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Abstract

The strength of hash functions such as MD5 and SHA-1
has been called into question as a result of recent discov-
eries. Regardless of whether or not it is necessary to move
away from those now, it is clear that it will be necessary
to do so in the not-too-distant future. This poses a number
of challenges, especially for certificate-based protocols. We
analyze a number of protocols, including S/MIME and TLS.
All require protocol or implementation changes. We explain
the necessary changes, show how the conversion can be
done, and list what measures should be taken immediately.

1 Introduction

Nearly all major cryptographic protocols depend on the
security of hash functions. However, this is increasingly
looking like a brittle foundation: although a variety of hash
functions are available, only MD5 [32] and SHA-1 [23] are
in wide use. Both hash functions derive from MD4 [31],
which has long been known to be weak [7, 8], thus leading
to concerns that they might have common weaknesses.

These concerns were borne out in late 2004, when tech-
niques for efficiently finding collisions in MD5 [37] and
SHA-0 [2] were announced. Subsequently, Wang [36] an-
nounced a technique for finding collisions in SHA-1 in269

operations,1 rather than the280 for which it was designed,
and Lenstra et al. [21] demonstrated a pair of X.509 cer-
tificates with the same distinguished name, different pub-
lic keys, and identical signatures, though no extension is
known which can generate such a pair with different distin-
guished names.

It should be emphasized at this point that none of these
results have translated into demonstrable attacks on real-
world protocols, though [21] comes uncomfortably close.

1In a presentation delivered at the Rump Session of CRYPTO 2005,
Shamir stated that Wang had improved the attack to2

63 operations.
Also see http://www.csrc.nist.gov/pki/HashWorkshop/
2005/Oct31_Presentations/Wang_SHA1-New-Result.
pdf , the slides from Wang’s keynote speech at the NIST Cryptographic
Hash Workshop.

However, it is clear that neither MD5 nor SHA-1 is as strong
as its target security level and so need to be replaced. The
possibility of new attacks lends some urgency to this transi-
tion.

Although we don’t discuss the issue in detail, most of
our analysis applies to deploying new signature algorithms
as well as to deploying new hash functions. If the signature
algorithm is linked to a particular hash function, as DSA
is tied to SHA-1, the two would change together; beyond
that, since signature algorithms are almost always applied
to the output of hash functions, if there is no easy way to
substitute a new hash algorithm there is almost certainly no
way to substitute a new signature algorithm, either.

2 Overview of Recent Hash Function Attacks

Conventionally, hash functions are designed to have
three properties:

Collision resistance It is computationally infeasible to find
x, y, x 6= y such thatH(x) = H(y).

Preimage resistanceGiven an output valuey, it is compu-
tationally infeasible to findx such thatH(x) = y.

Second preimage resistanceGiven an inputx′, it is com-
putationally infeasible to findx such thatH(x) =
H(x′).

The current generation of attacks address collision re-
sistance. MD5 is effectively dead from that perspective;
SHA-1 is much weaker than it should be, though finding
collisions is still impractical.

While not as devastating as failures of the
other two properties, collision resistance is in-
deed a serious issue. Lucks and Daum have gen-
erated Postscript files that exploit the attack (see
http://th.informatik.uni-mannheim.de/
people/lucks/HashCollisions ). They took
advantage of a well-known property of Merkle-Damgård
hash functions:

H(x) = H(y) ⇒ H(x||Σ) = H(y||Σ)



whereΣ is an arbitrary string, provided thatx andy are the
same length.

First, they generated two Postscript prologues that con-
tained a collision in what was, syntactically, a constant.
This constant was assigned to a variable. To each of these
files, they then appended a Postscript program that checked
the value of this variable and displayed one of two letters.
An attacker could persuade someone to digitally sign the
first, harmless letter; this same signature would match the
second, harmful letter. Note, however, that to a great degree
this attack is enabled by the fact that users do not directly
view the Postscript code and rather use an interpreter. Sim-
ilar attacks can be demonstrated against such systems (e.g.,
HTML with JavaScript) even without the ability to find hash
collisions [30] by exploiting conditional elements in the dis-
play system [15, 16].

Collision-finding attacks do not rule out all uses of a hash
function. In particular, the pseudo-random function prop-
erties are not affected at all. Furthermore, HMAC [20] is
probably safe, since the unknown component—the key—of
the inner hash function makes it impossible to generate a
collision at that stage; this in turn helps protect the outer
hash.

On the other hand, there is grave danger for many sit-
uations involving digital signatures or fingerprinting. Ifa
would-be attacker can supply the message to be signed, that
same attacker could have prepared two versions of the mes-
sage, one innocuous and one harmful, while presenting only
the former. The attacks work because the victim inspects
the innocuous version and verifies that it is acceptable. In
environments where victims do not carefully inspect data
before it is hashed, collision attacks only modestly increase
the threat level.

3 Overview of the Hash Transition Problem

Although the details of transition strategies for any given
protocol may vary, there are many common elements. In
this section, we provide an overview of the hash transi-
tion problem and the design goals that transition strategies
should attempt to fulfill.

The hash transition problem is a special case of the gen-
eral protocol transition problem. Whenever a new version
of a protocol is rolled out, designers and implementors must
figure out how to accomplish a smooth transition from old to
new versions with a minimum level of disruption. In a typ-
ical protocol transitional environment, there are three types
of agent:

Old Agents which only speak the older version.

Switch-hitting Agents which can speak both versions.

New Agents which can only speak the new version.

At the beginning of the transition, all agents are Old. At
the end of the transition (at least theoretically), all agents
are New. (In practice, of course, transitions of this nature
tend to persist for an arbitrarily long time, since old systems
never quite die off.) The purpose of a transition strategy
is to accomplish the transition between these states with a
minimum of disruption. A number of issues are common to
most, if not all, such transitions:

Backward compatibility Old agents and Switch-hitting
agents should be able to communicate using the older
version. Without backward compatibility, users have
an enormous disincentive to upgrade their implemen-
tations.

Newest common versionWhen two Switch-hitting clients
communicate, they can either use the new or old ver-
sions of the protocol. Because the purpose of the tran-
sition is to deploy the newer version, it is desirable to
use that version where possible.

Downgrade protection An additional requirement for se-
curity protocols is to defend against version/algorithm
downgrade. Consider the situation where two peers
each support two cryptographic algorithms, one of
which is strong and one of which is weak. If an at-
tacker can force the peers to use the weaker algorithm,
he may be able to attack the communication. Where
possible, protocols should resist this attack.

Credentials versus implementationsIn typical public
key-based systems, a peer’s public key is authenticated
using certificates (in the case of the protocols being
discussed here, PKIX [13] certificates). Certificates
are a general credential and are not tied to any specific
revision of a given security protocol. Peers need to be
able to communicate with agents that have a variety of
combinations of new and old credentials and protocol
capabilities.

In the remainder of this paper, we consider the applica-
tion of these principles to two major Internet security pro-
tocols: S/MIME (a store-and-forward protocol) and TLS (a
session-oriented protocol). A longer version of this paper,
with analysis of other protocols and more details, appears
in [1].

4 S/MIME

The first protocol we will consider is S/MIME [25, 26,
12]. S/MIME is a standard message encryption and authen-
tication protocol. In the most common modes, it uses pub-
lic key cryptography (RSA [14] and DH [28]) for key es-
tablishment, symmetric cryptography for bulk encryption,



Receiver
Sender Old Switch/Old Switch/Both Switch/New New
Old Old Old Old -
S/O Old Old Old Old -
S/B Old Either Either Send New New
S/N - New New New New
New - New New New New

Figure 1. Interoperability table for S/MIME im-
plementations

and digital signatures (RSA and DSA [22]) for message
authentication/nonrepudiation. User public keys are trans-
ported/authenticated using PKIX [13] certificates.

There are five major types of S/MIME client; the types
of messages that each type of implementation should send
are shown in Figure 1.

1. Old clients.

2. Switch-hitting clients with only old certificates.

3. Switch-hitting clients with both types of certificate.

4. Switch-hitting clients with new certificates.

5. New clients with only new certificates.

Note that this table assumes perfect information about
the recipient’s capabilities, which is not always the case.
We now consider how to achieve interoperability in prac-
tice, which is a matter of trying to estimate the recipient’s
capabilities and create a message which they are most likely
to be able to decode. For the remainder of this section, we
focus on the behavior of Switch-hitting clients, since Old
and New clients only have one possible behavior.

4.1 The Initial Message

The first case we consider is the case where a user is
sending a message to someone with whom he has never
communicated before. There are two possible sub-cases:

1. The sender does not have the recipient’s certificate.

2. The sender has the recipient’s certificate.

We consider each sub-case in turn.

4.1.1 Sending Without a Recipient Certificate

If the sender does not have access to the recipient’s certifi-
cate, then he is subject to two limitations. First, he cannot
encrypt because he does not have the public key to encrypt
under. Second, he has no information about the recipient’s
capabilities, In particular, he cannot safely assume that the
recipient’s software will be able to process new hash func-
tions.

Choice of certificate A sender with only one certificate
must use that certificate. The difficulty comes when a
sender has two certificates, one generated with an old hash
function, and one with a new hash function. The possibil-
ities, of course, are to use only one certificate or—because
S/MIME allows multiple signatures—to use both. Any one-
certificate strategy guarantees that some class of recipients
will not be able to verify the message. Using both certifi-
cates preserves the possibility that the recipient can verify
the message.

In order for this to work, however, recipients must
be able to correctly verify messages with multiple signa-
tures when one of them is unverifiable. Unfortunately, the
S/MIME specification is fairly vague on this point. An un-
scientific poll of S/MIME implementors indicates that sup-
port for this option is spotty at best. [27, 11, 9].

Because receiver behavior is unpredictable, senders must
attempt to estimate what sorts of implementation receivers
are likely to have. This probably means choosing inter-
operability with the most popular strategies as a default
(which are currently the older, weak, algorithms) and allow-
ing users the option to configure a new behavior. This is irri-
tating in that it involves a manual step if the sender guesses
wrong. However there are already a number of non-security
scenarios in which users must retransmit unreadable mes-
sages (bad attachment formats, HTML-vs-ASCII text, etc.)
so it’s not totally foreign to users.

Choice of digest algorithm Once the certificate has been
chosen, the sender must choose a digest algorithm to di-
gest the message before signing. This choice is made in-
dependently for each signature, so it is possible the mes-
sage will be digested twice. In general, if the certificate
being used was generated with one of the old algorithms
(MD5, SHA-1), the message should be digested using SHA-
1, which receivers are required to accept by section 2.1 of
RFC 3851 [26]. This minimizes the chance that the recipi-
ent will not be able to verify the message signature. (MD5
should not be used at all for message digests, even if the
certificate uses it.)

If the certificate being used was digested with a new hash
algorithm, we recommend that the sender use the same al-
gorithm to digest the message, on the grounds that if the
recipient can use the digest algorithm to verify the certifi-
cate they can use it to verify the message. This runs the risk
that the recipient will be using a separate toolkit to verify
the certificate signature than they used to verify the mes-
sage signature; however we are not aware of any S/MIME
client that behaves in this way. This algorithm has the at-
tractive property that it automatically works correctly with
DSA, which can only sign SHA-1 digests.



4.1.2 Sending With the Recipient’s Certificate

If the sender has the recipient’s certificate(s) then the situa-
tion is simpler. We believe that it is a reasonable assumption
that implementations can verify their own certificates and
therefore must implement whatever digest algorithm was
used to create them. If the recipient has only one certifi-
cate, the sender should therefore use their certificate with
the corresponding algorithm. If the recipient has multiple
certificates, the sender should use the one created using the
strongest algorithm. For the reasons indicated above, we do
not recommend sending multiple certificates in this case.

The choice of which certificate to send would be sim-
pler yet if the recipient’s certificate indicated which algo-
rithms it was capable of using. Although this not currently
possible the S/MIME working group is currently consider-
ing a draft [34] that would allow certificates to contain an
SMIMECapabilities [26] extension for the owner of the cer-
tificate. This information could include information about
allowed digest algorithms.

4.2 Subsequent Messages

Once an S/MIME implementation has received a signed
message from a peer, it is in a much better position to es-
timate the sender’s capabilities. For clarity, say that Alice
has received a signed message from Bob. With high prob-
ability Bob can verify signatures produced with whatever
algorithm(s) it used to digest its own message. If this is a
new (strong) algorithm then all is good and Alice should
herself use that algorithm.

If Bob used an old (weak) algorithm, then Alice at least
knows that she can communicate with Bob using that algo-
rithm. However, it is still possible that Bob has a Switch-
hitting implementation. S/MIME has a standard way for
Bob to signal this fact using the SMIMECapabilities signa-
ture attribute, which includes a (potentially partial) list of
the algorithms that Bob supports. Bob can send a message
using SHA-1 but include an SMIMECapabilities attribute
indicating that he also supports SHA-512. If this attributeis
included, it is always signed, thus preventing the introduc-
tion of a false attribute.

We recommend that when Switch-hitting implementa-
tions send messages using weak algorithms they include
an indication that they also support a stronger algorithm.
There is no point in including such an indication if you are
sending with the stronger algorithm, since that algorithm is
preferred and a recipient which cannot process the stronger
algorithm cannot verify that you also support the weak one.

Because the SMIMECapabilities attribute is part of the
signerInfo element, it is not included in messages which are
unsigned. However, if Alice receives an encrypted message
from Bob, she knows that he was able to verify the certifi-
cate that he used to encrypt to her. Therefore, if she wishes

to sign future messages she should digest using whatever
algorithm was used to produce that certificate.

4.3 Attacks

In this section, we consider the problem of protecting
Switch-hitting implementations during the transition period
when it is impractical to turn off support for the old algo-
rithms. There are three basic scenarios:

• The attacker does not have a valid certificate and pri-
vate key for either peer.

• The attacker has acquired a valid (but false) certificate
and knows the private key.

• The attacker is one of the communicating parties.

4.3.1 Attacks Without a Valid Certificate

If the attacker does not have the private key for a valid cer-
tificate, then his ability to mount attacks, even on older di-
gest algorithms, is fairly minimal unless he can compute
preimages.2 Clearly, an attacker who can compute preim-
ages can undetectably modify messages in transit. In this
case, the only defense is to stop using the affected algo-
rithm. Note that senders cannot prevent this attack by mul-
tiply signing their messages; S/MIME multiple signatures
are parallel and independent, so the attacker can simply strip
the strong signature. Receivers must stop accepting an al-
gorithm where computing preimages is possible.

4.3.2 Attacks Using a Valid Certificate

If the attacker has the private key for a certificate with a
valid signature containing the identity of one of the peers—
for instance obtained using an improved version of the
Lenstra construction—he can impersonate that peer. This
would allow him to forge messages that appear to be from
that peer. It may also allow him to convince the other peer
to encrypt messages using his fake certificates. The only
certain countermeasure here is to stop accepting the com-
promised algorithm. One partial workaround would be for
the victim to refuse to accept certificates dated after the time
when the algorithm was compromised. This is a defense
against collision attacks, but if the attacker can generate
2nd preimages, then he can forge a certificate with an arbi-
trary date and bypass this countermeasure. Another partial
workaround is to store copies of previously used peer cer-
tificates (as with SSH [38, 39]), thus reducing the window
of exposure to the first exchange of messages.3

2An attacker who can compute preimages is likely to be able to forge
certificates. However, it is possible that an attacker couldcompute preim-
ages but without fine enough control to forge a specific certificate.

3Note that it’s common to store a digest of the certificate rather than the
certificate itself. This obviously leaves one open to preimage attacks if the



4.3.3 The Attacker is One of the Communicating Par-
ties

If it is easy to find collisions in a hash, then being one of
the communicating parties—or at least in a position to sub-
stantially control the message contents—confers substan-
tial advantage to the attacker. In particular, it allows him
to cheat in contexts where an S/MIME signature is to be
verified by a third party. The basic scenario is described in
Section 2: two versions of a document are prepared, one
innocuous and one malicious. One or both of the parties
signs the innocuous version and then the attacker convinces
the third party that the victim signed the malicious version.
This attack can be mounted regardless of which party does
the actual signing. The key is for the attacker to be allowed
to prepare the document to be signed, since the colliding
pair must be generated together.

In order to mount this attack on a Switch-hitting peer,
the attacker must represent that he only supports the broken
algorithm, thus forcing the signature to be performed using
that algorithm. However, since supporting only old algo-
rithms is a legitimate configuration, this is extremely easy
to achieve. The victim has the choice of using that algo-
rithm or not communicating at all.

This attack is extremely difficult to defend against in
standard systems. Bob can defend against being conned by
preparing the final document version and inserting enough
randomness near the beginning (e.g., in a dummy field) to
make it infeasible for Alice to have generated a collision.4

However, this is complex and not supported by typical ap-
plication software. Moreover, Alice should be suspicious of
this request, since it allows Bob to mount a collision attack
himself. A more general defense is for the parties to jointly
agree on random values once the document content is fixed,
but this is even more complex for ordinary users.5 S/MIME
implementations could of course do this automatically, but
if one is willing to modify implementations it is easier to
simply add strong algorithms.

We stress that this attack is very real and very practical
if MD5 is used.

Because defense against this attack is difficult, in con-
texts when users are signing messages that might be verified
by a third party, it is better to simply insist on using a strong
algorithm. Similarly, third parties should be extremely sus-
picious when they are asked to rely on signatures that use
weak algorithms, especially MD5. Note that as with the

attacker can manage to get a certificate with the same digest (not easy, be-
cause he must also simultaneously attack the CA’s digestingprocess which
covers different data). If a digest is being stored, it mightbe wise to store
a keyed hash using some locally known key instead.)

4From a security perspective this is inferior to randomized hashing [10]
but doesn’t require changing the S/MIME implementation on either side.

5Kelsey and Kohno presented a “Herding” attack at the CRYPTO ’05
rump session that allows cheating in this scenario, but the effort level (287

for MD5, 2
108 for SHA-1) far exceeds that of ordinary collision finding.

Lucks/Daum attack, close inspection of such messages gen-
erally will reveal their unusual structure and so this attack
can only be mounted when the documents in question will
be subject to only casual (or automatic) scrutiny.

5 TLS

TLS [6] is a standard channel security protocol which
lives above the transport layer (where the OSI session layer
sits). Originally designed for Web security [29], it is
now widely used for other application protocols including
SIP [33] and SMTP [17]. The most common TLS deploy-
ment involves an anonymous client connecting to a server
and using the server’s certificate and public RSA key for key
exchange. There are five major places digest algorithms are
used in TLS:

• In the per-record MAC.

• In the certificates used by client and server.

• In the digitally-signed element.

• In the PRF (pseudo-random function) used to make
keying material.

• In the Finished message

TLS contains an extensive framework for algorithm ne-
gotiation, using the concept of “cipher suites”. A ci-
pher suite consists of a triple specifying the key estab-
lishment mechanism, the symmetric encryption algorithm
used to encrypt traffic, and the message digest used to
provide traffic message integrity. For instance, the ci-
pher suite TLSRSA WITH RC4 128 MD5 indicates RSA
key exchange, encryption with RC4-128, and message in-
tegrity with a MAC based on MD5 (in TLS this is HMAC-
MD5 [20].)

Unfortunately, this mechanism is only useful for negoti-
ating the record MAC. Although there is a mechanism for
negotiating client certificate type, it does not include digest
algorithm and the other algorithms cannot be negotiated. In-
deed, the PRF, ServerKeyExchange, and ClientVerify mes-
sages are not parametrized, but rather are specified directly
in the standard. In order to accomodate newer digest algo-
rithms in these cases we must extend TLS.

5.1 MAC Functions

Negotiating the MAC in TLS is straightforward. Each
cipher suite specifies the digest function function to be used
as the basis for the MAC. So, in principle all that needs to
be done is to define a new set of cipher suites with stronger
hash algorithms. Note that because TLS uses HMAC, the
current collision-only attacks most likely do not represent a
threat, thus making this a low priority upgrade.



5.2 Server Certificates

The most important element of TLS to upgrade is the
server certificate. Because certificates are automatically
verified, they are the cryptographic technique most threat-
ened by current digest attacks. TLS client certificates are
rare; by contrast, virtually every TLS server has a certifi-
cate.

We assume that during the transition period, each server
will have two certificates, one created with an old hash (typ-
ically SHA-1 or MD5) and one created with a new hash.
The client can then indicate to the server that it can pro-
cess the new certificate. There are two potential techniques
for doing this: an overloaded cipher suite and a TLS exten-
sion [3]. The TLS extension approach is probably superior
in that it preserves protocol cleanliness—the hash functions
in the TLS cipher suite offers do not refer to the certificate.
Moreover, there are performance reasons for the client to
prefer to use the older hash algorithms for MAC functions:
SHA-1 is much faster than SHA-256, and the MAC func-
tions do not need to be upgraded immediately.

Note that this does not address the problem of DSA,
which, as noted previously, cannot be used with any algo-
rithm other than SHA-1. The cleanest solution for DSA is
simply to to treat it as a new algorithm and define a new set
of cipher suites that specify a newer version of DSA (e.g.,
DSA2).

5.3 Client Certificates

TLS client certificates are much less commonly used, al-
though some organizations are using them. For example,
the US government is now issuing client certificates for es-
tablishing user identities [18, 24]. However, in the case
where client authentication is used, it is desirable to have
a way for the server to indicate which hashes it would like
the client to use. This is a fairly simply protocol engineering
matter with two obvious alternatives:

• Add new values to the certificatetypes field of
the CertificateRequest message. For instance, an
rsasign sha256 type could be created.

• Use extension values.

Each of these approaches has advantages and disadvan-
tages. The CertificateRequest approach keeps all the infor-
mation about the certificates that the client should produce
together but creates the risk of risk of combinatoric explo-
sion of certificatetypes values (only 256 such values are
available). The alternative approach is for the server to use
an extension indicating which hash algorithms it accepts.
This is less elegant, but removes the combinatoric explo-
sion problem. Neither approach is superior from a security
perspective.

5.4 The Digitally-Signed Element

There are two places in TLS where data is explicitly dig-
itally signed: the CertificateVerify and the ServerKeyEx-
change. In both places, the signature is accomplished us-
ing the “digitally-signed element”. (“Digitally signed ele-
ment” is the TLS term for a data element protected by a
signature.) When the signature algorithm is DSA, the input
is as expected—a SHA-1 digest of the data to be signed.
However, when the signature algorithm is RSA, the input is
something unusual: the MD5 and SHA-1 digests of the in-
put are concatenated and fed directly into the RSA signature
algorithm with PKCS#1 padding, but without DigestInfo
wrapping. This is not a negotiatiable algorithm but rather
is wired into the specification.

This unusual construction raises the question of what the
target construction should be. The original rationale for the
dual hash construction was to provide security in the face
of compromise of either hash. However, in practice this has
been partially undercut by the common heritage of SHA-1
and MD5. A practical attack on SHA-1 could potentially
extend to compromising the MD5/SHA-1 pair. The general
feeling in the TLS community is that a single negotiated
digest would be a better choice.

The best choice here is probably to have the digitally-
signed element use the same algorithm as was used to sign
the certificate of the party doing the signing (the client for
the CertificateVerify and the server for the ServerKeyEx-
change). This avoids the creation of a new negotiable op-
tion, thus reducing protocol complexity. In principle this
could lead to interoperability problems if the certificate sys-
tem has different capabilities than the TLS implementation.
However, we’re skeptical that the number of real implemen-
tations with this problem would be large enough to justify
the additional complexity.

This change can either be implemented by having cipher
suites that use strong algorithms (i.e., new cipher suites)use
the newer digitally-signed construction or by changing the
behavior of all cipher suites in a new version of TLS. Due to
the low urgency of this change, we recommend the cleaner
approach of creating a new TLS version.

5.5 PRFs

TLS uses a hash function-based PRF to create the key-
ing material from the PreMaster Secret and Master Secret.
It is also used to compute the Finished messages which are
used to secure the TLS negotiation against downgrade at-
tack. Compromise of the PRF might potentially allow an
attacker to determine the keying material or mount a down-
grade attack.

The TLS PRF is actually two PRFs, both based on
HMAC, with one using MD5 and the other using SHA-1.



Like the digitally-signed element, the TLS PRF is explic-
itly specified in the standard and not negotiable.6 This con-
struction, while somewhat over-complex, is provably secure
under the assumption that either HMAC-SHA1 or HMAC-
MD5 are secure pseudorandom functions [19]. Because the
current attacks do not affect the security of HMAC, upgrad-
ing the PRF is a low-priority task. However, we briefly con-
sider methods here.

The two basic methods for negotiating the PRF algo-
rithm are to use the negotiated cipher suite or to create a
new extension. In the first case, whatever digest algorithm
was negotiated for the cipher suite would also be used as
the basis for the PRF. This has the obvious drawback that it
ties TLS to the basic HMAC-X structure of the PRF. If this
construction were found to be insecure (despite the proofs
of security), then it would not be possible to negotiate a new
construction. By contrast, while using an extension adds
complexity it would allow substitution of the construction
without creating a new version of TLS.

We are skeptical that this increased flexibility justifies
the added complexity of defining a new extension. In view
of the security proofs for HMAC and its wide use in TLS,
it seems likely that any attack on HMAC would imply com-
promise of the underlying digest function and result in the
compromise of key elements of the system (message MACs,
certificates, etc.), thus necessitating a new revision of TLS
in any case. It would be straightforward to revise the PRF
at that time.

PRFs have similar roll-out issues to those described in
Section 5.4. As with the digitally-signed element, we rec-
ommend that the transition to a negotiated PRF occur in a
future version of TLS.

5.6 The Finished Message

The TLS Finished message is computed by computing
the TLS PRF over the master secret and the concatena-
tion of two digests over the handshake messages, one us-
ing MD5 and one using SHA-1. The same considerations
apply here as in the PRF. The hash itself is unkeyed al-
though both sides contribute random nonces. This design
modestly reduces memory requirements on the client and
server; HMAC-based MACs require having the key avail-
able at the beginning of the MAC computation, but the key
is only available after the key exchange, so using HMAC
directly would require storing initial handshake messages.
The hash-then-PRF technique only requires storing the hash
state. There is a potential risk in this design in that keyed
hashes are harder to attack than simple hashes. However,
because the attacker cannot control the client messages and

6This has already been an issue with the proposed GOST cipher
suite [5], which for regulatory reasons must use the GOST digest function
in the PRF

can only slightly influence the server’s messages (by mod-
ifying the client messages in flight to produce a different
negotiation result) the ability to create collisions is insuffi-
cient to mount this attack.

The obvious approach to transition is to replace the pair
of hashes with the negotiated hash function used for the
message MAC. However, note that this requires both sides
to store the handshake messages until the MAC algorithm is
decided (in the ServerHello). This requires a modest change
in TLS implementation behavior and a slight increase in
storage requirements. An alternative design would be to
replace the “digest then PRF” construction with a MAC
directly over the handshake messages. This would have
only slightly higher storage requirements and be modestly
more secure in the event of preimage attacks on the under-
lying hash function. We consider either approach adequate,
though we believe that the security considerations outweigh
the memory issue and therefore recommend transitioning to
a simple MAC over the messages.

5.7 Attacks

As with S/MIME, we consider the problem of protect-
ing Switch-hitting implementations during the transitionpe-
riod. The general form of the attack is for the enemy to force
one or both sides to believe that the other side is an old im-
plementation and convince them to use weaker algorithms,
thus rendering them susceptible to attack.

We can divide these attacks broadly into two categories.
In the first, the attacker has obtained a valid certificate for
one side of the connection (most likely the server) and
knows the corresponding private key. In this case, no com-
plete defense is possible other than turning off the old algo-
rithm. The attacker can simply intercept the connection and
use its certificate. As with S/MIME, partial defenses includ-
ing rejecting newer certificates signed with weak algorithms
and SSH-style fingerprint comparison.

If the attacker does not have a valid certificate, he must
attack the negotiation more indirectly. However, because
the negotiation is protected by a MAC computed using the
PRF, the attacker must be able to predict PRF output in or-
der to predict the key used for the PRF. As argued in Sec-
tion 5.5, this would require a very serious break of HMAC
and most likely that the attacker can compute preimages,
making a direct attack on certificates possible.

6 Design Principles for Algorithm Agility

It is clear from our analyses that designing for algorithm
agility is harder than thought. In this section, we present
some suggestions for protocol design that may make future
transitions smoother.



6.1 Avoid the use of hardwired cryptographic al-
gorithms

Any protocol which depends on a single hardwired al-
gorithm is inherently brittle—if that algorithm is broken it
can be very hard to repair the protocol. This is particularly
obvious in the case of DSA; the transition from SHA-1 to
some other digest algorithm is going to be much more dif-
ficult than with RSA, because the hash algorithm and the
signature algorithm will need to be replaced simultaneously.
Similarly, the decision to hardwire MD5 and SHA-1 into the
basic structure of SSL/TLS necessitates far more protocol
re-engineering than if the algorithms had been parametrized
in the first place.

6.2 Provide mechanisms for capability discovery
and/or negotiation

Even if a protocol allows for the use of multiple algo-
rithms, algorithm transitions can be difficult to accomplish
if the agents do not have good information about the ca-
pabilities of the peers with which they wish to communi-
cate. In session-oriented protocols such as TLS or IPsec,
this information is easy to exchange by incorporating an al-
gorithm negotiation phase in the session establishment. In
store-and-forward protocols, however, the problem is much
more difficult and generally requires some sort of directory
which can be used by agents to advertise their capabilities.
In both kinds of protocols, it is important to allow for the
advertisement of capabilities for every parameter. S/MIME,
TLS, and IPsec all fail this test.

6.3 Capability discovery should occur as early as
possible

Even protocols which allow negotiation often fail to do
so early enough in the exchange. In the best case, one
party must try to adapt to whatever is eventually chosen,
possibly resulting in increased computational costs (as with
TLS CertificateVerify messages or S/MIME multiple sig-
natures). In the worst case, one side must guess about the
other side’s capabilities and a wrong guess results in non-
interoperability or a requirement for manual reconfiguration
(as with S/MIME single signatures or IPsec hash functions).
In order to avoid this, protocol designers should allow nego-
tiation/capability discovery to happen as early in the com-
munication process as possible.

There is a tradeoff to consider here. If discovery is done
entirely before crypto, it can introduce extra latency (e.g.,
one round trip for the discovery/negotiation, then another
for the crypto). Careful protocol design can mitigate this
to some extent: for instance, the hash negotiation technique
described in Section 5.4 implies some cryptography before

algorithm negotiation but can be implemented with only a
small working buffer. IKE already includes a capability
discovery exchange in the right place; the problem is that
some necessary capabilities were not negotiated. Another
approach is to design protocols where one peer is optimistic
but can fall back if they guess wrong, as in [35].

6.4 Avoid downgrade attacks

Downgrade attack is a persistent problem with negotia-
tion in security protocols. There are generic techniques for
protecting negotiation in session-oriented protocols (typi-
cally by computing a MAC over the handshake messages)
but they cannot be guaranteed to work if the MAC or key
exchange algorithms are broken. Although TLS and IPsec
do a fairly good job of this via HMAC, which is largely
unaffected by the current level of attacks, they are still at
risk if hash compromises lead to compromise of the cer-
tificate system used to authenticate the key establishment
phase. The downgrade problem is substantially harder with
store-and-forward protocols. For instance, in the case of
S/MIME multiple signatures the attacker can simply delete
the stronger signature. In general, although defenses against
downgrade are important to incorporate, sufficiently pow-
erful attacks on the cryptographic algorithms will require
agents to stop accepting those algorithms.

7 Conclusions

It is clear that new hash functions or new methods of em-
ploying hash functions are necessary. However, as we have
demonstrated, neither the specifications nor implementa-
tions are ready for the transition. We have presented an
analysis of transition strategies for S/MIME and TLS; anal-
ysis of other protocols, including IPsec and DNSsec, ap-
pears in [1]. We strongly urge the analysis of other proto-
cols that use hash functions. Prominent candidates include
OpenPGP [4], and Secure Shell [38, 39].

For the protocols we analyzed, we present recommen-
dations to implementors and the IETF. These changes are
necessaryto preparefor the transition. We suggest that they
be made as quickly as possible, to provide maximum secure
interoperability when new hash functions are ready.

When protocol upgrades are being designed, considera-
tion should be given to signature algorithm agility as well.
In most cases, the signaling will have to be done in the same
place as for hash functions. However, some of the overload-
ing options are inappropriate for signature algorithms. For
example, in IPsec one might use the appearance of a new
hash algorithm in the SA proposal as a signal that one party
supports a new hash algorithm in one context, and hence
presumably in another. There is no obvious way to extend
this to, say, support of ECC signatures.



S/MIME
Implementors of S/MIME should ensure that their
product handles multiple signatures properly. In par-
ticular, programs should report success with one sig-
nature while warning about unverifiable signatures.

MD5 shouldneverbe used for digests, since all con-
forming implementations already support SHA-1.

The IETF should develop a method for indicating
digest function capabilities in certificates, CA ven-
dors should implement it, and new certificates should
contain explicit statements about hash functions sup-
ported.

TLS
The IETF should define a TLS extension by which
servers can signal support for newer certificates.

The IETF should pick one of the two suggested alter-
natives for supporting client side certificates properly.

The IETF should consider making the PRF depend on
the MAC algorithm in a future version of TLS.

The definition of the digitally-signed element should
be amended to support new hash functions.

The definition of the Finished message should be
amended to support new hash functions.

DSA
DSA presents a special problem, since it may only be
employed with SHA-1. NIST needs to clarify this sit-
uation, either by defining DSA-2 or by describing how
DSA can be used with randomized hashes or truncated
longer hashes.

The problems we have described here are symptomatic
of a more general problem. Most security protocols al-
low for algorithm negotiation at some level. However, it
is clear that this has never been thoroughly tested. Virtually
all of the protocols we have examined have some wired-in
assumptions about a common base of hash functions. It is
a truism in programming that unexercised code paths are
likely to be buggy. The same is true in cryptographic proto-
col design.
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