-0x20 works in nearly every case, but
some authority servers employ non-compliant server load bal-
ancers, and some domains realize small benefits. These costs
can be measured, but without a way to measure security im-
provements, the task of selecting appropriate DNS forgery re-
sistance technologies for a given platform becomes extremely
difficult.

With the exception of bailiwick checking logic (which cre-
ates simple boolean conditions of cache/don’t-cache), this pa-
per provides a model of all of these security improvements to
DNS. Specifically, this paper provides the following contribu-
tions: First, we discuss in detail recent protocol vulnerabili-
ties in DNS and note how these motivate the need for interim
DNS security technologies. Second, we provide a comprehen-
sive model of DNS poisoning, so that on-path data attacks in
DNS can be fully understood, outside of any specific vendor
or technological context. Third, we survey the various interim
DNS security technologies and use our model to describe the
security benefits to DNS architects. To demonstrate the util-
ity of our approach, our survey discovered several previously
unknown vulnerabilities in DNS resolvers. We further worked
with vendors to provide patches.

Section 2 provides a brief background on DNS resolution
and vulnerability vectors. Section 3 discusses our DNS poi-
soning model in detail and compares it to other previous mod-
els. In Section 4, we conduct a survey of DNS systems and
discover numerous instances of DNS poisonings along with a
large pool of DNS servers still vulnerable to trivial attack. Our
findings show the need to more short-term interim security im-
provements to DNS, ahead of DNSSEC. We use our model

of DNS poisoning to analyze options for improving selected
DNS resolvers. The appendix provides a script-based imple-
mentation of our model, so that DNS developers can evaluate
the benefits of adopting specific interim security fixes.

2 Background

We provide a brief overview of the Domain Name Sys-
tem (DNS), an infrastructure commonly used to map domain
names to IP addresses. We focus only on those aspects of
DNS relevant to DNS poisoning and defensive architectures.
A general and readable overview of DNS is found in [43].

DNS uses a tree structure to organize domain name-space
into a distributed database. A domain is a node in this tree,
with each label separated by a period.

A zone is a clique of nodes. The clique of nodes form a
contiguous tree structure, the top of which is called the start of
authority. Authority DNS servers answer queries about their
zones, either providing the mappings for leaf nodes or answer-
ing with referrals that indicate delegation of child zones to
other authority servers.

For our purposes, there are four fields in any DNS
message—both queries and answers. The fields are the query,
the answer (which include RRset mappings between domains
and IPs), the authority field, and the additional field. The au-
thority field is used in the case of referral answers. For exam-
ple, an authority for a zone can indicate downward delegation
of authority. With many exceptions (e.g., in the case of an
NS query), the authority field is used to provide mappings be-
tween authorities for zones and hosts. This takes the form of
“glue records,” IP mappings of nameservers for child zones.
Ultimately, when an authority server answers directly from its
zone, it signals that the answer is “authoritative” by setting
header flags.

To protect against malicious insertion of untrustworthy au-
thority records, name servers typically require answers to
be “in bailiwick.” That is, they insist that the authority
record be in the same zone cut as the query. The rea-
soning is that a server should not be trusted to provide
answers about sibling zones—only child labels. Thus, if
one queries for host.example.com, answers that pro-
vide authority records for out-of-bailiwick zones (such as
www.google.com), are not trusted. Instead, recursive re-
solvers will iteratively re-query for the desired nameserver.

RFC 2181 [18] describes a range of trustworthiness for data
found in DNS answers. The most trustworthy information in
a DNS message (other than direct access to a zone file or an
AXFR) comes from authority data from an authority server.
The least trustworthy data, according to RFC 2181, comes
from additional information provided by authority servers.
Critically, RFC 2181 reaffirmed a reference in RFC 1034 4.3.4
(concerning negative caching) that the “authority section of an
authoritative answer may contain the SOA record for the zone

SOA

Cache

DNS Query;
ID=0xfe93

A? www.google.com

A? A?

DNS Answer; ID=0xfe93
IN A www.google.com
64.233.167.99 ...

IN A

IN A’

IN A

DNS Answer; ID=0x6f12

IN A www.google.com

85.255.112.230 ...

Time

Active
Attack

Active

TTL

P
r[
S
u
c
c
e
ss
]

Attack

Figure 1. (a) Simplified DNS poisoning attack. (b) Cumulative probability over time for an attacker to
poison a DNS cache.

from which the answer was obtained.” This property later be-
came the basis for the Kaminsky-class poisoning attack, which
is discussed below.

To help illustrate this process, Figure 1(a) shows selected
portions of a typical DNS query. A user begins with a query
(abbreviated as A? <domain> in DNS nomenclature) from
a stub resolver to a recursive resolver. The recursive resolver
surfs the zone hierarchy to locate the appropriate authority for
the desired zone containing the domain and then iteratively
obtains the answer (noted as IN A).

2.1 DNS Poisoning Attacks

Figure 1(a) also illustrates typical attacks on DNS resolu-
tion. Of recent concern is the class of DNS attacks generally
known as DNS poisoning. These attacks, discussed in detail
in [15], generally follow a pattern:

• an attacker forces a recursive resolver to initiate a DNS
query,

• while the recursive resolver is waiting for the authority
resolver’s answer, the attacker forges numerous answers
to guess the transaction elements used in the recursive
resolver’s message. Conceptually, this is a packet race
between the correct answer and any successful guess the
attacker can send to the recursive.

With only 16-bit ID fields in the base DNS protocol, one
would expect to see more instances of DNS poisoning. Fig-
ure 1(b) illustrates why, with only 16-bits of entropy, DNS
transactions were not previously widely abused. The cumula-
tive probability of a successful poisoning is plotted on the y-
axis of Figure 1(b), from 0 to 1. Each spoofed answer has, in
the simplest case, a 1

65,536 chance of matching the transaction
components of the recursive’s query. As more attack packets
are sent over time, the attacker’s cumulative chance of suc-
cess improves, eventually reaching 1 when all 65, 536 possible
transactions values are guessed. But since DNS poisoning is a

type of packet race, often the correct answer will arrive and be
cached by the recursive server. The dimension of time, shown
on the x-axis of Figure 1(b) is critical. The time between a
recursive resolver’s query and the response from the author-
itative DNS server is about 100 milliseconds on the average
(with various local maxima, as noted in [15]). But TTL peri-
ods are (with some exceptions) typically days in length. Thus,
each time a round of spoofed packets (sent within millisec-
onds) fails to poison a recursive resolver, the attacker must
wait out the TTL period (days) before trying again. Though
they may eventually win the packet race, it may take weeks
or longer, depending on the cache period of the DNS server,
random restarts of the cache, random cache eviction events
followed by repeated queries, and other developments.

For this reason, DNS poisoning has historically proved dif-
ficult, unless there were implementation errors in the DNS
server’s random number generator [25–29]. However, re-
searcher Dan Kaminsky recently observed a possible accel-
erator for simple DNS poisoning. Figure 2(a) illustrates the
operation of this attack. Instead of directly poisoning the an-
swer field of a query, the attacker provides a malicious author-
ity field in guessed answers. The attacker is free to query for
random child labels of a zone and, when a successful guess is
made, the meaningless answer is cached along with the mali-
cious NS record.

To poison the NS record for example.com, for exam-
ple, an attacker queries the victim recursive server for A?
$RANDOM1.example.com, and then spoof answers that
contain two parts. The first part has some arbitrary answer to
the query and the second part an authority answer that claims
a malicious IP is the new NS for the zone. If the attack is un-
successful and the correct answer (likely NXDOMAIN) arrives
first, the attacker immediately asks the victim recursive for A?
$RANDOM2.example.com, until successfully guessing
the transaction components of the recursive query. The mali-
cious component of the attack messages lies in the authority
update, not the answer field. Superficially, this is similar to
the Kashpureff poisoning attack of the 1990s, which padded

SOA

DNS Query; ID=0xfe93
A? $RANDOM.example.com

A?

DNS Answer; ID=0xfe93
NXDOMAIN

$RANDOM.example.com

IN A

IN A’

DNS Answer;

ID=0x6f12NXDOMAIN
$RANDOM.example.com

Authority:

ns1.example.com

85.255.112.230

Cache

a.b.c
id=0xffff

Outstanding
Queries

x.b.c
id=0x7329

a.b.c
id=0x4391

y.b.c
id=0x5c2f

a.b.c
id=0x99f1

a.b.c
id=0x10f2

a.b.c @
1.3.3.7

id=0x4c22

a.b.c @
1.3.3.7

id=0x21e7

Spoofed
Replies

D duplicate queries
F spoofed replies

D=4, F=2 in this example
and 4*2 chances to guess

Figure 2. (a) Kaminsky-class poisoning where the attacker repeated uses random label within a domain
in attempt to continually spoof answers (b) Conceptual view of the Birthday Attack on DNS Resolution.

malicious “additional record” answers onto spoofed DNS an-
swers [42].

This attack strategy revolutionized DNS poisoning attacks
and reduced the time-to-success from weeks to mere seconds.
Since an attacker could always become a zone’s authority, the
consequences of such an attack were potentially more severe
than simple A-record manipulation. The attack enabled trivial
man-in-the-middle attacks, email manipulation/interception,
and VOIP tapping. Since Kaminsky-class poisonings allow
attackers to make unlimited guesses, cache manipulation is no
longer bounded by TTL parameters. Such attacks are now (ef-
fectively) bandwidth limited. In response, a multivendor patch
was released [41], which uses the general strategy of growing
the key space by using source port randomization (SPR).

The DNS birthday attack [38] (seen in Figure 2(b)) works
by convincing the recursive DNS server to make multiple, con-
current queries for the same label and then spoofing replies for
that label. This allows the spoofed packets to collide with any
one of the valid port and ID combinations to poison the cache.
If the recursive performs D outbound queries for the same la-
bel, then each spoofed packet from the attacker has D chances
to be right. Since this discovery, many DNS recursive server
implementations have adopted birthday protection to suppress
multiple queries for the same domain, with notable exceptions.

As a clarification point we should mention a small varia-
tion between the traditional “birthday problem” and the “DNS
birthday problem”. The traditional “birthday problem” con-
siders the probability of collision among a set uniformly ran-
dom n numbers. In the “DNS birthday problem” the set of
uniformly random numbers n is comprised from the (d, f)

combinations of the DNS transactions and their characteris-
tics, where d is the number of simultaneous queries originated
from the recursive DNS server (RDNS) and f the simultane-
ous attack packets targeting the RDNS. For the “DNS birth-
day problem” we are interested in collisions between distinct
values of d and f in all possible pairs of (di, fj), where i, j
are in the message space of d and f , respectively. Addition-
ally, the actual time window in the “DNS birthday problem”
is the period from the epoch when an RDNS sends the queries
(d) to the epoch when it receives the responses from an au-
thoritative DNS. In section 3, we conduct an in depth analysis
for various instances of f and d and their combinations. In
the same section, we consider what other defenses a host may
use to defend against DNS poisoning and provide a model to
evaluate the relative strength of each approach. While DNS-
SEC and related technologies may provide an ultimate solu-
tion, we argue that our survey of DNS attacks counsels for
an improved understanding of short-term responses. In Sec-
tion 4, we track the deployment of source port randomization
(SPR) as a response to the Kaminsky-class attack. We note
that, months after patches became available, a large number of
hosts evidently do not exhibit SPR. We further observe numer-
ous instances of DNS poisoning on the Internet and correlate
these with the release of the Kaminsky-class NS-replacement
technique. This evidence of attacks, combined with a lack of
patching, illustrates the importance of interim DNS security
measures like DNS-0x20.

3 A Comprehensive DNS Poisoning Model

In this section, we investigate the trade-off between the
probability that a victim DNS’s cache is poisoned and the
effort that an attacker has to spend to launch a successful
Kaminsky-class attack (which is currently the worst-case at-
tack). We propose a precise model of poisoning risk and iden-
tify key parameters for calculating the risk of poisoning under
various defensive scenarios. We also note how our model im-
proves upon general models proposed by others.

3.1 Parameters Considered in the Attack Model

According to existing DNS standards (i.e. RFC 1034 [32]
and RFC 1035 [33]), the randomness in a DNS query comes
from the following sources. (Most symbols are the same as
those used in [2] for the ease of comparison.)

1. I denotes the ID field in a DNS message’s header section.
This field, often called the qid, is a 16 bit identifier and
has 216 = 65, 536 possible values and is used to map
answers back to the request.

2. P denotes the number of UDP source ports used by the
resolver and is often abbreviated in DNS nomenclature
as sport. Per RFC 768, this field contains 16 bits, but
to avoid collision with other applications, not all source
ports can be used in practice. Servers implementing
Source Port Randomization (SPR) generally follow these
schemes:

(a) Without using the well known ports (i.e. 0 → 1023)
defined by IANA [20], there are 216 − 1024 =
64, 512 available ports for a query.

(b) According to the list of port numbers updated on
2008-08-01 [20], 52, 209 UDP ports have been for-
mally assigned to various services by IANA. Since
the range for dynamic and/or private ports defined
by IANA is from 49, 512 → 65, 535, the resolver
following this rule can only select a source port
from 16, 384 remaining candidates.

(c) Implementation faults in some operating sys-
tems/DNS allow the attacker to easily guess the
source port in a query. For example, some DNS
software uses fixed source port (e.g. 53). Although
some DNS server will use a wide range of source
ports, the port used by a query is predictable (e.g.,
incrementing) or chosen from a small pool of ran-
dom ports selected at startup. Moreover, the ran-
dom number generator in some operating systems
is not strong enough to produce high-quality ran-
dom numbers [30].

(d) Most Kaminsky-class attack programs, e.g., [14,
21], assume recursive servers randomly select a

fixed sport at start-up (e.g., as done in unpatched
BIND-9.4), with a value from the range 216 −
1024 = 64, 512. Since this port is fixed for the at-
tack, this generation of tools are trivially remedied
by SPR.

3. N denotes a compound variable: the product of the
number of authoritative nameservers and the number of
routable external IPs used by the recursive server. Many
DNS authority servers use multiple hosts (as recom-
mended, for example, by RFC 1912 [9]). A resolver can
randomly select one and send a query to it. Similarly,
a recursive server can use any number of source IP ad-
dresses, and select one at random to iteratively query au-
thority hosts. While this is less common, it does provide
some additional protection against poisoning attacks. As
discussed in [15] the variable N is the product of all IP
addresses (both authority and recursive) that can be used
in a DNS transaction.

The following parameters affect the probability of compro-
mise:

1. D denotes the set of equivalent outstanding queries sent
by the resolver. Equivalent queries mean that they have
the same qname. Let D be the number of queries in D.
It is determined by several factors:

(a) The number of original queries sent by the attacker.

(b) The resolver’s bandwidth.

(c) Adjustable parameters in DNS software (e.g. 200
in dnscache [11] or 1,000 in BIND 9 [22])

(d) The number of 0x20-bit capable characters in a
query.

Due to the weakness in the random number generator
used by a DNS server [3], it is possible that two equiv-
alent queries may also have identical qid, source port,
and destination IP address. In this case, we consider these
two queries the same. Therefore, we let D denote the
number of distinct queries in D. Although these queries
have the same qname, they are usually different in their
qid or source port or the destination IP address (if there
are more than one authority name servers, or ANS). Thus,
D = D. But we will consider both the case when D = D
and the case D < D in order to obtain a comprehensive
model. Please note that the birthday attack becomes pos-
sible when D > 1.

2. W denotes window of opportunity in seconds. This is
the period of time during which a recursive server is an-
ticipating a response: the moment right after the resolver
sends a query, to the moment right before the authority
server’s response arrives. In general, as noted in [15],
this period of time is approximately 100 milliseconds, on

the average, though longer events (such as SERVFAIL
timeouts) can occur. In some cases, the attacker can ar-
range for the authority to be unreachable or lagged from
the recursive server’s network.

3. F denotes the set of spoofed responses sent by the at-
tacker. Let F be the number of responses in F. In theory,
it is possible that two responses have the same qid, desti-
nation port number, and source IP address because of the
flaws in the attacker’s program, such as repeated random
numbers. Although an attacker can use many approaches
to make sure that such case will not happen, we still de-
fine F as the number of distinct responses in F in order
to derive a comprehensive model.

4. Sres denotes the size of forged response packets. This pa-
rameter measures the number of bits in spoofed response
packets (to later express risk in terms of bandwidth).

5. R denotes the number of packets sent per second by the
attacker. This parameter is limited by the attacker’s band-
width. Note that with some attack platforms, such as
botnets, this parameter may be effectively unlimited, or
bounded only by the recursive server’s network-facing
transit.

6. R denotes the rate of attack traffic in Mb/s (i.e.) R =
RSres.

7. A denotes the number of attack windows. The attacker
may continue the attack until the cache is poisoned. A
new attack window is opened anytime the attacker has
the recursive server make a unique outbound query.

3.2 The Probability of a Successful Attack

Note that the attack will succeed if at least one out of F
forged responses matches one out of D queries within a win-
dow of opportunity, W .

Let M = I ∗ P ∗ N . That is, M is the number of to-
tal possible choices that a recursive server can use for query.
We use Ps(M, F, D) and Pf (M, F,D) to denote the suc-
cess probability and the failure probability of an attack (i.e.
Ps(M, F, D) = 1− Pf (M, F,D)).

According to the relationship between D and D and the
relationship between F and F , the general model consists of
four scenarios:

1. D = D and F = F : most cases fall into this scenario
where although all queries have the same qname they
are distinguishable according to their qid or source port
or the destination IP address if N > 1. Similarly, all
responses are different.

2. D < D and F = F : in this scenario the DNS server
may generate at least two identical queries. For example,

when a DNS server uses fixed source port and one ANS, a
bad random number generator may produce two identical
qids.

3. D = D and F < F : in this scenario an attacker may
send at least two identical forged responses.

4. D < D and F < F : this is a general scenario where
a DNS server may produce identical queries and an at-
tacker may create identical responses.

To better explain the deduction procedure, we will discuss
these scenarios one-by-one. Please note that when considering
the scenarios of D = D or F = F we have two approaches:
one is selection with replacement and the other is selection
without replacement. But when considering the scenarios of
D < D or F < F we can only use the approach of selection
with replacement because selection without replacement will
not cause identical queries or identical responses. To follow a
unified approach, we only examine selection with replacement
in the analysis.

According to the pigeonhole principle, Pf (M, F, D) = 0
if D + F > M . In other words, the spoofed responses will
match at least one query. This conclusion is suitable for all
scenarios.

3.2.1 If D = D and F = F

we have

Pf (M, F, D) =

(
M −D

F

)

(
M
F

) (1)

The basic idea is that if F forged responses are selected
from the M−D possible responses, then a match between the
responses and the queries does not exist. According to [44],
Eqn(1) could be approximated by

Pf (M, F, D) ≈ (1− 1
M

)DF (2)

We will evaluate this approximation in Section 3.3.

3.2.2 If D < D and F = F

We first compute the probability that there are i distinct
queries in D and denote it as P (D = i), 1 ≤ i ≤ D. The
key point here is to calculate the number of all possible map-
pings from D elements to i elements. We use the method of
enumerating subjections [34, 35], and obtain:

P (D = i) = i!S(D, i)

(
M
i

)

MD
, (3)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.2

0.4

0.6

0.8

1

Number of spoofed responses (i.e. F)

P
ro

b
a
b

il
it

y
 o

f
c
o

m
p

ro
m

is
e
 (

i.
e
.
P

s
)

M=1073741824; D=1000

PsVU

PsCom

PsComAprox

PsHubert

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of equivalent queries (i.e. D)

P
ro

b
a

b
il

it
y

 o
f

c
o

m
p

ro
m

is
e

 (
i.

e
.

P
s

)

M=1073741824; F=10000000

PsVU

PsCom

PsComAprox

PsHubert

(b)

Figure 3. (a) Comparison of the four models with D is fixed at 1,000 outstanding queries (PsVU, PsCom,
and PsComAprox are occluded). (b) Comparison of the four models when F is fixed at 10 million packets
(PsVU, PsCom, and PsComAprox are occluded).

where S(D, i) is the Stirling number of the second kind [36].
It can be computed according to the following recursive meth-
ods:

S(x, y) = S(x− 1, y − 1) + yS(x− 1, y), (4)

where S(0, 0) = 1 and S(x, 0) = S(0, y) = 0 for x, k 6= 0.
Since the probability that selecting F elements from (M −

i) elements is
F !

0
@ M − i

F

1
A

MF

1, by combining Eqn.(3), we get:
Pf (M, F, D) =

F !
MF+D

D∑

i=1

(
M − i

F

) (
M
i

)
i!S(D, i) (5)

3.2.3 If D = D and F < F

By using similar method as shown in Section (3.2.2), we can
easily compute the Pf (M, F,D) in this scenario as follows:

Pf (M, F, D) =

D!
MF+D

F∑

j=1

(
M − j

D

)(
M
j

)
j!S(F, j) (6)

3.2.4 If D < D and F < F

By combining the results in Section (3.2.1), (3.2.3), (3.2.2)
together, we can obtain the general equation for Pf (M, F,D)

1Please note that here we consider selection with replacement. For selec-

tion without replacement, the probability is

M − i

F

!

M

F

!

as follows:

Pf (M, F,D) =

1
MF+D

D∑

i=1

F∑

j=1

(
M − i

j

) (
M
i

)
i!j!S(D, i)S(F, j) (7)

Given the number of spoofed packets sent by an attacker
within a window of opportunity, we can compute the proba-
bility of compromise (i.e. Ps(M, F, D) = 1− Pf (M, F,D)),
as well as the required data rate (i.e. R = FSres

W).

3.3 Comparison to Other Models

There are some existing models such as [2, 37, 40]. The
model in [40], (commonly known as the CERT advisory on
birthday attacks on DNS servers) could obtain the same result
as Eqn.(1). However, the authors in [40] only listed the com-
putation steps instead of giving an exact equation, and did not
consider the general case. We rephrase their conceptual model
using our symbols as follows:

Pf (M, F, D) =
F−1∏

k=0

(1− D

M − k
) (8)

To show the improvements offered by our model, we com-
pare the results obtained from the above steps with those de-
rived from our models (i.e. Eqn.(1), Eqn.(2)) and the model
suggested in [2], which can be formulated as:

Pf (M, F,D) = 1− DF

M
(9)

In the following experiments, we set I = 65, 536, P =
16, 384 and N = 1. We first fix D = 1, 000 and vary F to

obtain the results shown in Figure 3(a). Similarly, we then fix
F = 10, 000, 000 and vary D resulting in Figure 3(b). The Y-
axis in both figures is the probability of compromise and the
X-axis indicates the number of spoofed responses (i.e. F) in
Figure 3(a), and denotes the number of equivalent queries (i.e.
D) in Figure 3(b). In both figures, PsVU denotes the result
based on the model in [40], PsCom denotes the result from
Eqn.(1) above, PsComAprox denotes the result from Eqn.(2)
above, and PsHubert illustrates the results obtained from the
model in [2]. A ruby implementation of our model is provided
in Appendix A for others to experiment with.

Both figures illustrate that the results obtained from the
model in [2] deviate from the results of other models. We
use the result of the model in [40] as a baseline because it is
intuitive. We can easily see that the model in [2] overestimates
the results.

PsVU and PsCom obtain the same result. The average
differences between them observed in the experiments were
1.9414e− 014 and 7.2164e− 016 in Figures 3(a) and 3(b) re-
spectively, due to numerical precision errors. The average dif-
ference between PsComAprox and PsCom were 1.5392e−004
and 4.6596e− 005 in the two sub-figures respectively. Hence,
we regard Eqn.(2)) as a good approximation. We also provide
plots of these models in Figure 4 individually.

The author in [37] presented another approximation to
Eqn.(1) when D = F as follows:

Pf (M, F, D) ≈ (1− 1
M

)
D(D−1)

2 (10)

By comparing it with Eqn.(2), it is easy to see that it underes-
timates the probability of compromise.

4 Analysis

Our model of DNS poisoning is comprehensive and more
detailed than previous efforts. To motivate the need for this
model, we tracked the rate of DNS poisoning over time, dur-
ing the critical weeks before and after the August 8, 2008 an-
nouncement of a major DNS security flaw. Our study showed
numerous instances of poisoning, combined with a large group
of resolvers that appear trivially poisonable. This finding mo-
tivated the second half of this section, which analyzed interim
improvements to DNS resolvers. In the course of our analysis,
we identified and patched weaknesses in DNS servers. While
falling short of cryptographic improvements to DNS resolu-
tion, our approach responds to the clear need for interim solu-
tions and transitional technologies.

4.1 Experiments

We first set out to observe over time the rate at which DNS
servers become poisoned. Previous studies [16] have dis-
cussed techniques to map large numbers of open recursives

and evaluate “incorrect” DNS answers obtained from such
hosts (whether done for malicious or commercial gain).

We used this remote monitoring technique as follows: First,
we monitored open recursive DNS servers (O-RDNS) for suc-
cessful poisoning attempts on the 500 most popular domain
names [4]. Our monitoring period overlapped the weeks be-
fore and after the announcements of the Kaminsky vulnera-
bility [23]. After analyzing the data, we were able to detect
successful poisoning attempts and at the same time create a
DNS Black List of commonly used malicious IPs used in poi-
soning. The results showed that attackers were using publicly
available DNS poisoning tools without even changing the de-
fault IP used by the tool (1.0.0.0, 123.123.123.123,
10.15.8.91, etc.). Additionally, we observed a significant
number of malicious RRsets pointing to networks in China,
Japan and in the USA.

The timing of the DNS poisonings with the release of a
major DNS vulnerability may of course been coincidental. We
therefore estimated the percentage of O-RDNSs servers that
applied vendor-recommended patches and implemented SPR.

4.2 Successfully Poisoning O-RDNS

We used four scan engines to probe 0.9 million O-RDNS
located in 17 different AS in 10 different countries. The scan
period was selected to be close to the Black Hat 08 confer-
ence. Researcher Dan Kaminsky already had announced that
he would make public a very serious DNS vulnerability. Spec-
ulations and proof of concept code about the attack were al-
ready available in various blogs and underground web sites.
These tools were capable and the O-RDNSs were very easy
“test” targets for this attack. The probing results from the
O-RDNS servers supported our initial worries. In Figure 5,
we can clearly observe the increase in the successful poison-
ing attempts against financial institutions (i.e., wamu.com,
bankofamerica.com) and very popular web sites (i.e.,
amazon.com, microsoft.com). Between July 30th and
August 18th, we were able to detect a significant number of
DNS poisoning attacks against O-RDNS in various ASs. We
first selected the 500 most popular domain names [4] and tried
to resolve them with the O-RDNS servers identified in previ-
ous work [16]. We found more than 200 unique IPs, which
were present in reply records across various zones. Several
heuristics allowed us to identify poisonous answers in such a
large set of data. For example, it is unlikely that two different
top-500 websites on the Internet share the same IP address.
Yet such a hosting arrangement is commonly used in collo-
cated phishing hosts. Hosts that collided were put onto a list
for hand verification. Additionally, we used a voting system
to identify unusual RRsets. It is unlikely that an attacker can
poison millions of open recursives at the same time. Thus,
“unpopular” answers provided by open recursives were simi-
larly flagged for hand verification.

Using an IP to autonomous system number (ASN) map-

0

0.5

1

1.5

2

x 10
6

0

2000

4000

6000

8000

10000

0

0.2

0.4

0.6

0.8

1

Number of spoofed responses (i.e. F)

M=1073741824; VUModel

Number of equivalent queries (i.e. D)

P
ro

b
a

b
ili

ty
 o

f
c
o

m
p

ro
m

is
e

 (
i.
e

.
P

s
)

(a) Poison probabilities across D queries and F packets in the VU model.
0

0.5

1

1.5

2

x 10
6

0

2000

4000

6000

8000

10000

0

0.2

0.4

0.6

0.8

1

Number of spoofed responses (i.e. F)

M=1073741824; ComModel

Number of equivalent queries (i.e. D)

P
ro

b
a

b
ili

ty
 o

f
c
o

m
p

ro
m

is
e

 (
i.
e

.
P

s
)

(b) Poison probabilities across D queries and F packets in the Comprehen-
sive model, Eqn. 1.

0

0.5

1

1.5

2

x 10
6

0

2000

4000

6000

8000

10000

0

0.2

0.4

0.6

0.8

1

Number of spoofed responses (i.e. F)

M=1073741824; ComApproxModel

Number of equivalent queries (i.e. D)

P
ro

b
a

b
ili

ty
 o

f
c
o

m
p

ro
m

is
e

 (
i.
e

.
P

s
)

(c) Poison probabilities across D queries and F packets in the Comprehensive
approximation model, Eqn. 2.

0

0.5

1

1.5

2

x 10
6

0

2000

4000

6000

8000

10000

0

0.2

0.4

0.6

0.8

1

Number of spoofed responses (i.e. F)

M=1073741824; HubertModel

Number of equivalent queries (i.e. D)

P
ro

b
a

b
ili

ty
 o

f
c
o

m
p

ro
m

is
e

 (
i.
e

.
P

s
)

(d) Poison probabilities across D queries and F packets in the Hubert model

Figure 4. Comparison of calculated probabilities between the four models. This figure illustrates the
probability of compromise computed through different models. In each subfigure, we calculate the
probability under different D (i.e. the number of equivalent queries) and F (i.e. the number of spoofed
responses) using one model. (a) shows the results from the VU model; (b) and (c) illustrates the results
the results from our model and its approximation model, respectively; (d) presents the results from the
Hubert model.

Zone Successful Attempts Poisoned Sub-zones Unique Malicious IPs
amazon.com. 944 4 11
bankofamerica.com. 351 1 25
capitalone.com. 960 3 18
chase.com. 947 2 27
microsoft.com. 827 4 13
icicibank.com. 4416 7 11
wamu.com. 11050 6 24

Table 1. Poisoning evidence in seven popular zones. The first column shows the total number of suc-
cessful poisonings found in each zone. The second column presents distinct sub-zones that were also
poisoned. The last column shows the distinct number of IPs found in poisoned resource records (RRs)
in each zone.

8/5 8/6 8/7 8/8 8/9 8/10 8/11 8/12 8/13 8/14 8/15 8/16 8/17 8/18 8/19
0

200

400

600

800

1000

1200

Date

N
u

m
b

e
r

o
f

p
o

is
o

n
e

d
 r

e
c

o
rd

s

amazon.com

bankofamerica.com

capitalone.com

chase.com

microsoft.com

icicibank.com

wamu.com

August 8, 2008

BlackHat talk on

Kaminsky Vulnerability

Figure 5. Successful poisoning attempts during the reveal of Kaminsky Class of attack Aug-2008.

ping system [39], we created a white list and black list of
IPs. Hosts associated with an organization (e.g., a bank) were
found within ARIN allocations given to the organization and
announced by the unit’s ASN. Our blacklist used the oppo-
site logic: where ASN information could not be associated
with the qname domain zone in any legitimate way (includ-
ing hand verification).

In Table 1, we can observe the number of total poisoned
records returned from O-RDNS in the first two weeks of Au-
gust 2008. The majority of the poisoned IPs were located in
USA, China and Japan. Figure 5 illustrates the impact of the
DNS vulnerability announcement. Prior to the announcement,
poisoning against O-RDNS was observed, but steady in rate.
In the weeks following the release of automated attack tools,
successful attempts against O-RDNS significantly increased.

4.3 Observing the Port Randomization Patch De-
ployment

Although we could verify each suspected poisoning inci-
dent and build a blacklist of malicious IPs, we could not auto-
matically attribute the poisonings to Kaminsky-class attacks.
To gain some insights into likely causes of the poisonings, we
conducted a scan of O-RDNS for port randomization behav-
ior. Conceptually, one could just requery the hosts repeatedly
and measure the standard deviation of port numbers found in
answers. We noted the use of a more elegant technique at
OARC’s self-testing system [45]. A single query is answered
with a lengthy CNAME (and no offered glue), thereby forcing
recursives to requery. Resolution of the CNAME requires walk-
ing a lengthy delegation chain, each located at a different IP
on the multi-homed authority. Thus, using one query, one can
induce a tightly packed set follow-up queries from the recur-
sive. This yields dozens of source ports data samples for the

cost of merely one outbound open recursive probe.
We implemented a similar technique involving multiple

domains under different TLDs. We describe this technique
in some detail, since it efficiently generates multiple queries
from recursives and consumes a minimum number of author-
ity IPs. Using just three domains, (say, experiment.biz,
experiment.org and experiment.info), a series of
CNAMEs forces a query to a different sibling zone. Since we
set the TTLs of all records to zero, the recursive is forced to
revisit each sibling host. Thus, the initial query for any label
under in.experiment.org would result in the following
CNAME storm:

*.in.experiment.org→ a.experiment.biz→
a.experiment.info→ a.b.experiment.biz→

a.b.experiment.biz→ a.b.
experiment.info→ →
a.b.c.d.e.experiment.biz→

a.b.c.d.e.experiment.info : IN A 10.0.0.1

This round-robin sibling delegation continues, forcing the
recursive to requery at each cut, only to be directed to another
sibling. There are limits to how far DNS servers will follow
CNAME chains, but the zero TTL allows one to repeat this pro-
cess and generate large numbers of port number samples for
a host. A single multi-homed host acts as the authority for
all three zones (and all their child zones), so that statistical
studies of port randomization are easily obtained from a sin-
gle capture file. This approach also avoids the need to create
customized resolvers to suppress glue (e.g., which could po-
tentially short-circuit recursive delegation walking under the
OARC approach.) Thus, we could use robust authority imple-
mentations (e.g., a set of optimized BIND installations) to test
numerous open recursives simultaneously.

With a high-speed measurement platform in place, we
tracked queries from unique O-RDNS by appending a
random 9-character label under the top-most CNAME (or
{RND}.in.experiment.org). A simple wild-card
configuration for the first zone (*.in.experiment.org)
ensures that any query that reaches that zone will be pointed
to the next domain name using a CNAME (in this case the:
a.experiment.biz). This continues until the O-RDNS
reaches the a.b.c.d.e.experiment.info, where our
authoritative name server will respond back to the O-RDNS
with a terminating leaf A record.

After querying 0.9 million active O-RDNS servers we ob-
served that approximately 57% of the O-RNDs always reply
with the same port. A smaller percentage 2% of the O-RDNS
used a round robin port switching approach. For the rest of
the O-RDNS, 41%, we were not able to find any patterns in
their source port selection. A non-zero standard deviation of
port numbers suggested the use of random ports within a range
(e.g., above port 1024). We therefore assumed such hosts were
properly patched for SPR.

Our analysis intentionally stopped short of several other in-
quiries. For example, we did not attempt to measure the im-
portance of the open recursives, or count the users behind the
open recursive. This would have allowed us to categorize the
risk posed by each poisoned O-RDNS.

This and related inquires were left for future work or other
researchers. Our focus was on demonstrating that (a) many
DNS servers are still not patched; and (b) many DNS servers
are being poisoned, as shown in previous works [16], us-
ing what appear to be new DNS vulnerabilities. These two
observations (and the large number of O-RDNS servers at
risk) point to the need for interim security improvements.
While DNSSEC, DNSCurve, and other proposals may eventu-
ally provide cryptographic solutions to poisonings, we docu-
mented ample evidence of ongoing attacks to the current DNS
infrastructure.

4.4 Survey of DNS Architectures

Given the need for interim DNS security improvements, we
evaluated how different DNS vendors architected their recur-
sive resolvers and looked for opportunities to measure (using
our model) how selective patching can improve security. A
comprehensive survey of all DNS tools is difficult, since many
are closed-source and even the open source implementations
are complex.

In the course of our survey, we also noted that some DNS
servers had adopted more aggressive security solutions, but
could still benefit from using interim defenses. For exam-
ple, djbdns’s dnscache implements efficient source port ran-
domization, but does not implement birthday protection, dis-
cussed in [24]. The architect of dnscache has observed that,
ultimately, DNS resolution based on 16-bit qid randomiza-
tion can be poisoned if attackers send enough spoofed pack-
ets [12]. With the recent proposal of DNSCurve, we expect
that dnscache may soon have an even stronger defense, po-
tentially ending all DNS poisoning risks. We similarly expect
DNSSEC, if fully deployed, would also remove forgery from
the attacker’s arsenal.

We agree with this perspective, but observe the need
for short-term protections. We submit that there remains
an immediate need to understand interim security improve-
ments. DNS resolvers need birthday protection, DNS-0x20
options, good port randomization, and improved bailiwick
handling logic. Our analysis above observed numerous poi-
soning attacks, and a large population is still at risk for trivial
Kaminsky-class attacks. This evidence suggests that the path
to cryptographically secure resolution must include these in-
terim defenses.

We therefore worked with the djbdns developer commu-
nity to engineer a patch for dnscache2 to provide birth-

2The patch was developed by Jeff King, a PhD student at Georgia Tech
and frequent contributor to the djbdns developer community.

0 20000 40000 60000 80000

Time (s)

1x10-11

1x10-10

1x10-9

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

P
o
is
o
n
in
g
 P
ro
b
a
b
ili
ty

Sports=1, 0x20=0, TTL=0
Sports=1, 0x20=0, TTL=3600
Sports=1, 0x20=12, TTL=0
Sports=1, 0x20=12, TTL=3600
Sports=64000, 0x20=0, TTL=0
Sports=64000, 0x20=0, TTL=3600
Sports=64000, 0x20=12, TTL=0
Sports=64000, 0x20=12, TTL=3600

For all equations: N=2.5, I=65536, W=100ms

unpatched

SPR

Source Port Randomization (SPR)

and 0x20

0x20

Kaminsky

Attack

Figure 6. (a) Time-to-poison dnscache without birthday protection. (b) Comparison of various DNS
architectural choices, and improvements in security.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

200 384 512 768 1024
 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

N
u

m
b

e
r

o
f

A
tt

a
c
k
 P

a
c
k
e

ts
N

e
e

d
e

d
 t

o
 P

o
is

o
n

 d
n

s
c
a

c
h

e
-1

.0
5

MAXUDP Setting

Experimental dnscache-1.05 Poisoning Attack

Packets to Successfully Poison
Average Packet Count

Figure 7. Successful poisoning attacks on
dnscache 1.05. Each plot indicates the num-
ber of packets required to poison a dnscache
instance with a given MAXUDP setting.

day protections and made the patch freely available. The
patch generally checks the buffer of outstanding queries for
any matching instance (based on qname, type, class,
bailiwick) and “piggybacks” new requests on any old out-
standing requests. This removes the birthday window. We
have tested the patch in two university networks for several
months and found it worked effectively to reduce the risk of
attack.

Figure 6(a) shows the improvements realized by applying
our patch. Without birthday protection, Figure 6(a) shows it
would be possible (under some configurations of dnscache)
to poison the resolver in hours or minutes. For example, an
attacker sending a large volley of packets (15K q/s) has a
90% chance of success of poisoning a dnscache server con-
figured to allow tens of thousands of simultaneous queries.
The attack could completed in minutes. In its default state,
dnscache ships with a fairly small birthday window—the
parameter MAXUDP in dnscache.c is defined at 200. The
dnscache user community, however, sometimes advocates the
use of larger values of MAXUDP to accommodate more si-
multaneous queries. Such configurations consequently have
a larger birthday window and a significantly higher risk, as
illustrated by our model.

To validate the model, we configured a local network run-
ning instances of stock dnscache 1.05, and altered only
the MAXUDP variable. We then queried over 5000 times for
the authority records for a toy domain, SOA? abcdefghi-
jkl.mn. The large volley of initial queries was needed to
ensure that no other queries occupied any available slot in the
queue. We then spoofed 100 answers, providing 6.6.6.6 as
the malicious IPs for NS1 and NS2. This was repeated until
success.

We chose to query for authority records because
dnscache specifically does not cache SOA records (as noted
in its documentation [11]). This ensured that the test could be
restarted quickly and efficiently after a successful poisoning.
A parallel monitoring of the dnscache log file would observe
acceptance of the malicious answer, and terminate the prop-
agation of additional malicious answers from the attacking
host. Because of latency, both in logging and in the poisoning
client’s kill switch, we may have overcounted the number of
packets needed to successfully poison by approximately 1%.
(This overcounting provides a more conservative estimate of
dnscache’s performance.)

We repeated the process to obtain 16 successful poisonings
for various MAXUDP settings. When MAXUDP was set to 512,
we were able to poison a stock dnscache instance (with-
out a birthday protection patch) in an average of 18,871,764
packets. Note that our attack alternated between spoofing the
two authority IP addresses for the toy domain. It’s common
for authority servers to have two addresses. This doubled the
number of attack packets we had to send in our model. (How-
ever, for domains served by a single authority IP, the number
of malicious packets one must send is half what we report in
our experiment.)

When MAXUDP was set to 1024 (also a common configura-
tion parameter) we were able to poison dnscache in an average
of 5,874,332 packets. Figure 7 shows a plot of the experi-
mental outcomes, and the distribution of packet counts needed
to successfully poison dnscache. When MAXUDP was set to
2048, we found that dnscache would use significant amounts
of CPU time, resulting dropped packets. At approximately
10KPPS, about half the traffic was dropped. This is because
dnscache uses list structures to manage open queries, and per-
forms an O(3N) sweep with each response. (By default, the
program sets MAXUDP to 200, so a list is an appropriate data
structure for small query volumes.)

At first, there is nothing surprising about these results. The
outcome merely validates what Dan Bernstein has long said
about DNS attacks: given enough packets, any DNS server is
vulnerable. (Indeed, the difficulty in securing 16-bit resolution
systems is what motivated the development of DNSCurve).
The importance for our work, however, is that these data points
match the curve provided by our model.

Our model allows us to evaluate the trade-offs in how one
might improve existing DNS architectures, pending a long-
term cryptographic solution, as shown in Figure 6(b). With a
default MAXUDP of 200 (that is, a birthday collision window of
200), dnscache has some reduced forgery resistance; how-
ever, the use of source port randomization (first innovated in
dnscache) significantly improves security.

Cryptographic DNS resolution would provide a complete
solution. But the history of DNSSEC suggests this process
will continue to be slow. In the interim, our model allows one
to weigh short-term options for improving security.

5 Related Work

Our work fits into the larger body of literature concerned
with DNS poisoning. DNSSEC has been proposed as secu-
rity extensions of DNS [6–8]. DNSSEC provides origin au-
thentication, data integrity, and validated denial of existence.
DNSSEC does not provide confidentiality of data, since the
contents of zones can be enumerated. To address this problem
(and to provide some efficiencies in delegations), NSEC3 was
proposed. [31].

Recently DNSCurve [13] was proposed as an alternative
to DNSSEC. Relying on 255-bit elliptic-curve cryptography,
DNSCurve provides stronger integrity than DNSSEC’s 1024-
bit RSA forgery detection. And unlike DNSSEC, DNSCurve
does not publish the contents of secured zones, and therefore
does not require enumeration of the zone.

Both of these proposals provide cryptographic strength, but
only DNSSEC is fully implemented by the world’s DNS ven-
dors and is part of the installed based of recursive and author-
itative servers. But neither is in wide use. Both will require
adoption by the DNS operator community, ISPs, and other net-
works before becoming widespread.

Numerous short-term solutions have proliferated in this
vacuum. DNSSEC Lookaside Validation (DLV) [5] was pro-
posed as a partial implementation of DNSSEC, allowing the
designation of single entry points from which the DNS tree
can be search for signed delegation.

Other proposals have sought to secure the existing DNS
protocol by finding additional sources of entropy. DNS-
0x20 [15] uses variations in case formatting of qnames to
track transactions. Similarly, “Domain Name System (DNS)
Cookies” [1] uses additional option (an OPT RR) for tracking
sessions. These types of proposals are generally distinguished
by whether or not they require updates to the recursive and
authority server population, or just the recursives.

Randomized UDP source ports are another light weight
scheme that only recursives have to implement. First pro-
posed by DJ Bernstein, the practice became wide spread af-
ter the announcement of the Kaminsky-class DNS poisoning
attack. This approach, while conceptually light weight, can
have significant resource costs on busy servers. Servers that
implement source port randomization have to potentially per-
form select(2) over large pools of open file descriptors—a
resource intensive operation [17]. As a result, source port ran-
domization may not be appropriate for some environments.

The work closest to our current study is A. Hubert’s DNS-
EXT study of forger resilience [2]. This comprehensive IETF
document describes the DNS poisoning problem and provided
preliminary mathematical modeling for determining the prob-
ability of poisoning. There were several aspects of poisoning
considered in our model, which where excluded from the IETF
draft. We plan to contribute our model and Appendix A to this
effort.

6 Conclusion and Future Work

To aid DNS implementors in judging implementation-
security tradeoffs between various interim solutions, we have
developed mathematical models to compare interim protection
techniques. We provided a complete DNS poisoning model
and compared it to previous models. We discussed architec-
tural tradeoffs in managing queries and why certain architec-
tural choices could cause nuanced security concerns. To illus-
trate these tradeoffs, we described weaknesses in actual im-
plementations and their implications.

Future directions of this work will consider performance,
complexity, and verifiability tradeoffs, while adhering to strict
security guidelines, in the implementation of DNS servers. We
will further consider the development costs associated with
various security techniques. Finally, we will further examine
how various protection deployments help or hinder the adop-
tion of more complete cryptographic solutions.

Acknowledgments

This material is based upon work supported in part by the
National Science Foundation under Grant No. 0627477 and
Grant No. 0831300, and the Department of Homeland Secu-
rity under Contract No. FA8750-08-2-0141. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation and the
Department of Homeland Security.

References

[1] Donald E. Eastlake 3rd. Domain name system
(dns) cookies. http://tools.ietf.org/html/
draft-eastlake-dnsext-cookies-03, 2008.

[2] A. Hubert and R. van Mook. Measures for
making DNS more resilient against forged an-
swers. http://tools.ietf.org/html/
draft-ietf-dnsext-forgery-resilience,
2008.

[3] A. Szmit, M. Tomaszewski, and M. Szmit. Domain name
servers’s pseudo-random number generators and DNS
cache poisoning attack. Polish Journal of Environmental
Studies, 15(4C), 2006.

[4] Alexa. Alexa the web information company. http:
//www.alexa.com/, 2007.

[5] M. Andrews. The dnssec lookaside validation (dlv) dns
resource record, rfc 4431. http://www.ietf.org/
rfc/rfc4431.txt, 2006.

[6] R. Arends. Protocol modifications for the dns secu-
rity extensions, rfc 4035. http://www.ietf.org/
rfc/rfc4035.txt, 2005.

[7] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. Dns security introduction and require-
ments. http://www.ietf.org/rfc/rfc4033.
txt, March 2005.

[8] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. Resource records for the dns security exten-
sions. http://www.ietf.org/rfc/rfc4034.
txt, March 2005.

[9] D. Barr. Common dns operational and configuration
errors. http://www.ietf.org/rfc/rfc1912.
txt, 1996.

[10] G. Barwood. Resolver side mitigations draft: dnsext-
fr-resolver-mitigations. http://www.ietf.org,
September 2008.

[11] D. Bernstein. dnscache.
http://cr.yp.to/djbdns/dnscache.html, visited in Aug.
2008.

[12] D. J. Bernstein. Dns forgery. http://cr.yp.to/
djbdns/forgery.html, 2008.

[13] D. J. Bernstein. Introduction to dnscurve. http://
dnscurve.org/, 2008.

[14] Computer Academic Underground. Cau-ex-2008-0003,
bailiwicked domain.rb. http://www.caughq.
org/exploits/CAU-EX-2008-0003.txt,
2008.

[15] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya
Jinmei, and Wenke Lee. Increased dns forgery resistance
through 0x20-bit encoding. In Proceedings of the 15th
ACM Conference on Computer and Communications Se-
curity (CCS 2008), October 2008.

[16] David Dagon, Niels Provos, Christopher P. Lee, and
Wenke Lee. Corrupted dns resolution paths: The rise of
a malicious resolution authority. In Proceedings of Net-
work and Distributed Security Symposium (NDSS ’08),
2008.

[17] David Dagon and Paul Vixie. Setting dns’s hair
on fire. http://www.usenix.org/events/
sec08/tech/, 2008.

[18] R. Elz and R. Bush.
http://www.faqs.org/rfcs/rfc2181.html, July 1997.

[19] Olafur Gudmundsson and Andrew Sullivan. DNS ex-
tensions (dnsext). http://www.ietf.org/html.
charters/dnsext-charter.html, 2008.

[20] IANA. Port numbers.
http://www.iana.org/assignments/port-numbers, Au-
gust 2008.

[21] infobyte. Isr-evilgrade v1.0.0. http:
//www.infobyte.com.ar/down/
isr-evilgrade-Readme.txt, 2008.

[22] Internet Systems Consortium. Bind
9 administrator reference manual.
http://www.isc.org/index.pl?/sw/bind/arm95/, 2008.

[23] Dan Kaminsky. Doxpara research. http://www.
doxpara.com, 2008.

[24] Dan Kaminsky. Its the end of the cache as we know
it. http://www.doxpara.com/DMK_BO2K8.
ppt, 2008.

[25] Amit Klein. BIND 8 DNS cache poisoning. http:
//www.trusteer.com/docs/bind8dns.html,
2007.

[26] Amit Klein. BIND 9 DNS cache poisoning. http:
//www.trusteer.com/docs/bind9dns.html,
2007.

[27] Amit Klein. OpenBSD DNS cache poisoning and multi-
ple OS predictable IP ID vulnerability. http://www.
trusteer.com/docs/dnsopenbsd.html, 2007.

[28] Amit Klein. Windows DNS cache poison-
ing. http://www.trusteer.com/docs/
microsoftdns.html, 2007.

[29] Amit Klein. PowerDNS recursor DNS cache poi-
soning. http://www.trusteer.com/docs/
powerdnsrecursor.html, 2008.

[30] L. Dorrendorf, Z. Gutterman, B. Pinkas. Cryptanalysis
of the windows random number generator. In Proc. ACM
CCS, 2007.

[31] B. Laurie, G. Sisson, R. Arends, and D. Blacka. Dns
security (dnssec) hashed authenticated denial of exis-
tence. http://www.ietf.org/rfc/rfc5155.
txt, 2008.

[32] P. Mockapetris. Domain names - concepts and fa-
cilities. http://www.ietf.org/rfc/rfc1034.
txt, 1987.

[33] P. Mockapetris. Domain names - implementation
and specification. http://www.ietf.org/rfc/
rfc1035.txt, 1987.

[34] T. Nakata. Collision probability for an occupancy prob-
lem. Statistics & Probability Letters, 2008.

[35] P. Flajolet and R. Sedgewick. Analytic Combinatorics.
Cambridge University Press, 2008.

[36] R. Stanley. Enumerative Combinatorics. Cambridge
University Press, 1997.

[37] J. Stewart. DNS cache poisoning - the next generation.
http://www.lurhq.com/dnscache.pdf, 2003.

[38] Joe Stewart. Dns cache poisoning - the next
generation. http://www.secureworks.com/
research/articles/cachepoisoning, 2002.

[39] Team Cymru. IP to ASN mapping. http:
//www.team-cymru.org/Services/
ip-to-asn.html, 2008.

[40] United States CERT. Various DNS service implemen-
tations generate multiple simultaneous queries for the
same resource record. VU 457875, November 2002.

[41] US-CERT. Multiple dns implementations vulnerable
to cache poisoning. http://www.kb.cert.org/
vuls/id/800113, 2008.

[42] US Department of Justice. Eugene e. kashpureff pleaded
guilty. http://www.usdoj.gov/criminal/
cybercrime/kashpurepr.htm, 1998.

[43] Paul Vixie. DNS complexity, April 2007.

[44] M. Wendl. Collision probability between sets of random
variables. Statistics and Probability Letters, 64(3), 2003.

[45] Duanne Wessels. Web-based dns randomness
test. https://www.dns-oarc.net/oarc/
services/dnsentropy, 2008.

A Poison Probability Computation Script –
Ruby

The following is an implementation of the comprehensive
DNS poisoning model described in Section 3.

module CachePoisoning
class Recursive

def initialize(ports=4096, recursives=1, ids=2**16, auths=2.5,
rtt=0.1, pending=1, ox20=false)
@recursives = recursives # number of recursives
@ports = ports # P: number of used ports
@ids = ids # I: number of TXIDs
@auths = auths # N: number of authoritative name servers
@rtt = rtt # W: round trip time between the recursive

server and the authoritative
@pending = pending # D: number of simultaneous queries with

the same QNAME birthday protection
effectively sets D=1

@ox20 = ox20 # O: is 0x20 used (tOgGle CAse LaBEls)
end
def probability(attacker, time)

ex = time / @rtt
o = (@ox20) ? 2**12 : 1
i = @ids; p = @ports; n = @auths * @recursives; d = @pending
m = i*p*n*o
f = attacker.rate * @rtt
pf = (1 - (1.0/m))**(d*f)
pcs = 1 - ((pf)**ex)

end
end
class Attacker

attr_reader :rate
def initialize(rate=20E3)

@rate = rate # rate in packets per second
end

end
class DataGenerator

def initialize(recursives=[], attackers=[], timemin=0,
timemax=24*60*60, timedelta=600)
@recursives = recursives # array of recursive objects
@attackers = attackers # array of attacker objects
@timemin = timemin # start time
@timemax = timemax # end time
@timedelta = timedelta # jump

end
def generate

time = @timemin
data = []
while time <= @timemax
timedata = [time]
@recursives.each do |r|

@attackers.each do |a|
timedata << r.probability(a,time)

end
end
data << timedata
time += @timedelta

end
data

end
def prettyprint(data)

data.each do |row|
puts row.join(" ")

end
end

end
end

if __FILE__ == $0
bind = CachePoisoning::Recursive.new(16384,1,2**16,1,0.1,1000)
onegbps = CachePoisoning::Attacker.new(20E3)
dg = CachePoisoning::DataGenerator.new([bind], [onegbps],

1, 100, 1)
data = dg.generate
dg.prettyprint data

end

