
No Loitering: Exploiting Lingering Vulnerabilities in Default COM Objects

David Dewey†‡
dewey@us.ibm.com

†Advanced Technology Group
IBM Security

Patrick Traynor‡
traynor@cc.gatech.edu

‡Converging Infrastructure Security (CISEC) Lab
Georgia Institute of Technology

Abstract

The Component Object Model (COM) facilitates the
creation of software plugins for applications running in
Microsoft Windows. ActiveX is a common instantiation
of this infrastructure, and uses COM to create plugins
for Internet Explorer. As vulnerabilities in COM ob-
jects included in the installation of Windows have been
found, Microsoft has responded by blacklisting their use
by specific applications. In this paper, we demonstrate
that the defense mechanisms protecting vulnerable COM
objects can be easily circumvented. Specifically, our at-
tack exploits systemic transitive trust among COM ob-
jects and allows for the instantiation and exploitation
of any of several hundred known flawed controls. After
demonstrating this weakness on fully patched Windows
XP, Windows Vista and Windows 7 machines, we design
and implement a system-wide enforcement architecture
called COMBlocker, which checks the instantiation of
COM objects against a global policy. We then show that
COMBlocker is an effective mitigation for such attacks
while imposing minimal overhead (approximately 0.5ms
per policy check). In so doing, our techniques make the
exploitation of default COM objects significantly more
difficult.

1 Introduction

The Component Object Model (COM) is a language-
neutral design philosophy allowing for the creation of
discrete software components that can be integrated into
other applications. Every COM object exposes a stan-
dard interface, allowing developers to create extensible
applications that provide a well-defined plugin architec-
ture. Others developers can leverage these standard in-
terfaces to create COM objects that can themselves be
consumed by additional applications, allowing for more
creative and enhanced solutions to user demands. Ac-

tiveX extends this architecture to browsers and allows
for such extensible design to be expanded to web-based
applications. Through ActiveX, a web developer can
force the execution of native code in the context of the
browser through the COM-based plugin infrastructure in
Internet Explorer.

Such extensible functionality has frequently been tar-
geted for malicious purposes [19, 20, 22–24]. To aid in
securing ActiveX, a configuration policy known as the
“killbit” list was added to Internet Explorer. This allows
users and vendors to manage a list of controls that should
never be loaded by this particular browser. In the event
that a vulnerability is discovered in a control, the kill-
bit list can be used to prevent its instantiation in IE. By
adding vulnerable controls to this list, a popular attack
vector used by hackers can be mitigated. The killbit list
also serves as the basis for other security policies in a
small number of additional applications. For instance,
Microsoft Office applications will prompt the user if a
document has a COM object embedded in it that is listed
in the killbit list.

In this paper, we demonstrate that this mitigation
mechanism is insufficient to protect systems against the
exploitation of vulnerable COM objects. Specifically,
implementing and enforcing security policies through
the killbit list on a per-application basis is an inadequate
means of mitigating attacks against vulnerable COM ob-
jects that are part of the default operating system instal-
lation. We show that individual applications do not have
a broad enough view into the behavior of the COM ob-
jects they load to effectively enforce a security policy.

In this paper, we make the following contributions:

• Discover and characterize a systemic weakness
in the COM security infrastructure: We demon-
strate that the existing killbit list security poli-
cies governing the instantiation of COM objects
can easily be circumvented. We show that due to
a weakness in the underlying COM architecture,
many COM objects that are part of the default in-

stallation of the operating system can load other ob-
jects without ever consulting a policy of any kind.
We demonstrate that this attack is possible through
virtually every application that is commonly in-
stalled on Windows.

• Confirm the ability to exploit several hundred
known flawed and vulnerable COM objects in-
stalled by default in Windows: Over the past sev-
eral years, the common response to security vulner-
abilities reported in COM objects has been to use
existing policy mechanisms to prevent their instan-
tiation in a few discrete applications. Because the
COM objects themselves are often not corrected,
our circumvention identifies a significant security
risk. It is important to note that the attack described
in this paper takes advantage of controls that are al-
ready installed on Windows and does not require
the victim to install or load a control created by the
adversary.

• Design and implement a prototype policy en-
forcement infrastructure for COM objects: We
design and implement a prototype infrastructure for
the system-wide COM instantiation policy enforce-
ment, which we call COMBlocker. In this system,
we are able to quickly compare (average lookup
time of 554µs) the instantiation of COM objects
against a global policy. Our approach is effective as
it uses binary rewriting to force all COM object in-
stantiations to be compared against the global pol-
icy, thus mitigating the above attack. We then com-
pare our proposed solution to the patch recently is-
sued by Microsoft (Security Bulletin MS10-036),
which was created in response to our private dis-
closure of the vulnerability.

Through the security weakness documented in this
paper, we demonstrate that Windows is susceptible to
attack against several hundred known flawed controls,
which are already resident on the system. Many of the
vulnerabilities that are left “loitering” on Windows due
to unpatched COM objects, when exploited, allow ad-
versaries to execute arbitrary code. These vulnerabili-
ties can potentially be exploited to install malware. In
demonstrating the weaknesses of the existing security
mechanisms associated with COM, we show that adver-
saries have a large number of existing vulnerabilities to
target that can provide them with complete control of a
system.

The remainder of this paper is organized as follows:
Section 2 discusses important related research efforts;
Section 3 provides background information related to
COM objects and their extensibility; Section 4 illustrates
the process by which the killbit list can be bypassed,

thereby reenabling the ability to exploit hundreds of pre-
viously documented vulnerabilities; Section 5 describes
our mitigation architecture, which creates a centralized
point for COM object policy enforcement; Section 6 of-
fers experimental results and discussion; Section 7 pro-
vides concluding remarks.

2 Related Work

ActiveX has garnered significant attention from secu-
rity experts over the past several years. Attacks against
these controls range in severity from downloading files
to an adversary-supplied location to arbitrary code ex-
ecution [19, 20, 22–24]. As a variety of vulnerabilities
have been found in COM objects included with the de-
fault installation of their operating systems, Microsoft
has generally prevented the exploitation of the objects
by adding them to the killbit list. Dowd, Smith, and
Dewey demonstrated that it was possible to bypass the
killbit settings in Internet Explorer using a vulnerabil-
ity for ActiveX controls [4]. However, while this weak-
ness was patched for Internet Explorer [25], the general
susceptibility of the COM architecture and applications
relying upon it has not previously been investigated.

The issue of securing the execution of content pub-
lished by potentially untrusted third parties is not unique
to COM or Windows. Java applets, for example, expose
a web browser to similar classes of threats encountered
by ActiveX [1, 16]. Security of Java applets has been
studied extensively with several solutions proposed to
verify the publisher of the content and enforce access
rights on the content as it executes. Jaeger, et al. [14]
and Islam, et al. [12] developed systems based on public
key cryptography to verify the publisher of dynamically
downloadable executable content. They both then go on
to propose solutions for the enforcement of access con-
trols on the code as it executes.

Security policies have been developed to address
whether COM objects should be loaded by Internet Ex-
plorer. The killbit list attempts to prevent the instanti-
ation of known bad controls [21]. As documented by
Loscocco et al., ActiveX controls can be signed similar
to the way that was proposed for Java [15]. Addition-
ally, ActiveX supports the concept of “Safe for Script-
ing” [17]. This allows a control to tell Internet Explorer
whether it can be safely loaded by the script engine.
Microsoft has implemented additional security policies
governing the instantiation of COM objects in other ap-
plications including the MS Office suite [26]. However,
policies governing the instantiation of COM objects are
implemented by the COM container itself.

Security retrofits to well-established software infras-
tructures such as COM generally require significant ef-
fort. A number of researchers have investigated the

MSVidAnalogTunerDevice
 IMSVidAnalogTuner2
 Channel
 Channel Available
 Country Code
 IsViewable
 View

- DWORD
BYTE
DWORD
BYTE
DWORD

Header
VT_I4
Channel
VT_I4
CountryCode

IPersistStream::Load()

IPersistStream::Save()

Figure 1. COM objects load and save their state information using the
IPersistStream::Load() and IPersistStream::Save() API calls, as illustrated here
by the MSVidAnalogTunerDevice object.

problem of retrofitting legacy systems with security in-
frastructure. These efforts use a range of approaches in-
cluding static analysis of code [3, 7, 27, 29, 30] and the
monitoring of program behavior to determine security
sensitive operations [10,13]. The work by Ganapathy, et
al. demonstrates the injection of authorization policy en-
forcement code into existing legacy applications includ-
ing web and proxy servers [9] and the Linux Security
Module infrastructure [8]. Fraser, et al. perform a sim-
ilar deployment of authorization hooks in MINIX [7].
This builds on the concept of inlined reference monitor-
ing as described by Bauer, et al. [2], Erlingsson [5], and
Evans and Twyman [6]. Each of these demonstrates how
an existing application can be modified to perform func-
tions not originally designed into the code. The closed
nature of the COM architecture requires that our solu-
tion rely on binary rewriting techniques rather than those
used on source code.

3 COM Background

To understand the attack outlined in this paper and
our proposed solution, it is necessary to understand
the architecture of COM. This section provides a brief
overview of COM and how it is implemented.

3.1 Introduction to COM

The Component Object Model (COM) is a language-
neutral design philosophy for the creation of soft-
ware components in the Microsoft Windows operat-
ing system [28]. Each COM object must extend the
IUnknown interface as it is documented by Microsoft.
This base interface allows a developer to query an object
to learn more about its behavior and how it can be im-
plemented. There are several other interfaces available
that can be extended by objects depending on their in-
tended use. One such interface is IDispatch. This

provides generic methods allowing for the interaction
with object-specific methods and properties. This pro-
vides functionality similar to the interaction one would
expect in other object-oriented architectures.

Each COM object that is installed on the system is
listed in the windows registry under a unique identifier
called a Class ID (CLSID). On an average Windows sys-
tem, there are tens of thousands of COM objects reg-
istered. An application choosing to instantiate one of
these objects simply needs to supply the corresponding
CLSID and the desired type of interface to one of the ap-
propriate Win32 APIs. Each of these APIs simply looks
up the CLSID in the registry, loads the library listed in
the registry for that object, and returns a handle to the
object. Whichever interface was specified will allow ac-
cess to a set of methods and properties corresponding to
that interface.

An interesting feature of COM is its ability to persist
object state across instantiations. There are a number
of interfaces which, if implemented by an object, can
be used to save the runtime state and/or resurrect saved
state during instantiation. Some examples of these inter-
faces are IPersistStorage, IPersistStream,
and IPersistStreamInit. In each of these cases,
the state of the object is serialized and written to
disk. Conversely, the serialized data can be read from
disk at instantiation time and used to resurrect the ob-
ject state. It is up to the developer of the object
to determine which object properties are to be per-
sisted and their data type. As shown in Figure 1, an
object called MSVidAnalogTunerDevice contains the
properties Channel and CountryCode. The values of
these properties can be set at instantiation using the
IPersistStream::Load() method or saved to a
binary stream using IPersistStream::Save().

Figure 2. Pop-up Warning from Microsoft Word When Attempting to Instantiate an Out-of-Policy
Control

3.2 COM Security

COM exposes some limited information that an ap-
plication can use in making the determination about
an object’s security. Applications can instantiate the
IObjectSafety interface of a COM object if one is
supplied by the object. This interface allows the ap-
plication to determine whether the object defines itself
as being “Safe for Scripting” and/or “Safe for Initializa-
tion” [17]. Safe for Scripting indicates whether a COM
object deems itself safe to be interoperated with through
the Internet Explorer scripting engines. Safe for Initial-
ization indicates whether a COM object deems itself safe
to be initialized from persisted object state data using the
methods described above. In addition to the COM inter-
face, an object can register the same information in the
Windows registry. Specifically, two subkeys can be cre-
ated under the Implemented Categories key under the
CLSID for the object The main problem with this in-
terface is that the object itself informs the application
about its own security properties. In the absence of any
other security-related information, an application has no
choice but to believe what the object tells it.

There are several applications on an average Win-
dows installation that allow a third party to determine
which COM objects should be instantiated. Internet Ex-
plorer, for example, can be told to load a specific COM
object that is required for the operation of the page it
is displaying. In the context of IE, this is called Ac-
tiveX. Another example is Microsoft Office, which al-
lows document authors to embed rich content such as
images, movies, or even other documents in the body of
a Word document or Excel spreadsheet. In each of these
cases, a potentially untrusted third party makes a deter-
mination about which COM objects should be loaded by
applications on an end user’s workstation.

The IObjectSafety interface and its registry-
based equivalent are not sufficient to provide any rea-
sonable level of protection. Due to the widespread use

of Internet Explorer and the ease with which a user
can be redirected to malicious content, IE has received
the majority of the focus with regard to security from
Microsoft. Specifically, a security configuration option
known as the “killbit” list was created. The killbit list is
a blacklist maintained in the Windows registry that con-
tains the CLSID of every COM object that should never
be loaded and interacted with from the IE scripting en-
gines. Microsoft Office will prompt the user if the con-
tent being loaded attempts to instantiate a control that
is listed in the IE killbit list. The user can accept the
prompt and allow the Office application to load the un-
trusted content, but the default is to disable the control.
Figure 2 shows an attempt to load a killbit-listed COM
object and the corresponding interception of that request
by the operating system.

Blacklisting can be effective at stopping an applica-
tion from loading a known bad object, but has no impact
on the instantiation of objects with an unknown security
level. Additionally, it is only effective for applications
that choose to implement the policy; it is not enforced
across the system as a whole.

3.3 Complexity of COM Management

One may think that as vulnerabilities are disclosed in
COM objects, the simple answer would be to remove
the object from the Windows registry, or even delete the
library containing the object. This approach is not al-
ways possible as it relates to COM for several reasons.
First, many libraries containing COM objects store more
than one object. While there may be one undesirable
object in the library, it must remain on the system to
support the other objects it contains. Second, many vul-
nerable COM objects are critical to the operation of re-
quired applications and the operating system itself. It is
very common for a COM object to misbehave in appli-
cations including Internet Explorer or Word, but perform
entirely as expected in other applications. Since there is
no system-wide mechanism to determine which applica-

tions can load which COM objects, the object must re-
main registered, and theoretically available to all. Third,
COM is massive. As was previously mentioned, there
can be tens of thousands of COM objects installed on an
average Windows machine. Not surprisingly, the current
killbit list is approximately 600 CLSIDs. It is therefore
extremely difficult for any user, regardless of skill level,
to maintain these lists properly for each application that
they run.

4 Vulnerability Characterization

With an understanding of the COM architecture, we
now describe the extent to which a class of problems
actually extend throughout the all versions of Windows
operating system.

4.1 Architectural Weakness

Once a COM object is installed on a system, it is
available for instantiation by any application. There is
no central policy governing which applications can load
which COM objects. As vulnerabilities are disclosed
in individual COM objects, there is nothing preventing
an unknowing application from loading that potentially
harmful control. Given that vulnerabilities in COM ob-
jects are most often left unpatched, any application that
loads COM objects is a potential target an adversary.
Specifically, an adversary can force an application to
load one of the previously installed and known flawed
controls allowing for exploitation. This allows adver-
saries to take advantage of controls that already exist on
a system rather than attempting to trick their victim into
installing an intentionally malicious object. Because
many of the vulnerabilities that have gone unpatched al-
low for the execution of arbitrary code, an adversary can
exploit these loitering flaws as an initial infection vec-
tor to install malware. Once they have installed their
malware, they can gain complete control over the sys-
tem. Given this exposure, many applications have im-
plemented their own discrete policies dictating which
controls they deem to be safe or unsafe. The Internet
Explorer killbit list is an example of one such policy.

These policies are only useful for determining which
COM objects will be directly loaded by an application.
They cannot guarantee or enforce the behavior of an ob-
ject once it is instantiated. An application must there-
fore trust the behavior of a COM object once it is loaded.
If that COM object then loads other COM objects, this
trust is transitively extended. As shown in Figure 3,
this trust transitivity exposes a critical security weakness
with regard to COM. If an application loads a COM ob-
ject that is within its security policy, it trusts that object
to only load other objects that are also in the security

Browser Execution Environment

Authorized
Plugin

Unauthorized
Plugin

X

Authorized Plugin

Authorized Plugin
Loads

Other Plugins

Killbit Protected

Figure 3. Transitive trust between COM
Objects allows normally unauthorized ob-
jects to be loaded and executed.

policy. There is no programmatic way for the applica-
tion to ensure that an object it loads extends its security
policy to other objects. It is therefore theoretically pos-
sible to exploit this transitive trust relationship in any
application that loads COM objects.

To complete an attack exploiting this transitive trust,
an adversary requires the following:

1. An application that will render adversary-
controlled content.

2. An application that will load COM objects.

3. A COM object that will in turn load other COM
objects.

4. A vulnerable object that can be exploited.

Each of these requirements is easily achievable under
normal circumstances with an average Windows instal-
lation. The following subsections address them in order.

4.1.1 Supplying Adversary-Controlled Content

The first requirement for accomplishing this sort of at-
tack is that an adversary must persuade a target to render
content under their control. This is easily accomplished
through applications like Internet Explorer and the Mi-
crosoft Office suite. End users can be tricked into view-
ing malicious web pages through a number of means in-
cluding phishing, cross-site scripting, and content injec-
tion. Additionally, users can be emailed Office and other
documents or the browser can be used to force the ren-
dering of Office content through the use of ActiveX.

4.1.2 Loading Adversary-Controlled COM Objects

COM objects can be loaded based on content in Inter-
net Explorer, the Microsoft Office suite, as well as any
other applications and services commonly installed on
Windows that make use of this infrastructure including
Flash and Adobe Reader. To force an application such
as Internet Explorer to load a COM object, an adversary
can supply the CLSID parameter of an<OBJECT> tag.
In the case of the Microsoft Office suite, COM objects
can be directly embedded in documents using the GUI.

4.1.3 Transitive Trust Amongst COM Objects

The third requirement for the attack is to load a COM
object that will in turn load other objects. While this
may seem rare, it is actually quite prevalent due to
a feature of Microsoft Visual Studio. Because of the
complexity of developing COM objects, Microsoft has
included with Visual Studio a set of C++ templates
called the Active Template Library (ATL). The ATL pro-
vides methods for the saving and loading of persistence
streams (covered in Section 3.1) so a developer does not
have to understand the low-level details. To interact with
these methods the developer simply provides a property
map, a template defining the order and type of data that
is stored in the persistence stream, for the object fields
they intend to save stream. This way, as the control reads
the persistence stream it understands to which properties
it should apply the data.

One weakness of property maps is the ability to de-
fine loose types. These are type specifiers that do not
directly map to one of the defined types. In other words,
the property map can define that data exists in the per-
sistence stream, but the COM object should examine the
data itself to determine its type. This is the functional
equivalent of a void pointer in the C programming lan-
guage.

By using the ATL, a COM developer can now easily
create a COM object which implements persistence
without understanding the underlying required methods
or the COM-specific data types with which they are
dealing. The critical issue then becomes the handling
of loose-typed variants by the ATL-provided methods
for loading a persistence stream. To read a persis-
tence stream, the IPersistStream::Load()
method provided in the ATL will call the
method CComVariant::ReadFromStream().
As can be seen in the source code for
CComVariant::ReadFromStream() in Ap-
pendix A, there exist two variant types, that
if encountered in the stream, will be passed to
OleLoadFromStream(). An approximation of the
source of OleLoadFromStream() obtained through
reverse engineering the binaries is provided in Appendix

B. Here we can see that a CLSID is read from the data
stream and passed to CoCreateInstance(). The
remainder of the data stream is then passed to the
IPersistStream ::Load() method exposed by
the object that has just been loaded.

It is important to note that at no time
was a security policy consulted before calling
OleLoadFromStream(). This code distributed
with the ATL can clearly be used to bypass the security
policy of the parent application.

4.1.4 Finding a Known Flawed Control

The final requirement for this attack is to be able to
load a vulnerable control. Given that vulnerabilities in
COM objects are generally left unpatched, several hun-
dred known flawed controls are resident on the average
Windows installation. For example, on the system used
to write this paper, the killbit list for Internet Explorer
is over 600 entries in size. Each of those entries cor-
responds to known flawed control that is likely still un-
patched.

4.2 Proof of Concept Attack

To demonstrate the severity of this attack, and the
ease with which it can be accomplished on an aver-
age Windows platform, a working example was created
leveraging well-known applications and commonly in-
stalled COM objects. The attack created for this proof of
concept loads a trusted COM object in Microsoft Word,
which then loads a known flawed control that is still resi-
dent on most installations of Windows. The specific vul-
nerability used in this example is a known flawed control
in all Windows XP installations and results in the exe-
cution of arbitrary code when triggered. We note that
we tested different vulnerable controls on systems run-
ning Windows Vista and Windows 7 and were similarly
able to compromise those systems. In this example, the
COM object executes shellcode causing Word to listen
on a TCP socket. Upon connection to this socket, the
adversary is presented with a command prompt.

While this section only describes an attack against
Microsoft Word, the same attack was proven to be suc-
cessful against several other COM containers including
Microsoft WordPad, Microsoft Excel, Microsoft Power-
point and Adobe Reader.

To explain how the proof of concept attack was cre-
ated, the following describes how each of the require-
ments in Section 4.1 was met.

1. Microsoft Word was chosen as the parent appli-
cation for our proof of concept attack. Microsoft
Word documents can be easily emailed to users.

Figure 4. The successful exploitation of a COM Object in Microsoft Word, demonstrated by
having Word open a socket on port 4444.

Additionally, the browser can be used as an inter-
mediary in this attack by providing a link to a .doc
file or using ActiveX to force Word to open a doc-
ument of the adversary’s choosing.

2. Microsoft Word was chosen for the ease with which
COM objects can be embedded in documents. Ob-
ject insertion is something that is done regularly in
the course of authoring a document. This typically
comes in the form of inserting images, tables, etc.
In many cases these operations are actually embed-
ding COM objects. This same process can be used
to insert objects of many different types as long as
they conform to the Microsoft Word security pol-
icy.

3. The Microsoft Date and Time Picker control was
chosen because it provides the functionality to load
subsequent COM objects by providing a CLSID in
a persistence stream.

4. The final requirement for constructing the attack is
to have the COM object loaded in the previous step
then load a known vulnerable control. We selected
Microsoft’s Helper Object for Java, which contains
a long standing, unpatched, exploitable vulnerabil-
ity reachable by instantiating the control outside the
Microsoft Java Virtual Machine.

To summarize, we create a working exploit by craft-
ing a Microsoft Word document containing the embed-
ded benign Microsoft Date and Time Picker control.
That COM object in turn loads a known flawed control,
thus circumventing Word’s COM security policy. Once
the flawed control is loaded, it triggers the vulnerability,
resulting in the execution of arbitrary code. This attack,
if executed in the real world, would easily enable an ad-
versary to take full control of a victim’s workstation to
install malware or use the system for other arbitrarily
malicious purposes.

The known vulnerable COM object loaded in this at-
tack is listed in the Internet Explorer killbit list. As such,
it is the policy of Microsoft Word to not load this control.
Had the attack simply tried to embed the control directly
in the Word document, the security policy would have
been effective, and the user would have been presented
with the dialog shown in Figure 2. While the effective-
ness of such warning messages is debatable, our attack
allows for the vulnerable control to be loaded without
providing the user with any indication that something is
amiss. As shown in Figure 4, by using a trusted COM
object to load the known flawed control, the security pol-
icy is bypassed, and the winword.exe process is now lis-
tening on TCP port 4444. This is demonstrable evidence
that Microsoft Word has been compromised. In our spe-
cific exploit, upon connecting to the socket, the adver-
sary is presented with a command prompt. This allows
for the execution of any command in the security con-
text of the user viewing the Word document. In a real
attack scenario, an adversary would generally then go
on to install their malware – taking complete control of
the system.

4.3 Breadth of Attack

The attack described above is not unique to Microsoft
Word, the Microsoft Date and Time Picker, and the
Helper Object for Java. On the average Windows-based
system, there are a large number of applications that
would meet the first and second criteria for exploitation.
In our testing, identified dozens of COM objects that ex-
ist on an average system that were either compiled with
the ATL or expose functionally equivalent capability.
As previously mentioned, the Windows XP-based sys-
tem used to write this paper has several hundred known
flawed controls still installed. This system is not unique.

Given these numbers, the permutations of applica-
tion, trusted COM object, and untrusted COM object
quickly become unmanageably large. It is therefore un-
realistic to require each application to attempt to main-

tain security policies that can reasonably deal with this
threat. It is clear that Windows requires an operating
system-level security policy governing the instantiation
of COM objects.

5 Mitigation Architecture

The lack of a central security policy governing the in-
stantiation of COM objects has been identified as a ma-
jor source of vulnerability in this paper. In this section,
a prototype of a mechanism which we call COMBlocker
is proposed that introduces an operating system-level se-
curity policy with reference monitor-like functionality.
This system will be used to enforce a security policy on
the instantiation of all COM objects.

5.1 Design Goals and Assumptions

The goal of COMBlocker is to provide a system-level
policy for the instantiation of all COM objects. If ev-
ery instantiation is monitored by a central policy, the
issue of transitive trust can be remedied. The design
of COMBlocker assumes that it is attempting to pre-
vent the initial infection vector described in the previ-
ous section. It is not designed to secure a previously
infected machine. Additionally, the prevention mecha-
nism is designed to secure the instantiation of COM ob-
jects by applications that conform to Microsoft’s design
model. This is not intended to prevent intentionally ma-
licious applications from loading flawed controls. These
assumptions follow a common theme: the goal is to pre-
vent the initial attack.

5.2 High Level Architecture

COMBlocker is designed to interpose itself in the in-
stantiation of all COM objects. In terms of the attack
described in Section 4.2, the COM object loaded by Mi-
crosoft Word would be matched against a security policy
and when that COM object in turn attempts to load an-
other COM object, that subsequent instantiation would
also be checked against the policy.

To create such a policy enforcement system, the in-
stantiation logic must be injected into every process on
the system. This can be accomplished by a number of
methods with varying levels of complexity and com-
pleteness. For reasons detailed later, COMBlocker in-
jects a dynamically-linked library into every running
process. This library contains the logic required to en-
force the security policy. Once the COMBlocker library
is injected into every process, calls to the COM instanti-
ation APIs need to be redirected to the library to verify
any object being loaded. We accomplish this through

binary patching in our prototype. As the COMBlocker
library is loaded, it locates the four COM instantiation
APIs and overwrites the function prolog with a jump to
the policy verification code.

With the binary hooks in place, any application that
calls any of the COM instantiation APIs is redirected to
the security interface. This redirection will take place
regardless of the source of the call to the instantiation
API. In other words, the call to load a COM object could
come from a base executable, a library, a different COM
object, or any other type of executable code. Any call
to any of the instantiation APIs is verified against our
security policy.

Once we can verify the instantiation of an object, a
suitable policy must be defined. For the sake of sim-
plicity our proof of concept starts by allowing the user
to apply the Internet Explorer killbit list to all COM ob-
ject instantiations. From there, a user can create excep-
tions to the killbit list or add disallowed objects on a
per-application or system-wide basis.

5.3 Detailed Architecture

COMBlocker was developed as a third-party add-on
for Microsoft Windows. It is not implemented by chang-
ing the underlying COM architecture or by invoking any
extended APIs. If Microsoft were to implement a simi-
lar system, they could simply change the COM instanti-
ation APIs to always check a central policy. The proof
of concept developed in this research is a prototype of
a system that a third-party could implement to provide
a central COM security policy. With that, the details of
how the solution was implemented are covered for com-
pleteness.

5.3.1 DLL Injection

To introduce the security policy verification code into
every running process, COMBlocker uses DLL injec-
tion. This is the process by which an application forces
another application to load a DLL of its choosing. There
are several ways to inject a DLL into another process,
but since our solution requires injection into every pro-
cess, we chose to use the AppInit DLLs registry
key [18]. The operating system will load all DLL’s spec-
ified in this key into every process, thereby providing
comprehensive coverage for all applications.

5.3.2 Binary Hooking

Once the library is injected into every process, control
flow from the COM instantiation APIs must be redi-
rected to the COMBlocker security policy. Our proof
of concept accomplishes this redirection through binary

Figure 5. Hooking Architecture for COMBlocker. Using binary rewriting, we force all COM
objects to be checked against the global policy at their instantiation. Note on the left the policy
check – call AlertCLSID; test eax, eax;

patching. The binary patching used by COMBlocker is
very similar to the Detours API created by Microsoft Re-
search [11]. In the case of COMBlocker, the function
prolog of every COM instantiation API is overwritten
with code that will jump to the security policy verifica-
tion code in our library. As part of the DLLMain() func-
tion, our library will locate the four instantiation APIs
and overwrite the first five bytes of the function prolog
with a jump to the code that implements the policy ver-
ification. Since the first five bytes of the function have
been overwritten, the first few instructions of the policy
verification code must reproduce the functionality of the
original API. Once these instructions are executed, the
security policy enforcement can commence. Figure 5
shows the interception of control flow by COMBlocker
to check against a global policy.

5.3.3 Enforcement Logic

Once the control flow has been redirected from the in-
stantiation APIs to our own logic, we then have access
to the arguments to those APIs. This provides us with
the necessary information to create an enforcement pol-
icy. Specifically, the CLSID of the object being instan-
tiated is passed to the instantiation APIs as the first ar-
gument. In our enforcement logic, we retrieve a pointer
to the CLSID from the stack of the instantiation API. If
the CLSID is specifically blocked by the security policy
in the registry, the enforcement logic simply returns the

error REGDB E CLASSNOTREG to the calling applica-
tion. This returns an invalid handle that the calling appli-
cation cannot use for interacting with the object. All ap-
plications tested gracefully handled this error condition,
but if one did not, it would crash rather than allowing the
exploit to continue.

5.3.4 Policy Definition

In COMBlocker, we wished to have a simple starting
point to define the security policy. As such, the Internet
Explorer killbit list can be applied to any application on
the system or to the system as a whole. This is accom-
plished by setting a value in the registry in a location cre-
ated by COMBlocker. The enforcement logic checks to
see if this value is set. If it is, the killbit list is read from
its default location in the registry and used for compar-
ison against the CLSID the application is attempting to
load. It is important to note that this is different than the
security policy currently employed by Microsoft Word.
In Word, the policy is only applied to the objects instan-
tiated by the base executable. In our system, all instan-
tiations are monitored.

Once the killbit list is applied to an application, ex-
emptions or additions to the list can be manually entered.
These modifications are also set in the COMBlocker reg-
istry hive. For each application, subkeys in the registry
are used to define by CLSID which objects are specifi-
cally allowed or specifically denied. This allows the user

Figure 6. COMBlocker Successfully Stopping Instantiation

to create detailed white lists and black lists for every ap-
plication or the system as a whole.

As mentioned in Section 3.3, it is unrealistic for a
user to try to maintain lists of controls that should be
considered secure and insecure. As such, it is the vision
for a system like this to be implemented by Microsoft
or a third party vendor. In these cases, Microsoft (or the
vendor) could keep track of the known flawed controls
and ensure they cannot be instantiated by any applica-
tion except those specifically requiring them. Addition-
ally, applications could be profiled to enumerate only
those controls that should be instantiated under normal
operation. In cases where this is possible, detailed white
lists could also be created.

6 Results and Discussion

6.1 Breadth of Vulnerability

The first objective described in this paper was to de-
termine the breadth of the vulnerability. The issue of
transitive trust amongst COM objects was hypothesized
to exist in all COM containers which load content pro-
vided by a third party. This proved to be true for ev-
ery application that was tested. Throughout the research,
the attack described in Section 4 was reproduced in Mi-
crosoft WordPad, Microsoft Excel, Microsoft Power-
point and Adobe Reader. The question of how additional
third party COM containers might behave was also ap-
proximated. Microsoft Visual Studio 6 ships with a util-
ity called the ActiveX Control Test Container. This util-
ity allows developers to test the functionality of COM
objects without having to create their own COM con-
tainer. This loosely represents how a generic COM con-

tainer would behave under normal circumstances. The
attack from Section 4 was also successful in this tool,
meaning that a significant number of other third-party
applications are also vulnerable to these attacks.

Each application tested was coerced into loading a
COM object that was in direct violation of its security
policy (where one exists). Generally speaking, these se-
curity policies are used to prevent the instantiation of
COM objects that are known to contain vulnerabilities.
In many cases, these security policies are used in lieu of
fixing the vulnerabilities. With the research presented in
this paper, each of the loitering vulnerabilities in those
controls can be resurrected and used for successful com-
promise.

6.2 Effectiveness of the Solution

We tested COMBlocker’s effectiveness and measured
the overhead it imposes on a standard desktop system.

The first step in testing the effectiveness of the solu-
tion was to apply it to each of the applications that were
found to be vulnerable in the section above. For each ap-
plication that was shown to be vulnerable, COMBlocker
presented the user with the dialog box shown in Figure
6. This dialog box shows that the application attempted
to load a control that is specifically denied by the defined
policy. It also indicates that the instantiation of the ob-
ject was prevented. COMBlocker was successfully able
to prevent the attack described in Section 4 in Microsoft
WordPad, Word, Excel, and PowerPoint as well as the
ActiveX Control Test Container.

Demonstrating the formal completeness of our solu-
tion is difficult. Our mechanism is helped by the fact
that there are only a small number of publicly known

means by which COM objects can be instantiated. In-
jecting COMBlocker at these points should logically
prevent applications from circumventing policy enforce-
ment. However, if applications can instantiate COM ob-
jects through other unknown means such as implement-
ing their own APIs, these interfaces would also need to
be modified and mediated.

6.3 Performance

A version of COMBlocker was created that logged
the time required for each policy lookup encountered
throughout the operation of an application. The test
build was installed on a typical development worksta-
tion and gathered information for all of the COM object
instantiations that occurred during a single day as part
of a developer’s normal work. The test workstation was
a Windows XP SP3 machine with Office 2007, Internet
Explorer 7, Firefox 3, Lotus Notes 8, Visual Studio 6,
and several other commonly installed applications.

During the course of the day, the behavior of the de-
veloper caused over 65,000 COM instantiations. Each of
these recorded an average policy lookup time of 554µs
to complete, with a 95% confidence interval of ±104µs.
The variation in lookup time is largely due to the fact
that consulting the killbit list in the registry is accom-
plished through a linear scan of the subkeys; it is not
indexed. Testing shows that an average application in-
curs less than 10 policy lookups per user action. With
that, each user action generates less than 5ms of delay
due to COMBlocker.

Another data point gathered in this test is that in
general, Office applications and web browsers incurred
a lower lookup time than core operating system com-
ponents. When the data set is reduced to only Of-
fice applications and web browsers, the average lookup
time drops to 104µs, with a 95% confidence interval of
±14.2µs. This indicates that if performance were an
issue in implementing a system like COMBlocker, the
scope of the protection could be reduced to only those
applications that are more easily targeted in COM-based
attacks.

6.4 Discussion on Policy Creation

As mentioned in Section 5, the base policy for each
application (or the system as a whole) was the Internet
Explorer killbit list. It appears that over time, several
COM objects required for the normal operation of many
of the applications tested have been killbitted. In other
words, there exist several COM objects that are critical
to the operation of Microsoft Word, Excel, and even In-
ternet Explorer that are in the killbit list. The question

arises: How can COM objects critical to Internet Ex-
plorer end up in the killbit list? The answer is that the
killbit list blocks the instantiation of COM objects by
the IE scripting engines, not the base IE executable. An
example of this occurred when COMBlocker applied the
killbit list to Internet Explorer as a whole, the navigation
bar was prevented from being instantiated.

The takeaway from this result of the testing is that
the killbit list cannot be blindly applied to every appli-
cation or the system as a whole. As policies are created,
the killbit list can be used as a base, but modifications
are required for each application being monitored. Any
entity choosing to provide a solution like COMBlocker
must take great care to ensure the security policies they
define will allow for the normal operation of each moni-
tored application while still providing a suitable level of
security.

6.5 Future Enhancements to COMBlocker

As mentioned above, policy creation can be quite
complex. While the killbit list is a good starting point
for a blacklist, it simply does not apply as-is to every
application on the system. A useful enhancement to
COMBlocker (or an accompanying tool) would be one
that allows for the profiling of applications under nor-
mal use. This would help to expedite the identification
of controls listed in the killbit list that are critical to the
operation of other applications.

Additionally, more research is required to determine
the feasibility of runtime analysis of persistence streams.
It could be possible to analyze data contained in a per-
sistence stream and filter access to that data based on
policy. For example, one policy could be to ensure that
COM objects may only load simple data types and can-
not load the more complex types, which could force the
instantiation of other objects.

6.6 Comparsion to Microsoft-Issued Patch

On June 8, 2010, Microsoft released Security Bul-
letin MS10-036 in response to our private disclosure of
this vulnerability. This patch attempts to prevent the at-
tacks discovered and demonstrated in this paper. Specif-
ically, this patch extends the killbit list to nested COM
instantiations made by Microsoft Office. While this
patch effectively prevents Office-generated files from in-
cluding these attacks, it does not protect any other ap-
plication that takes advantage of the COM infrastruc-
ture. Accordingly, this patch does not provide the se-
curity guarantees of COMBlocker, and therefore means
that Windows-based systems still remain vulnerable to
such attacks through other applications.

7 Conclusion

COM has provided developers with an extremely
flexible and extensible framework for the creation and
use of myriad software components. However, we have
shown in this paper that a lack of central security pol-
icy for the instantiation of COM objects allows a single
flawed control to pose a security threat to all applications
relying on the COM infrastructure and the system as a
whole. Moreover, because the average Windows instal-
lation can have hundreds of known flawed controls reg-
istered, COM provides attackers with an extremely wide
range of vulnerable surfaces through which to compro-
mise a system. We have demonstrated that each of the
per-application security policies for several popular ap-
plications can be bypassed – each allowing for the in-
stantiation of any of the hundreds of known flawed con-
trols. In response, we have developed and characterized
the reference monitor-like COMBlocker, which inter-
poses itself on all COM instantiations to ensure that such
operations conform to a global policy. In so doing, we
have significantly improved the resistance of the COM
architecture and applications relying upon it to transitive
trust-based exploits.

Acknowledgments

We would like to thank Ryan Smith for his contri-
butions to the research presented in this paper. Addi-
tionally, we thank Reiner Sailer and William Enck for
their help in providing early reviews of this work. This
publication represents the views of the authors and does
not necessarily represent IBM’s positions, strategies, or
opinions.

References

[1] V. Anupam and A. Mayer. Security of Web Browser
Scripting Languages: Vulnerabilities, Attacks, and
Remedies. In Proceedings of the USENIX Security Sym-
posium (SECURITY), 1998.

[2] L. Bauer, J. Ligatti, and D. Walker. Composing security
policies with polymer. In ACM Conference on Program-
ming Language Design and Implementation, June 2005.

[3] H. Chen and D. Wagner. MOPS: An Infrastructure for
Examining Security Properties of Software. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security (CCS), 2002.

[4] M. Dowd, R. Smith, and D. Dewey. Attack-
ing Interoperability. Proceedings of Black
Hat 2009, July 2009. https://media.
blackhat.com/bh-usa-09/video/DOWD/
BHUSA09-Dowd-AtkInterop-VIDEO.mov.

[5] U. Erlingsson. The Inlined Reference Monitor Approach
to Security Policy Enforcement. PhD thesis, Cornell Uni-
versity, January 2004.

[6] D. Evans and A. Twyman. Flexible policy-directed code
safety. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy (OAKLAND), May 1999.

[7] T. Fraser, N. L. Petroni, and W. A. Arbaugh. Apply-
ing Flow-Sensitive CQUAL to verify MINIX Authoriza-
tion Check Placement. In Proceedings of the Workshop
on Programming Languages and Analysis for Security,
2006.

[8] V. Ganapathy, T. Jaeger, and S. Jha. Automatic Place-
ment of Authorization Hooks in the Linux Security
Modules Framework. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2005.

[9] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy
code for authorization policy enforcement. In Proceed-
ings of the IEEE Symposium on Security and Privacy
(OAKLAND), 2006.

[10] V. Ganapathy, D. King, T. Jaeger, and S. Jha. Min-
ing Security-Sensitive Operations in Legacy Code Us-
ing Concept Analysis. In Proceedings of the Internation
Conference on Software Engineering (ICSE), 2007.

[11] G. Hunt and D. Brubacher. Detours: binary intercep-
tion of win32 functions. In WINSYM’99: Proceedings
of the 3rd conference on USENIX Windows NT Sympo-
sium, pages 14–14, Berkeley, CA, USA, 1999. USENIX
Association.

[12] N. Islam, R. Anand, T. Jaeger, and J. R. Rao. A flexible
security system for using internet content. IEEE Soft-
ware, 14:52–59, 1997.

[13] T. Jaeger, A. Edwards, and X. Zhang. Consistency Anal-
ysis of Authorization Hook Placement in the Linux Se-
curity Modules Framework. ACM Transactions on In-
formation and System Security (TISSEC), 7(2), 2004.

[14] T. Jaeger, A. D. Rubin, and A. Prakash. Building sys-
tems that flexibly control downloaded executable con-
text. In Proceedings of the USENIX Security Symposium
(SECURITY), 1996.

[15] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, and
R. C. Taylor. The inevitability of failure: The flawed
assumption of security in modern computing environ-
ments. In Proceedings of the National Information Sys-
tems Security Conference, 1998.

[16] D. Malkhi and M. Reiter. Secure Execution of Java Ap-
plets Using a Remote Playground. IEEE Transactions
on Software Engineering, 27(12):1197–1209, 2000.

[17] Microsoft. Safe Initialization and Scripting for
ActiveX Controls. Microsoft Developer Network.
http://msdn.microsoft.com/en-us/
library/aa751977(VS.85).aspx.

[18] Microsoft. Working with the AppInitDLLs registry
value. Microsoft Support, November 2006. http:
//support.microsoft.com/kb/197571.

[19] Microsoft. Microsoft Security Advisory
(953839). Microsoft TechNet, August 2008.
http://www.microsoft.com/technet/
security/advisory/953839.mspx.

[20] Microsoft. Microsoft Security Advisory
(956391). Microsoft TechNet, October 2008.
http://www.microsoft.com/technet/
security/advisory/956391.mspx.

[21] Microsoft. How to stop an ActiveX control from run-
ning in Internet Explorer. Microsoft Support Center, Au-
gust 2009. http://support.microsoft.com/
kb/240797.

[22] Microsoft. Microsoft Security Advisory
(960715). Microsoft TechNet, February 2009.
http://www.microsoft.com/technet/
security/advisory/960715.mspx.

[23] Microsoft. Microsoft Security Advisory
(969898). Microsoft TechNet, June 2009.
http://www.microsoft.com/technet/
security/advisory/969898.mspx.

[24] Microsoft. Microsoft Security Bulletin MS09-
032. Microsoft TechNet, July 2009. http:
//www.microsoft.com/technet/security/
bulletin/ms09-032.mspx.

[25] Microsoft. Microsoft Security Bulletin (MS09-034).
http://www.microsoft.com/technet/
security/bulletin/ms09-034.mspx, July
2009.

[26] Microsoft Support. You are prompted to grant permis-
sion for ActiveX Controls when you open an Office XP
or Office 2003 document. Microsoft Support Center, Oc-
tober 2007. http://support.microsoft.com/
default.aspx?scid=kb;en-us;827742.

[27] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe Retrofitting of Legacy Code. In Proceedings
of the ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, 2002.

[28] N. Thompson. MFC/COM Objects 1: Creating a
Simple Object. Microsoft Developer Network, March
1995. http://msdn.microsoft.com/en-us/
library/ms809986.aspx.

[29] J. Yang, T. Kremenek, Y. Xie, and D. Engler. MECA: An
Extensible, Expressive System and Language for Stati-
cally Checking Security Properties. In Proceedings of
the ACM Conference on Computer and Communications
Security, 2003.

[30] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL
for Static Analysis of Authorization Hook Placement.
In Proceedings of the USENIX Security Symposium (SE-
CURITY), 2002.

8 Appendix A

The following source code represents the CComVariant::ReadFromStream() method as distributed with ATL ver-
sion 6.0. This is the method that allows a developer to read a variant from a COM persistence stream. The key piece
is the call to OleLoadFromStream() (line 23) which is detailed in Appendix B:

1 inline HRESULT CComVariant::ReadFromStream(IStream* pStream)
2{
3 ATLASSERT(pStream != NULL);
4 HRESULT hr;
5 hr = VariantClear(this);
6 if (FAILED(hr))
7 return hr;
8 VARTYPE vtRead;
9 hr = pStream->Read(&vtRead, sizeof(VARTYPE), NULL);
10 if (hr == S_FALSE)
11 hr = E_FAIL;
12 if (FAILED(hr))
13 return hr;
14
15 vt = vtRead;
16 int cbRead = 0;
17 switch (vtRead)
18 {
19 case VT_UNKNOWN:
20 case VT_DISPATCH:
21 {
22 punkVal = NULL;
23 hr = OleLoadFromStream(pStream,
24 (vtRead == VT_UNKNOWN) ? IID_IUnknown : IID_IDispatch,
25 (void**)&punkVal);
26 if (hr == REGDB_E_CLASSNOTREG)
27 hr = S_OK;
28 return S_OK;
29 }

9 Appendix B

The following code was derived by first disassembling Ole32.dll with IDA Pro. From there, the disassembly was
manually converted to the C/C++ equivalent shown below. This code shows that this method will read a CLSID from
a persistence stream and instantiate that object with a call to CoCreateInstance() (line 23). It should be noted that at
no time is there a check against a security policy before the object is loaded:

1 HRESULT OleLoadFromStream(LPSTREAM pStm,const IID *const iidInterface,
LPVOID *ppvObj)

2{
3 CLSID pclsid;
4 IID *riid;
5 HANDLE *ppvObj;
6 HANDLE *ppvStmObj;
7 HRESULT hr;
8
9 riid = iidInterface;
10
11 if (*ppvObj == 0)
12 return E_INVALIDARG;
13 . . .
14
15 if (!isValidInterface(pStm))
16 return E_INVALIDARG;
17
18 hr = ReadClassStm(pStm, &pclsid);
19 if (hr)
20 return hr;
21
22 hr = CoCreateInstance(pclsid, NULL, CLSCTX_NO_CODE_DOWNLOAD|
23 CLSCTX_REMOVE_SERVER|CLSCTX_LOCAL_SERVER|CLSCTX_INPROC_SERVER,
24 riid, ppvObj);
25 if (hr)
26 return hr;
27
28 hr = ppvObj->QueryInterface(IID_IPersistStream, ppvStmObj);
29 if (hr) {
30 ppvObj->Release();
31 return hr;
32 }
33
34 hr = ppvStmObj->Load(pStm);
35
36 ppvObj->Release();
37
38 if (hr) {
39 ppvObj->Release();
40 return hr;
41 }
42 . . .
43 return hr;
44}

