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Abstract

Despite numerous improvements in the development and
maintenance of software, bugs and security holes exist in to-
day’s products, and malicious intrusions happen frequently.
While this is a general problem, it explicitly applies to web-
based services. However, Byzantine fault-tolerant (BFT)
replication and proactive recovery offer a powerful com-
bination to tolerate and overcome these kinds of faults,
thereby enabling long-term service provision. BFT replica-
tion is commonly associated with the overhead of 3f + 1
replicas to handle f faults. Using a trusted component,
some previous systems were able to reduce the resource cost
to 2f + 1 replicas. In general, adding support for proactive
recovery further increases the resource demand. We believe
this enormous resource demand is one of the key reasons
why BFT replication is not commonly applied and consid-
ered unsuitable for web-based services.

In this paper we present SPARE, a cloud-aware ap-
proach that harnesses virtualization to reduce the resource
demand of BFT replication and to provide efficient support
for proactive recovery. In SPARE, we focus on the main
source of software bugs and intrusions, that is, the services
and their associated execution environments. This approach
enables us to restrict replication and request execution to
only f 4 1 replicas in the fault-free case while rapidly acti-
vating up to f additional replicas by utilizing virtualization
in case of timing violations and faults. For an instant reac-
tion, we keep spare replicas that are periodically updated
in a paused state. In the fault-free case, these passive repli-
cas require far less resources than active replicas and aid
efficient proactive recovery.

1. Introduction

Malicious intrusions remain a problem for web-based
services despite a number of improvements in the devel-
opment and maintenance of software. Byzantine fault-
tolerant (BFT) replication is a key technology for enabling
services to tolerate faults in general and software-induced
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problems in particular. However, BFT replication involves
high overhead, as it requires 3f + 1 replicas to toler-
ate f faults [7]. Lately, a debate has been started how and
if Byzantine fault tolerance and the provided results will be
adopted by the industry [12} 27]]. One of the outcomes was
that the enormous resource demand and the associated costs
seem to be too high for many scenarios to legitimate the im-
proved fault-tolerance properties, and that this is the reason
why the use of BFT is only accepted for critical infrastruc-
tures and services. This fact becomes even more severe if
long-term service provision is targeted, which demands for
proactive recovery to neutralize faults and tends to further
increase the resource demand due to the temporary need of
additional replicas during recovery [38,43].

At the same time, we see web-based services playing a
more and more important role in our everyday life. This
becomes evident the minute these services are no longer
accessible due to faults and, even worse, when faulty re-
sults are provided to users. Web-based services are typi-
cally confronted with much stronger economic constraints
than critical infrastructures. As a consequence, resource-
intensive techniques such as BFT replication are not an op-
tion. On the other hand, with economical constraints im-
pacting software quality and provision management, web-
based services are easy targets for worms, viruses and in-
trusions. Accordingly, our general goal is to reduce the
resource costs of BFT replication to lower the entry bar-
rier for this technique and to make it widely applicable, es-
pecially for web-based services. A pragmatic approach to
achieve this goal is to make the assumption that software
bugs and intrusions are limited to certain network-exposed
parts of the system that are complex and subject to innova-
tion. In contrast, the remaining subsystem is considered as
intrusion-free and trusted. The utilization of a trusted sub-
system allows reducing the resource requirements to as few
as 2f + 1 replicas [11L 13} 38}, [49]. However, we consider
this still too much to be applicable in practice.

Accordingly, we investigated the fact that there is a trend
to run web-based services on top of a virtualization plat-
form that provides basic management of virtual machines.
Such an environment can be found in cloud-computing in-



frastructures like Amazon EC2 [1]], Eucalyptus [33], Open-
Nebula [42], and IBM CloudBurst [22], but also in environ-
ments that are self-managed (e. g., to consolidate hardware).
There is an ongoing development to make hypervisors and
associated minimal runtime environments supporting vir-
tualization small and trustworthy (e. g., using verification)
[26, 29, 32| 145]]. Still, software executed inside of a virtual
machine can fail maliciously. This is not likely to change in
the near future due to the rapid development in the applica-
tion and middleware sector and the associated complexity.

Based on these observations, we present SPARE, a sys-
tem that focuses on service-centric Byzantine fault toler-
ance and requires only f+1 active replicas during fault-free
execution. This number is the minimum amount of repli-
cas that allows the detection of up to f replica faults when
utilizing a trusted subsystem. When SPARE suspects or de-
tects faulty behavior of some of the replicas, it activates up
to f additional passive replicas. A replica is suspected to be
faulty if it either produces faulty results that are inconsistent
with the results provided by other replicas, or if its response
time exceeds a threshold; the latter is needed as attackers
might delay replies to prevent further execution.

Virtualization provides an ideal basis for dynamically ac-
tivating additional replicas, as it offers means for rapid ac-
tivation and deactivation of virtual machines. In the con-
text of SPARE, a passive replica is a paused virtual ma-
chine (i. e., it is not scheduled by the hypervisor and there-
fore does not consume CPU) that is periodically unpaused
and updated. This saves resources as providing and apply-
ing state updates is usually less resource demanding than
request execution and read-only requests only need be exe-
cuted by active replicas. Albeit this already results in sub-
stantial resource savings, passive replicas provide another
great benefit: If state updates are agreed on by a majority
of active replicas, passive replicas can be used as a basis for
resource-efficient proactive recovery. Furthermore, SPARE
replicas are able to agree on updates on the granularity of a
request, offering additional means for fault detection.

We implemented and evaluated SPARE using a common
hypervisor and a web-based three-tier benchmark. SPARE
needs 21-32% less resources (CPU, memory, and power)
than a traditional trusted-subsystem approach and only de-
mands 6-12% more than plain crash-stop replication. We
consider this a substantial step towards making BFT sys-
tems affordable for a broad spectrum of web-based services.

In this paper, we present the SPARE architecture (Sec-
tion [2) and introduce passive replicas in BFT (Section [3).
Section [] describes fault handling and proactive recovery
in SPARE. Section [3] discusses how to integrate SPARE
with an infrastructure cloud. Section[6]presents an extensive
evaluation of SPARE’s resource footprint. Section [/| gives
some final remarks on the practicality of SPARE. Section [§]
presents related work, and Section@] concludes.

2. Architecture of SPARE

We build SPARE as a generic architecture for applica-
tion-centric Byzantine fault-tolerant replication using virtu-
alization. This section presents the system model as well as
the basic architecture of SPARE.

2.1. System Model

Our architecture makes the following assumptions:

o Clients exclusively interact with the remote service us-
ing request/reply network messages. All client—service
interaction can be intercepted at the network level.

e The remote service can be modeled as a deterministic
state machine. This property allows replication using
standard state-machine—replication techniques.

e Service replicas, including their operating system and
execution environment, may fail in arbitrary (Byzan-
tine) ways. At most f < L”T_lj of the n active and
passive replicas may fail within a recovery round.

e Apart from the service replicas, the remaining system
components, including the hypervisor and a trusted
system domain, fail only by crashing.

e Host crashes can be reliably detected within a bounded
time span in minimal configurations of f + 1 nodes.

While the first three assumptions are common for sys-
tems featuring BFT replication and proactive recovery, the
last two assumptions are specific to SPARE. Assuming that
a non-trivial part of the system can only fail by crashing is
critical. However, SPARE does not target to provide Byzan-
tine fault tolerance for a whole system but only for a repli-
cated service and its directly associated execution environ-
ment; that is, SPARE goes beyond plain crash-stop repli-
cation, but its ability to tolerate malicious faults is limited
compared to pure BFT replication.

The assumption of a crash-only subsystem is supported
by recent progress in the domain of minimal and trustwor-
thy operating-system and virtualization support [26} 29, 45]].
While the reliable detection of a crashed node is a strong as-
sumption in the general context of distributed systems, we
assume SPARE to be typically used in closely-connected
environments. In this specific setting, the detection of
crashed nodes within a finite time is practicable and com-
mon [14} 20]. If not stated otherwise, we present SPARE
in the context of a closely-connected environment in this
paper. In such an environment, the network is typically
assumed to be secure. Please refer to Section [7] for a dis-
cussion of extensions and modifications (e. g., secure au-
thenticated channels) that allow SPARE to be applied in a
geographically distributed deployment; for example, across
different data centers.
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Figure 1. Minimal SPARE replication architec-
ture featuring passive replication and proac-
tive recovery that can tolerate a single fault.

2.2. Basic Architecture

SPARE is based on a hypervisor that enforces isolation
between different virtual machines running on the same
physical host. We distinguish between a privileged virtual
machine (Dom0) that has full control over the hardware
and is capable of starting, pausing, unpausing, and stop-
ping all other hosted virtual machines (DomUs). Such a
division of responsibilities is common for hypervisor-based
systems [} 45, 147]]. In the context of this paper we use the
terminology of Xen, as our prototype is based on this par-
ticular hypervisor. However, as the SPARE architecture is
generic and does not rely on any Xen-specific functionality,
other hypervisors could be used instead.

In SPARE, a replica manager is running within the
privileged Dom0, while each service replica is executed in
a completely separated application domain; that is, a DomU
with guest operating system, middleware infrastructure, and
service implementation (see Figure [T). The replica man-
ager is composed of basic support for handling client con-
nections, communication support for distributing totally-
ordered requests to all replicas, and a proactive-recovery
logic. In addition, the replica manager includes a custom
voting component enabling on-demand activation of passive
replicas, mechanisms for handling state updates (see Sec-
tion [3), and support for replica cloning (see Section £.2));
the latter is needed for proactive recovery (see Section[3.3).

In combination with hypervisor and Dom0, the replica
manager forms the trusted computing base of SPARE that
only fails by crashing; service replicas in isolated appli-
cation domains are not trusted. This hybrid system model
allows coping with any kind of failure in application do-
mains, including random non-crash faults and intentional
malicious faults.
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Figure 2. Detailed steps of processing a client
request (0-©) and the corresponding state
update (-®) in SPARE.

Figure [I] presents a minimal setting comprising two
physical machines, each hosting one active and one passive
replica. This configuration can tolerate one fault, either at
the service replica, at the trusted-component level, or at the
granularity of a whole physical machine; in general, SPARE
requires f + 1 physical machines to tolerate f faults.

2.3. Basic Request Processing

The left half of Figure 2]shows the principle steps (0-©)
to process a client request in SPARE. The configuration
in this example comprises two physical machines and is
therefore able to tolerate a single Byzantine fault in a ser-
vice replica. Note that all components shown in Dom0
(i.e., RVoter, UVoter, state-update buffer, and group-
communication endpoint) are subcomponents of the replica
manager; for clarity, we omit the subcomponents for replica
activation and proactive recovery. Furthermore, we assume
that communication between clients and the service is not
encrypted. If this is demanded, we expect to have a proxy
in front of the service, which is transparent to our infrastruc-
ture, that handles authentication and link-level encryption.

When a client sends a request to the service, the re-
quest is received by one of the two replica managers @ and
forwarded to the Group Communication @. As both
nodes can receive client requests, the group communication
imposes a total order on requests; this is necessary to pre-
serve determinism in the service replicas. After ordering,
a request is handed over to the local active replica to be
processed . Next, the associated reply is fed into the re-
ply voter (RVoter) @, which decides on the result of the
replicated execution. Note that this voting only takes place
at the replica manager that initially received the client re-
quest, the other replica manager provides a hash over the



reply of the other active replica @®@. When the local re-
ply matches the hash (i. e., the Rvoter has collected f + 1
matching replies/hashes), the execution result is correct and
can safely be forwarded to the client ®. In case of a mis-
match or a missing reply, additional measures are necessary
to determine the correct result (see Sectiond)).

3 Passive Replicas

In the context of the crash-stop failure model, the use of
passive replicas is a well-known concept to reduce repli-
cation overhead, as passive replicas only receive state up-
dates instead of executing requests [6]. If a master replica
crashes, a secondary passive replica takes over.

Common approaches for BFT replication execute all
state-altering requests on every replica to ensure high avail-
ability [7, 8l [9, 13} 138} |49]]. In order to reduce resource
consumption in SPARE, we introduce the idea of passive
replicas in the context of BFT replication. In a BFT system,
we cannot rely on a single master. Instead, we need at least
f + 1 active replicas to detect up to f faults; the remaining
f + 1replicas in SPARE are initially passive.

3.1. Activation

If at least one of the f + 1 active replicas provides a dif-
ferent reply than the other active replicas (or none at all), ad-
ditional (i. e., passive) replicas also execute the pending re-
quest to provide the reply voter with additional replies (see
Section [d). However, passive replicas first have to be acti-
vated. To minimize service disruption, activation of passive
replicas must be rapid, as the service cannot proceed as long
as it takes to decide on the result of a pending request.

In SPARE, virtual machines hosting passive replicas are
put into paused mode. In this mode, a passive replica can
be activated instantly when needed, but until then only con-
sumes a small amount of resources (see Section [0.4.2)). Us-
ing Xen, for example, a paused virtual machine remains in
memory but does not receive any processor time. On the ac-
tivation of a passive replica, the replica manager unpauses
the corresponding virtual machine, which only takes a few
hundred milliseconds (130 ms in our testbed) for a standard
Linux virtual machine and a vanilla version of Xen. Note
that additional resources could be saved by booting the pas-
sive replica from scratch. However, this typically takes tens
of seconds and would therefore cause a significant service
downtime in case of a replica fault.

3.2. State Updates

In order to process a pending request after being acti-
vated, passive replicas must have the latest application state
available. SPARE uses periodic state updates to get passive

replicas up to speed. These updates have to be free of faults,
otherwise they could contaminate the clean state of the pas-
sive replicas, which would render them useless for the task
of providing additional replies to decide on the result of a
pending request.

The right side of Figure [2| outlines the basic work-
flow for collecting state updates. Having executed a state-
modifying request, the active replica provides the update
voter (UVoter) with a state update @; a hash over the up-
date is propagated to the other replica manager via group
communication @®. With the other node acting accord-
ingly, in the absence of faults, each update voter is pro-
vided ®® with enough hashes to prove the state update
correct. Note that both replica managers vote on the state
update independently. When an update voter has received
enough matching hashes for a state update, it enqueues the
update in a temporary buffer ®. If an update voter receives
differing hashes or is not able to collect enough hashes
within a certain period of time, the replica manager acti-
vates the local passive replica and (re-)processes the specific
request (see Section ).

When the number of voted updates reaches a certain
limit k (e. g., in our evaluation we use k = 200), the replica
manager temporarily wakes up the local passive replica and
applies the buffered state updates. Next, the updated replica
is paused again and the buffer is emptied. Note that these
periodic updates of passive replicas reduce the overhead
for updating on the occurrence of faults. When a passive
replica is activated to tolerate a fault, only state updates
since the last periodic update have to be executed to pre-
pare the replica.

In the context of applications addressed by SPARE, ap-
plying state updates is usually more efficient than executing
the actual requests. For example, in a multi-tier web-service
application, it takes longer to process a submitted form with
data (request) than adding an entry in a relational database
(state update). Furthermore, the creation of a state update
for every modifying request is feasible as such requests only
represent a small fraction of the typical workload [17]]. Re-
trieving state updates from an active replica can be done in
multiple ways, but typically some form of write-set captur-
ing is applied. For relational databases, for example, this
can be done using vendor-specific APIs, triggers, or simply
additional custom-tailored queries [15} 39} 40].

3.3. Supporting Proactive Recovery

With faults accumulating over time, the number of faults
may eventually exceed the fault-tolerance threshold of a
BFT system. Therefore, we consider proactive recov-
ery [8, [38] an important technique to provide long-term
services. Proactive recovery periodically initializes replicas
with a correct application state all non-faulty replicas have



agreed on. This way, a replica is cleaned from corruptions
and intrusions, even if they have not been detected. As a
consequence, proactive recovery basically allows to toler-
ate an unlimited number of faults as long as at most f faults
occur during a single recovery period.

In SPARE, passive replicas are used for proactive recov-
ery as they already have the latest correct application state
available (see Section [3.2). Instead of pausing a replica af-
ter applying the periodic state updates, the replica manager
clones either the entire replica or only the relevant service
state. In any case, this builds the basis for a future pas-
sive replica, while the current passive replica is promoted
to be an active replica; that is, the replica manager hands
over request execution to the former passive replica, and
shuts down the old active replica (see Section [4.2] for de-
tails). This way, a (potentially) faulty replica is efficiently
replaced with a clean one.

4 Fault Handling and Proactive Recovery

In the absence of faults, SPARE saves resources by rely-
ing on only a minimal set of f+1 active service replicas and
by keeping all other service replicas in a resource-efficient
passive mode. This section describes how SPARE makes
use of those passive replicas to handle suspected and de-
tected faults, as well as node crashes. Furthermore, passive
replicas play a key role during proactive recovery.

4.1. Fault Handling

During normal-case operation, SPARE’s f+1 active ser-
vice replicas provide enough replies to prove a result cor-
rect. However, in case of faults, up to f passive replicas
must step in to decide the vote. Note that, in the following,
we focus on the handling of faulty service replies, faulty
state updates are handled in the same manner.

4.1.1. Basic Mechanism

When a replica manager detects a situation that requires
replies from additional replicas (e. g., a voting mismatch),
the replica manager distributes a (HELP_ME, s,n) request
via group communication, indicating the number of addi-
tional replies n to be provided for the request with sequence
number s. Every replica manager ¢ that has a non-faulty
passive replica available reacts by sending an (I_DO, s, %)
acknowledgement via group communication. If the ac-
knowledgement of ¢ is among the first n acknowledgements
received for s, the passive replica of ¢ has been selected to
provide an additional reply; the group communication en-
sures that all replica managers see the acknowledgements in
the same order. Note that each request for additional replies

is protected by a timeout that triggers another HELP _ME re-
quest with an updated value for n, if not enough (correct)
replies become available within a certain period of time.

When the local passive replica has been selected to pro-
vide an additional reply, a replica manager performs the
following steps: First, it activates the passive replica by
unpausing its virtual machine. Next, the replica man-
ager applies all state updates remaining in the state-update
buffer (see Section [3.2). Finally, the replica manager exe-
cutes the request with sequence number s on the (now for-
mer) passive replica and forwards the reply to the replica
manager that issued the HELP _ME request.

In order to save resources, replica managers usually de-
activate former passive replicas after fault handling is com-
plete. However, in some cases (e.g., node crashes), a
replica manager may decide to keep the passive replica
permanently activated; this decision may, for example, be
based on the frequency of HELP_ME requests, using an
exponential-backoff mechanism.

4.1.2. Detected Faults

A replica manager detects a faulty reply through a voting
failure. If at least one of the f + 1 replies differs from the
other replies, the replica manager sends a (HELP_ME, s, 1)
request, with n = f + 1 — m and m being the maximum
number of matching replies. At this point, it is most likely
that those m matching replies are correct; however, this is
not guaranteed. In case the m replies turn out to be in-
correct, the replica manager sends additional HELP _ME re-
quests. When the replica manager has finally collected f+1
identical replies, thanks to the additional replies being pro-
vided by former passive replicas, it forwards the correct re-
sult to the client. Note that using reply hashes, the replica
manager may not have obtained a correct full reply. In this
case, it orders the full reply from a replica manager that
provided a correct reply hash.

Having learned the correct reply, the replica manager is
able to determine which service replicas delivered incorrect
replies; that is, which replicas are faulty. As a consequence,
the replica manager distributes a (CONVICTED, r) notifi-
cation via group communication for every faulty replica r.
When a replica manager receives a CONVICTED notifica-
tion for a local replica, it destroys the faulty active replica
and promotes the local passive replica to be the new active
service replica.

4.1.3. Timing Violations

Besides providing an incorrect result, a faulty replica
may not even respond at all, leaving the replica manager
with too few replies to decide the vote. To identify such sit-
uations, the replica manager starts a timer on the reception
of the first reply to a request. The timer is stopped when



f +1 matching replies are available. On timeout expiration,
the replica manager sends a (HELP _ME, s, n) request, with
n = f + 1 — a and a being the number of replies already
available. As a consequence, the basic fault-handling mech-
anism leads to additional replies being provided that enable
the replica manager to determine the correct result.

We assume the timeout to be application or even request
dependent. In most cases, finding such a timeout is not a
problem as benchmarks may give information about request
durations under high load. Furthermore, if the timeout is
triggered due to false prediction, this only introduces over-
head but does not impact the functionality of the system.

In case of a timing violation, a replica manager does
not send a CONVICTED notification. Instead, it sends a
(SUSPECTED, r) notification for every service replica
that failed to deliver a reply; on the reception of a threshold
number of SUSPECTED notifications (e. g., 100), a replica
manager only pauses the affected active replica. Note that
in the absence of a voting failure (i. e., a proof that a replica
is actually faulty), a false suspicion could otherwise lead to
the destruction of a non-faulty replica, endangering the live-
ness of the whole system. After being paused, the former
active replica is treated like a passive replica; that is, it is
periodically updated by applying state updates. Therefore,
the former active replica is still able to provide replies to
assist in solving (possible) future voting mismatches. How-
ever, if the former active replica is actually faulty, the next
proactive recovery will cure this problem.

4.1.4. Node Crashes

On the detection of a node crash z, each replica man-
ager ¢ that has a non-faulty passive replica available sends
a (COMPENSATE, x, ¢) message via group communication,
indicating the offer to compensate the loss of the active
replica on the crashed node. The first COMPENSATE
message that is delivered by the group communication
determines, which node is selected to step in. At this
node, the replica manager activates and prepares the pas-
sive replica (i.e., it applies the remaining state updates)
and starts regular request execution. Note that in case the
crashed node hosted two active service replicas, for exam-
ple due to an earlier crash of another node, SPARE’s mech-
anism for handling timing violations ensures that an addi-
tional passive replica steps in.

4.2. Proactive Recovery

In the absence of detected faults or timing violations, a
passive replica I?,, only receives agreed state updates gen-
erated since the last proactive-recovery round p — 1. There-
fore, it is safe to use I?,, to replace the current active replica
during proactive recovery p. Prior to that, each replica man-

ager sets up a new passive replica I, 1 (i. e., the next gener-
ation) and directly transfers the state between R, and R, ;.
We assume that replicas might be heterogeneous to avoid
common faults (see Section . In this case, a BASE [9]-
like approach may be implemented to transfer the state [15]].
Such an approach requires replicas to not only manage the
service state in their implementation-specific representa-
tion, but to also maintain the service state in an abstract
format that is supported by all replicas and used for state
transfer. At the technical level, the abstract state can be
rapidly transferred by exchanging a file-system snapshot .S.
In case of detected faults or timing violations, the execu-
tion of one or more requests invalidates the clean-state as-
sumption for the former passive replica It;,, as requests can
cause intrusions or may trigger bugs when being processed.
Thus, in such scenarios, a replica manager snapshots the
abstract state before activating R,,. At the next proactive
recovery, this snapshot S’ is used to initialize the new pas-
sive replica R, 11. As the snapshot S’ does not contain the
latest application state, all state updates generated since the
creation of the snapshot also have to be applied to /2,4 1.

5. SPARE and the Cloud

In Section[2] we described how SPARE is integrated with
a common hypervisor. In this section, we investigate how
current cloud infrastructures, such as Amazon’s EC2 [1]]
and Eucalyptus [33], can be extended by SPARE. In par-
ticular, we address the delegation of management rights,
explicit activation and deactivation of virtual machines, col-
location and dislocation of virtual machines, as well as ex-
tended fault-detection support. Note that most of the exten-
sions described below target to increase efficiency, they are
not strictly required to safely run SPARE in the cloud.

5.1. Management of Virtual Machines

In our basic architecture (see Figure , we assume that
both replica manager and group communication are located
inside a privileged domain that has full control over the
hardware, and accordingly over all virtual machines hosted
by the associated physical machine. In the context of an in-
frastructure cloud, this is not practical as virtual machines
of multiple customers might be collocated on one physi-
cal machine. Thus, we separate our base system from the
hardware and the infrastructure responsible for managing
virtual machines in the cloud. This can be achieved by
running the replica manager in its own virtual machine and
providing it with means to delegate management rights for
virtual machines. In practice, a user of EC2 already pos-
sesses credentials to start and stop her virtual machines. For
SPARE, those credentials need to be delegable in a way that
a replica manger can be equipped with the capabilities to
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Figure 3. Architectures of Crash, AppBFT, and SPARE that tolerate a single faulit.

start and stop its associated active and passive replicas. Be-
sides starting and stopping replicas, for efficiently support-
ing SPARE, the infrastructure should also be extended by
an interface that enables the replica manager to pause and
unpause virtual machines. Note that such an interface of-
fers the opportunity to reduce the resource consumption of
passive replicas and therefore allows to improve the overall
resource savings of SPARE, but is otherwise optional.

The replica manager may also be provided with an op-
tional interface that comprises methods to dynamically as-
sign memory and processor capacities to virtual machines.
On the one hand, such a functionality makes it possible to
keep the resource consumption of the virtual machine low
while the replica is passive; on the other hand, it allows to
dynamically increase the resources available to the virtual
machine once the replica is activated. So far, assignment
of resources to virtual machines is static in EC2 and Euca-
lyptus. Technically, the necessary support is already avail-
able at the virtualization layer; however, up to now, there
was no need to make this feature accessible to customers.
Nevertheless, even without such an interface, using passive
replicas still saves costs due to EC2 mainly billing the us-
age of a virtual machine, besides billing its basic resource
footprint (i. e., memory and number of CPUs).

5.2. Placement of Virtual Machines

During deployment, the collocation and dislocation of
virtual machines is an essential requirement for SPARE.
In particular, a virtual machine hosting a replica manager
should be collocated with the virtual machines hosting the
associated active and passive replicas. In contrast, the vir-
tual machines hosting replica managers must be placed on

separate physical machines, otherwise compromising the
fault-tolerance properties of the whole system. EC2 already
provides limited support for controlling the placement of
virtual machines by distinguishing between different avail-
ability zones. For SPARE, this support should be extended,
for example, by directly supporting SPARE and treating all
virtual machines assigned to the same replica manager as a
unit that can only be distributed as a whole. A more generic
approach would be to use a dedicated query language to
specify placement constraints as proposed in the context of
distributed testbeds [35) 144].

5.3. Detection of Node Crashes

For SPARE, an infrastructure cloud needs to offer ex-
tended support for fault detection. This can be implemented
in several ways, most simply, by placing replicas on directly
interconnected nodes to enable a reliable fault detection in
case of f + 1 hosts [[14, 20]. If a more relaxed distribu-
tion is demanded and custom hardware settings are not an
option, a witness-based approach is suitable [28} [36]]. Here,
additional nodes only take part in the communication to wit-
ness the occurrence of crashes and network partitions; the
additional resource overhead would be minimal and the dis-
tribution requirements could be relaxed.

6. Evaluation

In this section, we evaluate the resource footprint of
SPARE for the RUBIiS web service benchmark [34]] and
compare it to the resource footprint of the two related repli-
cated settings Crash and AppBFT (see Figure 3).
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The characteristics of Crash and AppBFT are as follows:

e Crash is an actively-replicated crash-tolerant setting
with g + 1 replicas that tolerates up to g replica faults;
on a Crash host, the group communication runs in the
same virtual machine (DomU) as the service replica.

e AppBFT is a Byzantine fault-tolerant setting that com-
prises a trusted ordering component and 2 f + 1 repli-
cas to tolerate up to f Byzantine faults in the applica-
tion domain.

Throughout the evaluation, we use configurations that
are able to tolerate a single fault (i.e., f = g = 1). We also
show that SPARE performs as well as Crash and AppBFT
during normal-case operation, and evaluate the impact of
a replica failure in SPARE. Furthermore, we discuss the
resource savings that SPARE offers to web-based services
and NFS. Finally, we analyze the cost-saving potential of
SPARE in the cloud.

Our evaluation uses a cluster of quad-core CPU hosts
(Intel Core 2 Quad CPU with 2.4 GHz, and 8 GB RAM),
connected with switched 1Gb/s Ethernet. Each replica
host is running a Xen hypervisor with an Ubuntu 7.10
(2.6.24-16-xen kernel) Dom0; application domains are run-
ning Debian 4.0 (2.6.22-15-xen kernel). Clients are run-
ning on a separate machine. Our prototype relies on the
Spread [4] group communication.

6.1. RUBIS

RUBIS is a web-based auction system created to bench-
mark middleware infrastructures under realistic workloads;
it therefore is a fitting example of a multi-tier application
to be typically run in an infrastructure cloud relying on
SPARE. RUBIS includes a benchmarking tool that simu-
lates the behavior of human clients browsing the auction
system’s web site, logging into their accounts, registering
new items, and placing bids. The tool approximates a real-
life usage scenario by processing a transition table that de-
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Figure 5. Impact of a replica fault on the
throughput of SPARE during a test run with
900 clients, using the small database.

fines step-by-step probabilities for user actions such as reg-
istering users or bidding for items, including pauses be-
tween single actions (“think time”).

In the configuration we use in our evaluation, a set of
Java servlets is running on a Jetty web server that processes
client requests. Information about registered users and item
auctions is stored in a MySQL database. Each test run starts
with a service state taken from a database dump published
on the RUBiS web site. As database size affects the pro-
cessing time of requests (i.e., the larger the database, the
more records have to be searched), we vary between a small
(about 100.000 users and 500.000 bids) and a large (about a
million users and five million bids) initial database state.

A RUBIS replica manages all of its service state in the
MySQL database that (without exception) is updated by
servlets issuing SQL statements via the Java Database Con-
nectivity (JDBC) API. To extract state updates, we created
a library that analyzes those JDBC calls; for every state-
modifying operation (e. g., INSERT, UPDATE), our library
extracts the statement’s write set, includes it in a state-
update message, and forwards the state update to the local
replica manager. In our library, write-set extraction is done
by executing a query that reads the affected data records af-
ter the state-modifying operation completed; we found this
straight-forward approach to be sufficient for RUBiS. In
general, more sophisticated techniques [39} 40] should be
applied to extract write sets.

6.2. Performance

We evaluate the throughput performance of the three set-
tings (Crash, AppBFT, and SPARE) during normal-case op-
eration, varying the number of clients from 300 to 900; 900
clients saturate the service on our machines when the large
database is in use. Each client performs a six-minute run-
time session. The results presented in Figuredshow that the
throughput realized for SPARE and AppBFT is within 4 %
of the throughput realized for Crash. Note that this is pos-
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those resource types significantly increases. In contrast, for
memory and power consumption, the amount in use is dom-
inated by a relatively high base level, throughput plays only
a minor role.

Figure [6] shows that a SPARE host obtains more re-
sources than an AppBFT host for all resource types. The
increased resource usage stems from two factors: First,
an AppBFT host is connected to only every third client,
whereas a SPARE host handles half of all client connec-
tions; this factor is mainly responsible for SPARE’s in-
creased usage of CPU, memory, and network transfer vol-
ume in the Dom0. Second, managing and updating a pas-
sive replica requires additional memory and disk space.
With all application-state changes of the active replica being
re-applied through state updates in the passive replica, the
amount of data written to disk greatly increases for SPARE.

For a comparison between SPARE and Crash only the
second factor is relevant, as both settings comprise the
same number of hosts. Therefore, differences in host re-
source footprints underline the resource overhead obtained
for managing a passive service replica. Besides using a
small fraction of CPU and memory, verifying state updates
leads to an increase in network transfer volume, especially
for scenarios with high throughput that include a large num-
ber of state changes.

6.4.2. Passive-Replica Resource Footprint

The resource footprint of a passive replica greatly dif-
fers from the resource footprint of an active replica. Fig-
ure [/| shows the CPU usage of both during a runtime ses-
sion with 900 clients. In contrast to the active replica, the
passive replica does not process any client requests but re-
mains pause most of the time. When the passive replica

10ur prototype uses Xen’s pause/unpause mechanism to deacti-
vate/activate the virtual machine hosting the passive replica; both opera-
tions take about 130 ms. Although a paused virtual machine still consumes
allocated memory, we decided not to use suspend/resume, which
writes the status of a virtual machine to disk and removes it from mem-
ory, as suspending/resuming a virtual machine takes about 15 seconds.
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Figure 8. Resource usage of SPARE in com-
parison to Crash and AppBFT based on the
overall resource footprints (f = g = 1).

is woken up to apply state updates, it temporarily uses a
small fraction of a single CPU. However, with state updates
only being processed by the database layer (and not requir-
ing operations on all layers like a state-modifying service
request), CPU usage during this procedure is modest. In
total, a passive replica uses 97% less CPU than an active
replica; memory usage shows a similar picture (83% less).
In contrast, the amount of data written to disk is nearly the
same for active and passive replicas (only a 14% decrease
for passive replicas), as discussed in Section[6.4.1]

6.4.3. Overall Resource Footprint

Our per-host results have shown that a SPARE host re-
quires more resources than a host in Crash and AppBFT.
To put these values into perspective, we now discuss the
overall resource footprints for the three settings, which con-
sider the overall number of machines n (ncyrqsn = g + 1,
NappBrT = 2f + 1, and ngpare = f + 1); that is, for
each resource type, we multiply the average resource usage
of a single host with n. For reasons of clarity, we do not
report absolute numbers, but present a summarizing com-
parison of the overall resource footprints for configurations
that tolerate a single fault (see Figure [§).

The overall resource footprints indicate that for CPU,
memory, and network transfer volume SPARE requires
only 6-12% of additional resources to provide Byzantine
fault tolerance in the application domain, in comparison to
a crash-tolerant setting (i. e., Crash). Disk writes constitute
an exception, because passive service replicas need to apply
the same application-state changes (which are responsible
for most of the disk writes) as active service replicas. Given
that disk space is inexpensive and abundantly available in
infrastructure clouds, we consider the overall resource over-
head of SPARE acceptable. SPARE and Crash basically
have the same power consumption.

Compared to the fully replicated AppBFT setting, how-
ever, SPARE saves 21-32% of CPU, memory, and power;
again, disk writes remain an exception. Note that network



Architecture | Small Large | Extra Large | Annual Costs
Crash 2 (75%) 7,833%
AppBFT 6 (75%) 11,750%
SPARE 2 (15%) | 4 (75%) 8,393%

Table 1. EC2 price comparison as of March 2010 for Crash, AppBFT, and SPARE for the virtual
machines of a service (Linux operating system, EU region) assuming a one-year contract model.

transfer volume for SPARE and AppBFT is basically the
same, that is, for this resource type, the overhead for manag-
ing state updates is comparable to the communication over-
head for a third host.

6.5. Estimated Resource Savings for Other Services

In addition to measuring the resource savings for RUBIS,
we analyze the potential for other applications and ser-
vices to save resources using SPARE. In this context, the
fraction of read-only requests is of particular interest, as
these requests do not affect the resource usage of pas-
sive replicas. Due to lack of large traces, we investi-
gated the share of read-only requests for the multi-tier
TPC-W [[17] benchmark that is designed to emulate real
internet-commerce workloads. Just like RUBIS (85% read-
only requests), TPC-W assumes high rates of browsing-
related requests (e. g., 80% for the shopping mix) that do not
change the application state. Thus, we expect the resource-
usage characteristics and resource savings for TPC-W to be
similar to our evaluation results for the RUBiS benchmark.

Besides multi-tier applications, we investigated the pos-
sible resource savings of distributed file systems, another
example of a service that is often considered critical. We
estimate the resource savings of passive replication for net-
work file systems based on the results of two recent stud-
ies [116,130]. Ellard et al. [[16] investigated NFS traces in an
university environment. For a central email and service sys-
tem, they concluded that read operations outnumber write
operations by a factor of 3. The same applies to the gen-
erated I/O. Leung et al. [30] conducted a study on a large
enterprise data center. There, read operations outnumber
writes by a factor of at least 2.3, causing at least two thirds
of the total I/O. Based on these results, it is reasonable to
assume that a passive replica saves at least 66% of CPU
usage compared to an active replica and also provides re-
source savings in terms of RAM, network transfer volume,
and power consumption.

6.6. Estimated Cost Savings

While the resource savings of SPARE per se are very
promising, another important question is how they trans-
late to cost reduction and greening the IT infrastructure;
here, the actual energy savings are of key interest. We

assume a self-hosted environment, an electricity price of
20c¢/kWh [24], and the use of standard server hardware
(consuming 100 W per node, see Figure [6€). Then, the re-
duction from three to two machines to provide application-
level BFT in SPARE saves about 175 $ per year. This cal-
culation only considers energy costs, acquisition and main-
tenance costs for the additional machine are not included.

To estimate the cost savings for running SPARE on top of
an infrastructure cloud, we use Amazon’s EC2 Cost Com-
parison Calculator [2]]; Table[T]summarizes the key parame-
ters. Amazon offers virtual compute nodes at various sizes:
small, large, and extra large. For SPARE, we need four large
instances and two small instances. The four large nodes
represent the two active service replicas and their associ-
ated replica managers; the two small instances resemble the
passive service replicas. Furthermore, we assume that the
large instances have an average usage of 75%, whereas the
small passive instances are only utilized 15% on average. In
contrast, an AppBFT setting requires six large nodes, each
having an average usage of 75%. In a Crash setting, group
communication and service replicas are collocated on one
node. Thus, we only need two nodes but, due to the in-
creased resource demand, of size extra large. Note that we
neglect network traffic, as it highly depends on the usage
profile of a service. In total, SPARE causes additional costs
of 560 $ (7%) compared to Crash, but saves 3.357 $ (29%)
compared to AppBFT.

7. Discussion

In this section, we discuss the rational behind SPARE’s
focus on application-level Byzantine fault tolerance and ar-
gue for the use of a trusted subsystem. Furthermore, we
address the need for fault-independent service replicas and
outline two extensions that are required to deploy SPARE
in a wide area environment.

7.1. Using a Trusted Subsystem

SPARE offers a higher degree of fault tolerance (i.e.,
application-level BFT) compared to pure fail-stop repli-
cated applications, while consuming less resources than tra-
ditional “3 f + 1”-BFT replication and “2 f + 1”-approaches
that (similar to SPARE) are based on a trusted subsystem.
Although a trusted subsystem might be too risky for high-



value targets, we consider this separation justified, based on
the resource savings and improved fault tolerance in com-
parison to fail-stop replication. We see our work and related
approaches as a general trend towards partitioned system ar-
chitectures, as practical code-verification approaches make
constant progress, starting at the fundamental system layers,
such as the operating system and the hypervisor.

However, a whole system verification is still out of reach
as such approaches are very time consuming. Further-
more, rapid and constant system evolution, especially at
the middleware and application layer, make the verifica-
tion of whole systems a fast moving target. Accordingly, a
combined architecture, built of trusted long-lasting compo-
nents and more flexible and fast moving but appropriately
replicated parts, can foster cost-efficient and fault-tolerant
systems. Our prototype is only an example of a possible
SPARE implementation; the concept behind SPARE could
also be implemented on top of other hybrid architectures
that place a smaller part of the message-ordering support in
the trusted subsystem [[L1} [13]].

7.2. Fault-independent Service Replicas

SPARE is resilient against faults and intrusions as long as
at most f service replicas are faulty at the same time. As a
direct consequence of this upper-bound assumption, service
replicas must be fault independent; that is, their implemen-
tations must be heterogeneous. If the implementations of
the service replicas were homogeneous, a single malicious
request sent by an attacker could, for example, compromise
all replicas at once, as sharing the same software stack also
means sharing the same vulnerabilities. In SPARE, fault
independence of service replicas can be achieved by intro-
ducing diversity at the operating system, middleware, and
application level.

Virtualization offers an excellent basis for hosting differ-
ent operating systems on the same physical machine [[10].
A study examining diverse database replication has shown
that using off-the-shelf software components can be an ef-
fective means to achieve fault independence [18]]. Lately,
even off-the-shelf operating systems like Linux [46] and
Windows [21] possess features for address-space random-
ization that make stack exploits more difficult, especially in
a replicated setting.

In sum, diverse replication using off-the-shelf compo-
nents, thereby avoiding the overhead of N-version program-
ming, can be very effective and is easily possible; in [15],
for example, we presented a heterogeneous implementation
of the RUBIS benchmark that comprises only off-the-shelf
components. In general, SPARE does not make any as-
sumptions about the degree and level of diversity imple-
mented in the service replicas. This way, replica imple-
mentations can be tailored to the protection demands of the
specific replicated application.

7.3. Extensions for Use in Wide Area Networks

We assume SPARE to be typically used in a closely-
connected environment, where node crashes can be detected
within a finite time interval. In wide area environments
where, for example, the service is composed from distinct
cloud computing providers, this assumption does not hold.
In this case, additional f nodes are required to witness the
occurrence of node crashes [28,[36]]. Note that this require-
ment is not specific to SPARE, but also applies to crash-
tolerant systems. However, the additional nodes are only
needed to participate in case of suspected crashes and can
otherwise be used for other tasks.

Distributing SPARE across different data centers or dif-
ferent organizational domains also creates the need for se-
cure authenticated communication links between replica
managers. In such a case, a secure group communication
like SecureSpread [3] may be used for message ordering in
SPARE. Again, note that this modification would also be
necessary for Crash and AppBFT.

8. Related Work

In the context of database replication there have been
several works using a group communication for efficient re-
covery of failed replicas [23} 25, 31, 137]. Jiménez-Peris et
al. [23] showed that replicas can be recovered in parallel
by receiving state updates from the remaining operational
nodes. Liang and Kemme [31] proposed a slightly more
adaptive approach that enables a recovering replica to ei-
ther receive data items or recent updates. All these works
assume a crash-stop failure model and accordingly utilize
operational replicas to initialize recovering nodes. The lat-
ter is also done in the context of Byzantine fault-tolerant
replication (i.e., BASE [9]]) by taking snapshots and a log
of recent operations. In addition to the fail-stop failure
model, the input for a recovering replica has to be validated
through agreement. In SPARE, state updates can be seen
as an extension to replies of client requests that are pro-
cessed during normal operation; due to the virtualization-
based architecture, this can be done efficiently. Our ap-
proach also aids a fast detection of faults and supports rapid
recovery. Thereby, we avoid the non-trivial task of taking
implementation-neutral snapshots in a non-intrusive way by
implementing an abstract shadow state that has to be main-
tained by every replica, as proposed by BASE.

Over the last few years, there has been a rapid develop-
ment from making Byzantine fault tolerance practical re-
quiring at least 3f + 1 replicas [7]], to hybrid systems that
separate agreement and execution comprising 3 f + 1 agree-
ment nodes and 2 f + 1 execution nodes [49], to systems as-
suming a hybrid fault model [[11} {13} 138]. The latter group
requires that some components (e. g., a counter [[L1], a hy-
pervisor, or a whole operating-system instance [13}38]]) are
trusted and can only fail by crashing. Besides improving



performance, reducing the resource footprint is one of the
key reasons for this evolution. SPARE contributes to this
by proposing a hybrid system that comprises the minimal
set of execution replicas (f + 1) that enables to detect vis-
ible faults, and reactively offers fault tolerance by activat-
ing additional replicas. However, the offered BFT capa-
bility is limited to a replicated service and its associated
execution environment, similar to other hybrid architec-
tures [L10L [13}138]].

Closest to our approach is ZZ, a BFT system that also
builds on the idea of having f + 1 active replicas [48]]. In
ZZ, spare virtual machines can be dynamically dedicated
to a certain application by on-demand fetching and verify-
ing a file-system snapshot. Whereas this offers a resource-
efficient solution, as spare machines might be acquired from
a set of virtual machines that are shared among different ap-
plications, the actual initialization of the replicas requires
additional work and time. SPARE reduces this overhead by
binding passive replicas to applications and by periodically
updating them, thereby also providing the basis for proac-
tive recovery; ZZ does not consider proactive recovery. ZZ
features a separation of agreement and execution that re-
quires 3f + 1 agreement nodes and up to 2f + 1 replicas.
As aresult, ZZ has a larger resource footprint than SPARE.
However, similar to SPARE, it relies on the trustworthiness
of the underlying virtualization infrastructure and its man-
aging operating system if more than one replica is placed
on the same physical machine.

If approaches such as SPARE and ZZ are still too re-
source demanding and the focus is on malicious faults, one
can resort to detecting misbehavior. Examples for this di-
rection of research are PeerReview [19] and Venus [41]].
While PeerReview enables accountability in a large dis-
tributed system, Venus ensures the storage integrity and
consistency of a single server.

9. Conclusion

SPARE is a novel virtual-machine-based approach to
provide Byzantine fault tolerance at the application level,
at minimal resource cost. A SPARE configuration that tol-
erates up to f faults comprises only f + 1 active service
replicas during normal-case operation. In case of faulty or
slow replicas, up to f additional passive replicas are dynam-
ically activated. Our evaluation shows that SPARE requires
21-32% less resources than a fully replicated system.
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