Don’t Forget to Lock the Back Door!
A Characterization of IPv6 Network Security Policy

Jakub Czyz*, Matthew Luckie®, Mark Allman*, and Michael Bailey§
*University of Michigan and QuadMetrics, Inc.; jczyz@umich.edu
TUniversity of Waikato; mjl@wand.net.nz
*International Computer Science Institute; mallman@icir.org
YUniversity of Illinois at Urbana-Champaign; mdbailey @illinois.edu

Abstract—There is growing operational awareness of the
challenges in securely operating IPv6 networks. Through a
measurement study of 520,000 dual-stack servers and 25,000
dual-stack routers, we examine the extent to which security
policy codified in IPv4 has also been deployed in IPv6. We
find several high-value target applications with a comparatively
open security policy in IPv6 including: (/) SSH, Telnet, SNMP,
are more than twice as open on routers in IPv6 as they are
in IPv4; (ii) nearly half of routers with BGP open were only
open in IPv6; and (iii) in the server dataset, SNMP was twice
as open in IPv6 as in IPv4d. We conduct a detailed study
of where port blocking policy is being applied and find that
protocol openness discrepancies are consistent within network
boundaries, suggesting a systemic failure in organizations to
deploy consistent security policy. We successfully communicate
our findings with twelve network operators and all twelve confirm
that the relative openness was unintentional. Ten of the twelve
immediately moved to deploy a congruent IPv6 security policy,
reflecting real operational concern. Finally, we revisit the belief
that the security impact of this comparative openness in IPv6 is
mitigated by the infeasibility of IPv6 network-wide scanning—we
find that, for both of our datasets, host addressing practices make
discovering these high-value hosts feasible by scanning alone.
To help operators accurately measure their own IPv6 security
posture, we make our probing system publicly available.

I. INTRODUCTION

Historically, IPv4 has dominated IPv6 in absolute terms,
and security issues arising in IPv6 have seemed no more than
a small-scale annoyance. However, the character and amount
of IPv6 in recent years is changing [17]. For example, Google
reports 8% of its users accessed their services over IPv6 in
mid 2015—a statistic that has doubled in each of the last five
years [29]. Further, many large networks now report double-
digit IPv6 deployment percentages (e.g., Comcast 39%, ATT
52%, Deutsche Telekom 28%) [6]. Thus, any threat posed by
IPv6 looms large, and, as a community, we should aim to
understand and mitigate such threats as early in the adoption
process at possible.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS 16, 21-24 February 2016, San Diego, CA, USA

Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23047

With IPv6 connectivity come two forms of security issues.
The first type are the set of completely new vulnerabilities that
stem from IPv6 protocol changes and features (e.g., [27], [51]).
Part of the problem for vendors and operators alike is that
there are nontrivial technical hurdles to fully supporting IPv6,
especially in policy devices, such as firewalls and IDSes. For
instance, due to the flexibility of IPv6 header chains and issues
related to fragmentation, simple stateless firewalls, which may
have sufficed for IPv4, are not appropriate in IPv6 [14], [19].
While this issue was addressed in a standards document that
requires the first fragment to contain the transport headers [27],
it will likely take time for compatible hardware and practices to
permeate the network. There are a number of such deficiencies
or ambiguities in the IPv6 specification that may leave dual-
stacked networks vulnerable to emerging attacks via carefully
crafted packets.

In this paper, we tackle the second type of security issue
that results directly from the dual-stack nature of [Pv6 adoption.
Quoting IETF IPv6 operational guidance (emphasis is our own):

From an operational security perspective, [dual-stack]
means that you have twice the exposure. One needs
to think about protecting both protocols now. At a
minimum, the IPv6 portion of a dual stacked network
should maintain parity with IPv4 from a security
policy point of view... given the end-to-end connec-
tivity that IPv6 provides, it is also recommended
that hosts be fortified against threats... There are
many environments which rely too much on the
network infrastructure to disallow malicious traffic to
get access to critical hosts. In new IPv6 deployments it
has been common to see IPv6 traffic enabled but none
of the typical access control mechanisms enabled for
IPv6 device access. With the possibility of network
device configuration mistakes and the growth of IPv6
in the overall Internet, it is important to ensure that
all individual devices are hardened against miscreant
behavior. [15].

Specifically, we seek to study how well-worn operating system,
protocol, and application weaknesses may be exploitable via
the IPv6 network because security policy that has been codified
for IPv4, has been neglected in IPv6.

Given the above sketch and standards recommendation, our
expectation is that operators’ intent is parity across IPv4 and
IPv6 security policy in dual-stack settings. While intent is
impossible to derive in the large and there are no doubt cases

where operators intentionally set different security policies for
the two network layer protocols, we believe these are likely
a small minority of the cases. Our contacts with operators,
described in § VII bear this out. Therefore, we assume intended
parity between IPv4 and IPv6 and we test for lack of parity
for various application ports. In this study, we hypothesize
that there will be discrepancies due to several factors: (i) the
lack of a full suite of ancillary tools and software for IPv6;
(if) less operator experience with IPv6; and (iii) the ability

of IPv6 nodes to auto-configure without end-user intervention.

More specifically, we hypothesize that ports are blocked less
frequently when access comes via IPv6 compared with IPv4. In
our experiments, we find many cases that bear this out. Mindful
that we may mis-read intent, discrepancies at the very least
point to places with additional attack surface.

We examine filtering policy as it applies to dual-stack
hosts identified through DNS—those with both IPv4 and IPv6
records. In total, we test filtering policy for 25K dual-stack
routers (11 ports/applications) and 520K dual-stack servers (19
ports/applications). We find that:

e IPv6 is more open than IPv4. A given IPv6 port is

nearly always more open than the same port is in IPv4.

In particular, routers are twice as reachable over IPv6
for SSH, Telnet, SNMP, and BGP. While openness on
IPv6 is not as severe for servers, we still find thousands
of hosts open that are only open over IPv6.

e When policy variances exist, they tend to exist
network-wide. Our analyses of differences between
IPv4 and IPv6 policy show these policy differences
tend to be consistent within autonomous systems and
routed prefixes (e.g., for 78% of routers in the average
prefix, their IPv4/IPv6 policy differences are consistent
across the entire routed prefix).

e Not only does policy differ, but policy mechanism
as well. We classify the type of connectivity failure
through the addition of traceroute measurements and
show that differences exist not only in how policy for
various services are handled, but in how IP protocol
versions are as well (e.g., 9% more routers respond
actively over IPv6 when ports are closed, indicating
fewer policy devices silently dropping than on IPv4).

e Existing IPv6 open services are easily discovered
through scanning. Our analysis of host addressing
patterns shows that for a given subnet, most routers
and a quarter of servers could be discoverable within
one second using state of the art port scanners.

We attempt to confirm our results by contacting various
network providers and show that the twelve operators we were
able to reach confirmed our results, with ten immediately
making changes to correct the errors. To assist operators in
accurately measuring and assessing their own IPv6 security
posture, we make our scanning tool (sc_filterpolicy) publicly
available [4]. Together, the results point to much work left to
secure IPv6, whose changes and complexity lie far beyond
merely a larger address space.

The remainder of this paper is organized as follows. We
begin with a description of methodology in § II and explore if
our dual-stack identification is effective in § III. In § IV we

determine whether IPv4 and IPv6 policy differences exist, to
what extent they exist, and whether the differences vary by
application. § V explores if these policy differences are applied
consistently within a network and represent a unified policy or
likely represent more trivial or piecemeal configuration errors.
In § VI we then discuss what differences between protocol
versions, if any, exist in where and how policy mechanisms are
applied. Next, in § VII we confirm our results by contacting
various network providers and show that the twelve network
operators that we were able to reach confirmed our results.
Finally, in § VIII we revisit the idea that impact of an increased
attack surface is mitigated by the infeasibility of IPv6 network-
wide scanning, discuss related work in § IX, and conclude
in § X.

II. METHODOLOGY
A. Developing Target Lists

To explore potential policy discrepancies between IPv4
and IPv6 we first must find dual-stack hosts such that we can
measure application reachability (i.e., connection success) to
the same target via the two protocols. As we describe below,
we harvest lists of IP addresses and host names to start the
process. Given a set of hosts, our strategy is to use DNS
names as the basic connective tissue between hostnames, [Pv4
addresses, and IPv6 addresses. One reason for this approach is
that “DNS is one of the main anchors in an enterprise [IPv6]
deployment, since most end hosts decide whether or not to use
IPv6 depending on the presence of IPv6 AAAA records...” [14].
Each host H* in our dataset contains three sets of labels that
represent H*: Hy, is the set of names, Hj is a set of IPv4
addresses and Hg is a set of IPv6 addresses. After obtaining
an initial list of hosts (see below) we then detect common
elements across multiple hosts. We compare hosts pair-wise,
as follows:

s = (Hy N Hy) U (Hy N Hy) U (HE N H) (1)
When s # 0 there is overlap between the two hosts and therefore

we replace H* and H” with a new H* that represents the merger
of the two original hosts, as follows:

Hy = Hy U Hy 2
H; = H; UH, (3)
H; = Hi UH, “4)

Finally, we prune hosts that do not have at least one valid and
routable IPv4 and IPv6 address.

There is a possible concern with using DNS as the
connective tissue. Labels within a group could actually represent
multiple distinct machines, not a single dual-stack machine [12].
As part of our probing we obtain host signatures (e.g., an SSH
host key). In roughly 3% of hosts we detect multiple signatures
across different host labels. We believe this is a strong indication
that our process is predominantly identifying dual-stack hosts,
and we discuss this point further in § III.

There is also a possible issue with using DNS names as
the source of targets for our probes in the first place. Because
we start from hosts that have names in DNS (more precisely,
that have associated sets of A, AAAA, and PTR records), we

will naturally exclude hosts without DNS presence or without
complete record sets. We acknowledge that this may bias
our results. However, we believe this bias would result in
an underestimate of the core policy misalignment finding. First,
without A or AAAA records, server hosts could not be reached
by most clients (except when addresses are directly hard-coded
in applications, which is uncommon). Routers could still be
functional without these records, but ease of management and
configuration dictates that interfaces are often named. Further,
for PTR records, maintaining these is a known best practice [10],
and, in the case of some servers, may be necessary (e.g., for
sending mail [34]). Thus, because maintaining all three record
types is generally a sign of correctly operating an Internet-facing
service interface (i.e., public router or server), we believe results
for these targets will likely produce a lower bound of actual
security policy misalignment in the overall dual-stacked server
and router population, as the larger population will include less
properly-operated hosts.

As we note above, we start the process of identifying dual-
stack hosts using two different lists of hosts, as follows.

Router List: Our first focus is on Internet routers, which form
the core of the network, and, hence, correct application of
security measures is crucial. An attacker that can compromise
a router might be able to redirect traffic for man-in-the-middle
attacks, cause a complete or targeted network outage, or adjust
filtering rules on the router that otherwise serve to protect the
network from other attacks. Our router dataset is derived from
router interface IP addresses found in Internet-wide traceroute
data taken by CAIDA’s Ark measurement platform [13]. Each
system in the Ark platform infers the forward IP path with
traceroute measurements to random IPv4 addresses in every
routed /24 prefix, as well as to the first (::1) and a random
address in every routed IPv6 prefix. We extracted the source IP
addresses of ICMP hop-limit responses (intermediate routers)
archived during December 2014 and performed reverse DNS
lookups to obtain names where available. This forms the initial
list of routers, which we then refine using the procedure above.

Server List: Our second list consists of servers, which make
specific services widely available over the Internet. The security
posture of servers can be of significant importance, as servers
can hold private information, infect many clients, and strengthen
botnets. We initialize our list with the Rapid7 DNS ANY
datasets from the scans.io repository [47]. This dataset
represents DNS ANY queries for a set of hostnames gathered
from (i) more than 200 DNS TLD zone files (including the
popular .com and .net to emerging TLDs such as .farm and
.toys); (if) reverse DNS names of IPs detected in HTTP scans,
SSL certificate scans, and IPv4-wide reverse-DNS lookups;
and (iii) <a> tags in HTTP responses to HTTP scans. We use
the Rapid7 DNS consumer hostname filter [42] in an attempt
to remove all hostnames that appear to be associated with
static or dynamic customer-premises IPs (e.g., ip-192-168-0-
l.example.com), leaving hostnames that do not appear to be
automatically-generated for consumer Internet endpoints. Due
to the filter and the provenance of the names and addresses
in the list, the list could include some dual-stacked clients;
however, we believe that these are in the minority. To validate,
we examine what fraction of the IPv4 addresses associated
with each host is part of known consumer network blocks,
using the SpamHaus Policy Block List (PBL) [50]. We find

that 97% of the hosts are not in PBL ranges, as expected.
The raw DNS dataset represents approximately 1.4B name to
address mappings. After culling the list to just A and AAAA
records, we detect common names and addresses, as sketched
above, to reduce the set to 2.4M addresses associated with
950K dual-stacked hosts.

B. Probing

We perform active probing to assess security posture
differences between IPv4 and IPv6. When probing routers,
we use services that are some combination of (i) likely to be
running on routers (e.g., SSH), (ii) crucial to router operation
(e.g., BGP) and/or (iii) problematic when leveraged by an
attacker (e.g., NTP [18]). Thus, the exposure of all of these
ports generally increases the attack surface of routers. We probe
these services on all routers in our dataset:

ICMP echo, SSH (TCP/22), Telnet (TCP/23), HTTP
(TCP/80), BGP (TCP/179), HTTPS (TCP/443), DNS
(UDP/53), NTP (UDP/123), SNMPv2 (UDP/161)

Similarly, after developing the list of dual-stack servers, we
perform active probing but with a different set of application
types that are more apropos for servers than routers, as follows:

ICMP echo, FTP (TCP/21), SSH (TCP/22), Telnet
(TCP/23), HTTP (TCP/80), HTTPS (TCP/443),
SMB (TCP/445), MySQL (TCP/3306), RDP
(TCP/3389), DNS (UDP/53), NTP (UDP/123),
SNMPv2 (UDP/161)

To select these, we consulted literature on prevalence of
scanning [21], prevalence of port blocking [33], as well as
application DDoS amplification susceptibility [44]. We wanted
to minimize probing ports of lower deployment or interest, as
well as constrain our set to a small number so as to minimize
load on targets. Ultimately, the potential impact of breach was
the most important factor for inclusion'.

We use two probing methods to collect the data we use in the
remainder of the paper. “Basic” probing consists of single probe
packets to each service via both IPv4 and IPv6. For ICMP this
is an echo request, for TCP it is a SYN segment, and for UDP
this is an application-specific request (e.g., DNS A query for
“www.google.com”, NTP version query, or SNMP query for the
sysName.0 MIB using the default public community string). We
probe every two weeks starting in mid-January 2015 and mid-
February 2015 for the routers and servers, respectively, through
July 2015. We found little difference between results over time
and, therefore, focus on the router collection from February 19,
2015, which we denote Kp and the server collection from April
10, 2015, denoted Sp. Our second probing strategy is based on
traceroute style measurements using the same probe types. We
also collected a number of these traceroute datasets. Again,
our analysis shows similar results across time and therefore
we concentrate on the router dataset collected on June 5, 2015,
which we denote K7, and the server dataset collected on July
10, 2015, which we denote S7.

! After initial experiments, several applications were showing minuscule
dual-stack response rates (generally a tenth of a percent or less). To focus on
more prevalent applications, we dropped these from study. They included, for
routers: TFTP, and for servers: IPMI, MS-SQL, NetBIOS, SSDP, and VNC.
We also excluded SNMPv1, as results closely matched SNMPv2.

We used scamper [35], a parallelized bulk probing tool that
supports various types of probes, including ping and traceroute
over ICMP, TCP, and UDP, to conduct our measurements for
both IPv4 and IPv6. Because there was no implementation
of traceroute that considered application-responses (traditional
traceroute deliberately chooses high-numbered, unused ports
to solicit ICMP port unreachable error messages) we extended
scamper’s traceroute implementation to record UDP application-
level responses. We configured scamper to probe the ports listed
above using each IPv4 and IPv6 address of every host. To limit
the burden on our measurement targets we tested one port at a
time and in random order. Our goal in doing so was to remove
the possibility that we would trigger rate limiting by probing
the host too quickly and thus raise the possibility that a host that
was initially responsive would become unresponsive, conflating
a rate-induced outage with a policy to discard specific types
of packets. We configured scamper to probe at 5000 packets
per second; the basic router measurements took approximately
eight hours to measure while the basic server measurements
took approximately 22 hours. We paused for at least 1 second
between measurements to a given host. Therefore, despite a
relatively high probing rate, we spread the load across a set
of targets so that we had negligible impact on individual hosts
measured.

TABLE I: Dataset summary

Probe Date Addresses Hosts
Dataset (2015) Names IPv4 IPv6 Total Suitable
Ry Feb 19th 38K 41K 41K 35K 25K
Rr Jun 5th 38K 41K 41K 35K 25K
SB Apr 10th 83M 1.OM 14M 947K 520K
Sr Jul 10th 85M 1.0M 14M 951K 533K

Table I describes the datasets we use in the remainder of the
paper. The “suitable” column represents the hosts we probe and
is the set that respond to ICMP echo in both IPv4 and IPv6. We
only measure policy congruity on suitable (responsive) hosts to
avoid mistaking a completely unreachable host from one where
application policy controls are enforced. While this test is not
foolproof, we know these hosts are responsive to both IPv4
and IPv6. We could be excluding hosts that apply different
ICMP policies to IPv4 and IPv6, as well as those that filter
all ICMP requests. However, we believe the set of hosts we
leverage is large enough to give us broad insight into the policy
differences between IPv4 and IPv6 across the Internet.

Hosts we measure are spread across the network, and
encompass 58% of dual-stack ASes observed in public BGP
tables (all available Route Views [52] and RIPE RIS [43]) on
midnight February 1, 2015. The Ry target list contains hosts
from over 2K routed prefixes, 1K autonomous systems (ASes)
and 70 countries. The S7 target list, on the other hand, contains
hosts from over 15K routed prefixes, SK ASes and 133 countries.
Unsurprisingly, while we leverage a breadth of targets, the set is
also skewed. In the K7 list we find that 19 ASes that belong to
the ten most-represented network operators in our list account
for half the hosts. Similarly, we find that ten ASes belonging
to large hosting/content providers make up half the servers.

C. Ethical Considerations of Probing

Research involving active measurement of networks po-
tentially creates ethical issues as both the conduct of such
research and the disclosure of results thereof may result in
harm to a variety of stakeholders, including, but not limited to:
research institutions, service providers, network operators, and
end users. We take note that, while the security community
has not reached consensus on standards for such research,
existing published work in the field [22], as well as broad
ethical guidelines [9] provide a roadmap for how one may
minimize the potential for such harms. For example, in the
conduct of this research we: (i) signaled the benign intent of
work through WHOIS, DNS, and by providing research details
on a website on every probe IP address; (ii) significantly rate
limited the probes to minimize impact; (iii) limited ourselves
to regular TCP/UDP connection attempts followed by RFC-
compliant protocol handshakes with responsive hosts that never
attempt to exploit vulnerabilities, guess passwords, or change
configurations; (iv) we respect opt out requests and seed our opt
out list with previous requests provided to other researchers [22].
In mitigating disclosure harms, we carefully avoid providing
target lists in the published result and notify, by email to abuse
contacts, the most egregious networks prior to publication, so
that they may correct vulnerable configurations.

D. Result Interpretation

One final methodological task involves interpreting the
results of the probes. First, we must decide if a probe succeeds
or fails. We define success as reception of (i) an ICMP echo
reply message in response to an ICMP echo request, (ii) a TCP
SYN+ACK in response to a TCP SYN and (iii) a UDP response
to a UDP request. We consider anything else—including no
response—as connection failure (e.g., ICMP unreachables, a
non-SYN+ACK TCP packet). Once we have a decision for
probes within some H;, we make a final IPv4 determination
based on majority vote across all IPv4 addresses when there
are multiple. Likewise for the IPv6 addresses Hg.

Lastly, a minor note on terminology: the versions of IP
we study (at OSI layer 3) as well as the applications we
probe (at layers 5-7) can all be called protocols. To avoid
confusion, however, we reserve that term for the IP version
under study and instead use the term application to denote the
protocol/application at the higher layers (e.g., SSH, NTP, etc.)
for which we are measuring connectivity.

III. CALIBRATION

A core assumption we make is that all the labels we find
for some host H* point to the same host. This is not of only
theoretic concern, as previous work shows DNS names mapping
to IPv4 and IPv6 addresses do not always point at a dual-
stack host but instead to multiple hosts [12]. Since our goal
is understanding security posture of dual-stack hosts, we first
calibrate our method for aggregating labels into hosts. To test
our assumption we seek to collect application-level information
for each H* in Rz and Sg via both IPv4 and IPv6, as follows.

HTTP: We send each host that responds to TCP/80 a HEAD
request and extract the server version string (including OS)
from responses (e.g., “Apache/2.2.22 (Debian)”). While we do
not exclude any, the three most frequently returned strings are

TABLE II: Alias validation via application signatures. A
majority (96% of Rp with data and 97% of Sg) of hosts
with signature data matched fingerprints among all host
address members.

Rp List Sp List
Application Hosts Same Sig Hosts Same Sig
http 269 (1.1%) 97.0% 235,575 (46.2%) 99.2%
https 183 (0.8%) 96.7% 96,468 (18.9%) 94.2%
snmp2c 12 (0.1%) 100% 41 (0.0%) 95.1%
ntp 843 (3.6%) 97.0% 3,462 (0.7%) 99.1%
ssh 603 (2.6%) 96.7% 218,100 (42.8%) 98.9%
mysql - - 1,055 (0.2%) 99.5%
Overall 1576 (6.7%) 96.4% 303,111 (59.4%) 97.1%

indistinct as version and OS are not provided (e.g., “Apache”
(39%), “nginx” (23%), and “cloudflare-nginx” (6%)). The
next 20 most-frequently returned strings are more specific
and provide a stronger fingerprint for matching.

HTTPS: We are able to collect an extensive set of information
about each host responding on TCP/443 probes, using both
the openssl client and NMAP with the ssl-enum-ciphers.nse
script [3], including: () the supported cipher suites (for all
except SSLv2-only hosts); (if) the supported SSL/TLS protocol
subset of {SSLv2, SSLv3, TLSv1, TLSvl.1, and TLSv1.2};
(iii) the actually negotiated protocol between client and server;
and (iv) the server’s certificate fingerprint.

SNMP: For SNMP, we retrieve two MIBs—sysDescr.0 and
sysName.0—via SNMP version 2c get requests to the public
community. Responses include the OS (including version) and
an administrator-set system name. We require responses to both
gets to complete an identifying fingerprint.

NTP: For each host responding to UDP/123 queries we issue
the version command using the ntpq tool. This provides a
semi-structured string containing: version, processor, system,
stratum, precision, refid, reftime, frequency, status, and associd
among other fields that we do not further utilize as they are less
common or vary across queries—not useful for fingerprinting.

SSH: We use the ssh-keyscan utility (part of the OpenSSH-
clients tools) to obtain the SSH server version, the key length
of the server’s encryption key, and the fingerprint of the key.

MySQL: For hosts with open TCP/3306 we send two newline
characters causing servers to print an identifying banner, which
we harvest (stripping unprintable characters). As noted above,
we do not probe MySQL on routers, and, therefore, this
fingerprint is only available for the server host list.

For each host x on our host lists we collect the above
information via probing to every IP address in H; and Hg. We
then check for consistent behavior across all applications that
respond on all addresses. When we find consistency across all
IP addresses for H* we conclude that the host is highly likely
to be a single dual-stack host. Even if this conclusion is wrong,
we believe the identical configuration indicates the operator’s
intention is to provide the same service across IPv4 and IPv6
and therefore policy differences are important to illuminate.

As a bound on our ability to match fingerprints, we first
assess the general openness of our targets to analyzing the
information we used for consistency checking. If we collapse

our basic probe results for each host across applications tested
and both IPv4 and IPv6 (i.e., a very coarse-grained analysis of
the results we discuss in sections to come), we find that we can
access at least one of these signature-providing applications via
at least one of a given host’s IP addresses for 44% and 76%
of the hosts in Kp and Sp, respectively. In other words, our
technique will have no data at all to fingerprint a host for over
half the routers and nearly a quarter of servers. In fact, since
we need at least one IPv4 and one IPv6 fingerprint for the
same port to do matching, the number of hosts we can actually
match signatures for across IP versions is even lower (7% and
59%, respectively, as discussed below). However, we stress that
we are calibrating our technique of aggregating sets of labels
(i.e., results for IPs grouped via their associated A, AAAA, and
PTR records) into hosts and not each individual assessment. As
such, the sample, though biased toward more open hosts, seems
sufficiently large to represent such name-based aggregation.

Table II shows the results of our consistency probing. For
each host with signature data from at least one signature-
providing application open on all associated addresses, we
find a high level of consistency—96% for routers and 97% for
servers. This roughly agrees with previous work showing that,
while it is not exceedingly rare for hostnames with both IPv4
and IPv6 addresses to represent different machines, 93% of the
time they in fact do represent the same system [12]. For servers,
our results cover nearly 60% of the hosts in the Sg host list.
On the other hand, we can make a signature-based comparison
for only roughly 7% of the routers in the Rp list. While the
coverage in Kp is low, we note that, since routers have less
general openness than servers, we expect our consistency check
for routers to be useful in fewer cases. Even with the low
coverage we believe the high consistency rate validates our
methodology for aggregating labels into hosts.

The small fraction of hosts for which a signature match
between the IPv6 and IPv4 addresses fails suggests operators
using a separate server for IPv6 than for IPv4 behind the
hostname. We can speculate as to various explanations for such
a configuration, including matching resources to load, where
the IPv4 address points to a load balancer, as most traffic is
via IPv4, while the IPv6 points to a single specific server that
supports IPv6. We do not exclude the hosts without matching
signatures nor those failing matches, mainly for the reason
that we contend that the semantics of a single hostname are a
single service. As such, whether it is deployed on one physical
machine, configured identically, or neither, Internet users and
application routers do not expect that the services available via
a hostname differ based on the network protocol used to reach
them, just as they do not expect DNS-based load balancing
with multiple A records for a name to provide different service
depending on the address their host happens to select from the
several available. In other words, while the calibration in this
section is useful for understanding the underlying population
of machines that our hosts represent, the policy misalignment
we find is orthogonal to and no less troubling whatever these
signature matching results for any name show.

IV. BASELINE PoOLICY DISCREPANCY

Overall, 26% of routers and 26% of servers were reachable
in IPv6 for at least one application not reachable in IPv4;
five of eight tested applications are more open over IPv6 for

Percent of Population Open

0 5 10 15 20 25
T
15.3%
NTP soq |1+1a%
SSH 1+166%
BGP 1+73%
Telnet 1+156%
SNMP Both memmm | }4285%
IPv4 ==
HTTP IPv6 |1-3%
HTTPS }=12%
DNS 1-6%
| | | |

Fig. 1: Percentage of 25K dual-stack routers (%Xz) respon-
sive to ping that were open via IPv4 and/or IPv6 for each
application tested. For each application, the green bar
corresponds to reachability (connection success) over only
IPv4, the red bar only IPv6, and the blue bar reachability
over both. Beside each bar we report the percentage of
hosts tested that were only reachable by IPv4 or IPv6,
and beside each application is the percentage difference in
reachability over IPv6 compared to IPv4.

the routers, and six of eleven tested applications are more
open over IPv6 for servers. While 18% of routers and 17%
of servers we tested were reachable in IPv4 for at least one
application not reachable in IPv6, some applications can have
default configurations that do not listen in IPv6. The policy
discrepancy landscape overall is profoundly varied; a staggering
44% of routers and 43% of servers had different application
reachability (i.e., connection success) depending on version
of IP used. At a high level, this suggests a large difference
in services that dual-stacked hosts effectively make available
(intentionally or not) over one version of IP versus the other.

A. Router Application Openness Results

Figure 1 shows the protocol discrepancy observed between
IPv4 and IPv6 for routers. For each application, we show the
percentage open over IPv4 and/or IPv6, the percentage open
over only IPv4 or IPv6, and the difference in openness of
IPv6 over IPv4. Particularly troubling is an observation that
the three most open protocols in IPv6 are high-value: SSH,
BGP, and Telnet; these protocols were 166%, 73%, and 156%
more open in IPv6 than IPv4, respectively. We next discuss
each application result and comment on its possible impact.

NTP: Among tested applications, NTP is most open overall, but
discrepancy between the two protocols is relatively moderate
at 14% more openness for IPv6. The fact that NTP is the most
reachable application in this dataset is not totally unexpected,
given that this application is commonly enabled by default
on network devices (e.g., [1]). A surprising finding is that
a relatively large percentage of the routers only respond via
one protocol or the other relative to those that respond on
both. This suggests some peculiarity in default router NTP
configurations. While access to NTP is not a critical risk, it
has been leveraged for large-scale distributed denial-of-service
(DDoS) attacks in the past, and lagging IPv6 protection may

signal less attention paid to blocking its traffic over IPv6 than
has been deployed for IPv4 [18]. Further, we found that the
NTP version command we used can leak the device vendor
and version in many cases, which may be helpful to attackers
targeting specific vulnerabilities.

SSH: The second most open application we see is SSH.
SSH also has the second largest discrepancy between the two
protocols, with IPv6 being more than twice as open; 166%
more routers allow connecting over IPv6 than IPv4. As SSH
is a management application allowing control over the device,
this is a troubling finding. If exploited via brute-force password
attempts, harvested passwords used by administrators on other
compromised sites or hosts, or via software vulnerabilities, SSH
access could lead to stealthy and large-scale attacks. As with
most router vulnerabilities, these might include, for example,
redirecting traffic for specific websites, email, or DNS queries
to attackers, and facilitating other various forms of man-in-the-
middle attacks. Further, since routers are specialized systems
with typically proprietary operating systems and less general-
purpose computing power, they may be less likely than servers
to be bolstered with protections against a range of SSH-based
attacks—e.g., password attempt limits, SSH key-only logins,
and logging failed attempts.

BGP: The third most open application is BGP, which we would
expect to be running on routers, but not to necessarily be open
for anyone to connect. An open BGP port on routers leaves
them potentially more susceptible to various TCP-based attacks,
such as SYN floods, and blind in-window attacks [36]. The
fact that 73% more hosts completed the TCP handshake over
IPv6 than IPv4, suggests, at the very least, that some additional
protection, likely via an access control list, has been set up on
these devices for IPv4 but not for IPv6. Hence, the deployed
security policy on these routers for IPv6 contradicts their IPv4
policy. As routers constitute the backbone of the Internet, and
BGP is the protocol by which Internet routers communicate
where to send traffic, vulnerabilities in BGP pose a serious
threat.

Telnet: The fourth most open application is Telnet. We were
surprised to discover so many routers accept global TCP
connections to Telnet at all (9% of the dataset over any IP
version), given the fact that this application has been replaced
by SSH as a primary management interface for routers, in large
part due to its inherent insecurity. This insecurity stems mostly
from the fact that Telnet sends traffic unencrypted and that,
unlike SSH, it also has no means of validating the identity of
the server that a client connects to (which an SSH client can do
by checking the fingerprint of the key that the server provides
during connection). Moreover, beyond server authentication,
there is no key-based authentication for clients in Telnet either;
so, all connections involve sending a user name and password in
clear text to a server whose identity can not be verified. Router
Telnet sessions have even been targeted by nation states to
capture the configuration of routers, leading to deeper network
breach [24]. As with SSH, the danger of weak passwords that
can be brute-forced and the possibility of shared passwords
across sites allowing compromised credentials to be used to
gain broader access, mean that the security posture of these
devices is degraded simply by having Telnet exposed. As there
are again more than double—156% more—IPv6-open routers

Percent of Population Open
0 10 20 30 40 50 60 70

}=7%
}+40%

}+5%
}=7%

}-35%
}1+52%

}-8%
}1425%

}+46%

6.7%
MySQL
¥8Q 0.1%

0.1%
0.3‘%;

}-92%

SNMP }+109%

(a) Servers (Sg)

Percent of Population Open

0 5 10 15 20
T T T
0.8%

SSH 36% | }1+19%
HTTPS }+15%
DNS }=7%
NTP }+49%

0.6% Thaso
FTP 0% 5%
0.4% N
Telnet 1.2% | 1H+112%
0.2%
RDP 0.1‘75 Both m— B }=4%
0.0% IPv4 m===m }4+49%
SMEgm .49 I ——
0.1%
+345%
SNMP|g 3% i }+345%
0.6%
MySQL 0.0% | | | | }=76%

(b) Servers (Sp) unresponsive over port 80

Fig. 2: Percentage of 520K dual-stack servers responsive to ping that were open via IPv4 and/or IPv6 for each application
tested (figure 2a) and that of 137K (37% of all) servers that were not responsive to HTTP (figure 2b). Seven of the
eleven applications tested are more open in IPv6, including the security-critical SSH, SNMP, SMB, and Telnet services.
The subset of servers that are not HTTP servers are more open than the general server population.

with Telnet exposed, the deployment of IPv6 here has markedly
reduced security in this sample of routers.

SNMP: We attempted SNMPv2c requests over UDP/161 for the
sysName.0 MIB using the common default public community
string. Three percent of routers responded with data. We did
not attempt to use the common private community to alter
configuration on systems, nor did we collect any data from
the device. However, when we did our follow-on probes for
signature matching described in § III, we additionally performed
SNMP gets for the sysDescr.0 MIB, which allowed us to
aggregate operating system versions, the large majority of which
reported being Cisco. While the read-only public community
may itself not necessarily pose a catastrophic risk to the device,
it may be used to leak version information, find weaknesses in
configuration, or gather information about connected devices.
All of this can be useful reconnaissance for attackers, especially
when paired with published vulnerabilities. Furthermore, the
fact that these devices expose SNMP for nearly four times
(285%) more hosts over IPv6 than IPv4 suggests that many
operators took steps to block this management application over
IPv4. If these operators are relying on access-lists, firewalls,
or other port filtering for protection of SNMP but keeping
the default community strings in place, it is likely that this
population of routers could be reconfigured using the private
community over IPv6, a much more direct and immediate threat
than that posed by the read-only probe we attempted. As such,
we consider this a serious vulnerability.

HTTP and HTTPS: The web protocols were not very common
on routers, and are the first to break the pattern of greater
IPv6 openness, with each slightly more closed for IPv6 than
IPv4 (-3% and -12%, respectively). For routers with web
management enabled, this means security is probably no worse

under IPv6 than IPv4. There were a small handful of hosts
where access was only allowed over IPv6 (78 routers for HTTP
and 51 HTTPS), suggesting, perhaps, at least some cases where
IPv4 access was blocked but similar blocks were not in place
for IPv6. Embedded web-based management applications are
notorious for vulnerabilities, and this capability is rarely used by
professional router operators. Having an unknown web-based
attack vector over IPv6 enabled, even for this small number of
hosts is problematic. Fortunately, the scale here is small.

DNS: Like HTTP and HTTPS, DNS was less open for IPv6,
though, again, a small handful of routers (35) only responded to
DNS over IPv6 and not IPv4. Aside from application-specific
vulnerabilities (e.g., BIND CVEs) that might impact the device
if DNS is exposed, other notable security implications of having
DNS open to the public when policy would dictate otherwise
have to do with (i) leaking internal-only DNS records and
(i0) facilitating DDoS attacks using DNS. After HTTP, router
openness for the two IP versions was most similar for DNS.

Overall, the baseline protocol differences we found in this
population are troubling. The fact that more than a quarter of
routers had at least one application accessible over IPv6 that
was closed over IPv4, including some high-value application
ports for attackers, means that the routers in our sample are
generally more vulnerable under IPv6 than IPv4 (at least on
the tested common applications). Since network operators are
at the forefront of understanding and deploying IPv6, this is
somewhat surprising. We conjecture that network hardware
may be subject to less security audits and scrutiny than servers
are, although it is also possible that, as router operators usually
deploy IPv6 (naturally) before the server operators that rely on
it do, they may be doing so under either greater time pressure

or with fewer existing institutional tools and processes for
assuring consistent security policy on routers.

B. Server Application Openness Results

Figure 2 shows the protocol discrepancy we observed
between IPv4 and IPv6 for the servers we probed (dataset
Sp). As with the router set, the general pattern is for a more
open security policy in IPv6, with HTTPS, SSH, NTP, Telnet,
SMB, and SNMP more open. The overall discrepancy we find
in the server list between IPv4 and IPv6 is smaller than in the
router data, relatively speaking. However, the sample size is
twenty times larger. Thus, in absolute terms, even the smaller
differences between IP version found in this dataset translate
to thousands of potentially inadvertently exposed systems.

Because characteristics of the server dataset are heavily
influenced by the overwhelming presence of HTTP servers, we
examine the server dataset in two dimensions: all responsive
servers (figure 2a) and the 191K (37%) server hosts that respond
on port 80 on neither IPv4 nor IPv6 (figure 2b). Other than for
NTP—which is nearly flat, going from 52% to 49% more open
in IPv6, and HTTPS—which drops from 40% to 15% more open
in IPv6, mostly due to the elimination of a single large hosting
provider’s servers—the fraction of hosts for which IPv6 is more
open than IPv4 increases for every tested application in this non-
HTTP subset. For instance, SSH’s openness in IPv6 relative to
IPv4 increases from 5% to 19% (~4x), Telnet jumps from 46%
to 112% (~2.5x), SMB from 25% to 49% (~2x), and SNMP
from 109% to 345% (~3x). These results suggest that dual-
stacked non-web servers generally have more policy discrepancy
and, thus, apparently more IPv6 vulnerability than the overall
dual-stacked server population suggests. Our intuition behind
examining non-HTTP-responsive servers separately stems from
the fact that we believe these servers are less likely to be
behind load balancers or IPv6 gateways (e.g., as offered by
CloudFlare [2]). Since these load balancers and gateways
generally do not forward non-web traffic to the actual server
behind them and since they may terminate the IPv6 connection
(in the case of gateways, that is, in fact, their function), they
are much less likely to show IPv6 capability on non-web ports.
Thus, looking at the non-web subset of servers may be more
indicative of the typical configuration of the servers actually
providing the content or service. As with the router list, we
next discuss each application result for servers and comment
on its possible impact.

HTTP and HTTPS: HTTP was less open on IPv6 than IPv4
by 7%, but there were 3.5K servers not reachable over IPv4 that
were reachable on IPv6. Since it is unlikely that dual-stacked
public websites would purposefully allow only access via IPv6,
it is possible some of these servers are hosting non-public
content. With respect to HTTPS, we did find a large percentage
of servers (19%) only reachable over IPv6. Digging deeper
into this peculiar group, we found that 94% of these IPv6-only
HTTPS servers (92K hosts) belong to a single large European
hosting provider. Of the hosts operated by this provider, 99%
have HTTP open on both IPv4 and IPv6, while HTTPS is only
served for IPv6. We contacted this provider but did not receive
a response and, thus, have no explanation as to the intention
behind this configuration.

SSH and Telnet: Both remote terminal applications were more
open for IPv6, at 5% and 46% (respectively) in the overall

server set, and 19% and 112% more open for IPv6 in the non-
webserver set. Although the policy mismatch percentages are
more modest than for routers, in absolute terms 20K servers
were only reachable on SSH via IPv6 (versus only 6.5K that
were reachable by IPv4). In addition, the non-webserver set
shows a more worrying openness pattern, perhaps as a result
of these systems having a more varied role, or our probes
not being dropped by intermediate gateways. For Telnet, 2.5K
were only reachable over IPv6 and 1.4K only over IPv4. This
means that 23K servers could be vulnerable to brute-force
password or server vulnerability exploits that were protected
via IPv4. Digging a bit deeper at cross-application groups, we
were curious if the IPv6-open SSH servers were more likely to
also be open on Telnet, as it is used similarly to SSH and may
also be neglected to be blocked by the same operators. Indeed,
a disproportionate 7.3% of these SSH servers were also open
to responding over IPv6 on Telnet (versus 0.5% in the overall
sample that had Telnet open for only IPv6, regardless of SSH
status). As SSH brute-force scanning is highly prevalent in
IPv4 [30], it is reasonable to assume that such attacks over
IPv6 are on the horizon. While random address scanning may
not be common in IPv6 (though, see § VIII), once a hostname
for a dual-stacked server is discovered, brute-force password
guessing against that server over IPv6 is feasible. Since 20K
servers are running SSH but have blocked it on IPv4, they may
be less likely to utilize other SSH security measures.

SMB and RDP: The Server Message Block (SMB) application
layer protocol is generally used by Microsoft Windows systems
for file and printer sharing, as well as an inter-process
communication layer. Over the years, it has been an attack
vector due to numerous vulnerabilities, and has been exploited
by worms, including Sasser and Conficker [40]. It is often on the
Internet Storm Center’s list of top-10 most scanned ports [45].
As such, this port is often treated as internal-only by operators
and is commonly the subject of filtering policy [46]. The remote
desktop protocol (RDP) is also built into Windows servers and
clients and allows remote console access to the systems. While
this application does not have as deep a history of exploits as
SMB, it does provide management access to Windows systems;
thus, as with SSH and Telnet, if it is exposed to connections
from the public network, the potential exists for brute-force
or other exploits that can lead to system compromise. In our
analysis, SMB was found to be open on 25% more hosts via
IPv6, exposing a total of 2.4K hosts that have it blocked on
IPv4 in the overall server population. In the non-webserver
population, 49% more hosts were reachable only via [Pv6. RDP
is less open on IPv6, but we did see nearly 700 servers with
this port open for IPv6 where it was closed on IPv4.

DNS and NTP: Open DNS resolvers are problematic for
two reasons. First, open resolvers can be susceptible to cache
poisoning attacks [31], [48]. These, in turn, leave the users
of subverted resolvers vulnerable to being re-directed to
malicious services. Second, open resolvers are susceptible to
being leveraged in reflection and amplification DDoS attacks
(e.g., [37]). The DNS port on servers is less open via IPv6
than IPv4. A small fraction of servers, numbering 2.3K, were
found reachable via only IPv6. We also found 52% more
servers allowing NTP queries via IPv6 compared to IPv4. This
means roughly 10K additional servers—that return system and
version information—can be used as DDoS amplifiers [18] or
for reconnaissance to gather version and system information

about the servers. While weaker threats, both DNS and NTP
have had vulnerabilities reported as well as been used to attack
others in DDoS campaigns.

FTP: We found FTP to be slightly less open (7%) in IPv6 than
IPv4 in the overall server population tested, though more open
(5%) in the non-webserver population. For IPv6, there were a
small number (3K hosts, 0.8%) only allowing FTP connections
over IPv6 (versus 3.1% only on IPv4). Interestingly, FTP’s
prevalence in the webserver set is more closely correlated with
being on an HTTP server. For the fraction that were open in
IPv6 where IPv4 was blocked, these could represent a back
door to content, including source code to websites.

SNMP: Although the absolute numbers were low for SNMP
among servers, we found 109% more of them (1.6K) to
respond over IPv6 than IPv4; in the non-webserver population,
a staggering 345% more systems were open over [Pv6 where
the IPv4 application was blocked. This may be a source of
reconnaissance for attackers or may indicate that the default
read/write private community is also open on these servers
(which, for ethical reasons, we did not test). As such, it is
concerning that an additional almost two thousand servers may
be probed (and possibly manipulated) over IPv6 via SNMP.

MySQL: Finally, we probed servers for the MySQL server
port, and found that only 0.5% supported IPv6 at all. MySQL
prior to version 5.5.3, released in mid-2010, did not support
IPv6. Current versions of the database support IPv6, but IPv6
was not enabled by default, even on dual-stacked hosts, until
version 5.6.6—first released in mid-2012 [39]. In fact, when
we analyzed the MySQL minor version strings returned by 32K
servers that responded to our banner grab, as described in § III,
26% were running versions that did not even support IPv6,
66% were running versions with IPv6 disabled by default, and
just 8% were running versions where IPv6 was supported
and enabled by default. In absolute numbers, nearly 600
servers responded on IPv6 only, while 2.2K responded on
both protocols and 35K responded on IPv4 only. Similar to
FTP access, MySQL access is correlated with presence on a
webserver, suggesting a reliance on a database system that is
needlessly exposed to the Internet. In fact, since databases are
typically run as back-end services to web sites or internally
in organizations, the fairly high number of globally reachable
servers was surprising, and the several hundred apparently
reachable by IPv6 only, though relatively few, is concerning.

Overall, the server dataset showed smaller discrepancy
between IPv4 and IPv6 port filtering policy for the applications
we tested than we found in the router probes. However, as we
noted, there were some high-value applications that were more
open, and, due to the substantially larger population, the raw
numbers of servers open on IPv6 only for many applications is
of concern. In many cases, brute-force attacks are enabled by
this discrepancy, and in other cases, known vulnerabilities in
software may be exposed on thousands of dual-stack servers
whose operators may believe that they have no exposure to
these threats due to their IPv4 filtering.

V. PoLIcYy UNIFORMITY

A. Network Response Uniformity

Section IV shows a difference between IPv6 policy and
the intended policy, as indicated by the IPv4 policy. We seek

to understand whether this discrepancy is a symptom of an
organization’s overall security posture or due to small scale
misconfiguration that deviates from the organization’s intended
policy. Therefore, in this section we aggregate results for each
organization—at both routed prefix and autonomous system
granularities—and assess policy uniformity.

We aggregate hosts in our K7 and Sy datasets by routed
prefix and origin AS based on BGP table data collected by
RouteViews and the RIPE RIS BGP collector on February 1,
2015. We find that the IPv4 and IPv6 addresses for a host are
mapped to the same AS in 94% (Rr) and 95% (Sr) of the cases.
Therefore, for simplicity we label the hosts with their IPv4
routed prefix and AS number. Table III shows the mean and
median number of devices we detect in each organization for
our datasets. Further, we label each host and service with the
protocol(s) that allow connection. Hosts with multiple IPs are
labeled by majority. When a given service is unreachable via
both versions of IP we exclude it from further analysis because
we cannot determine whether the service is not reachable due
to policy or simply not running, and, therefore, these cases
provide no policy insight. For each service on each host we
are left with one of three labels: “4” for services that are only
reachable via IPv4, “6” for services that are only reachable via
IPv6 and “B” for services that are reachable via both [Pv4 and
IPv6. Given these labels, we define the uniformity for each
service within the organization—delimited by routed prefix or
AS—as the fraction of hosts with the most common label for
that service. For example, consider an organization with five
devices running DNS, three of which are labeled “B”, one
labeled “4” and one labeled “6”. The uniformity is therefore
60%.

TABLE III: Number of devices within an organization.

Dataset Aggregation Mean Median
Router Routed Prefixes 20 5
Autonomous Systems 40 5
Server Routed Prefixes 52 6
Autonomous Systems 133 8

To put our uniformity results in perspective, we compare
with a “pseudo network” which is made up of a random
selection of hosts—regardless of network boundary—of the
same size as the median organization size given in table III.
We compute uniformity across the randomly chosen pseudo
network just as we describe above. For each application,
we calculate the mean uniformity across 1,000 such random
pseudo networks. Figure 3 shows the mean uniformity results
for both routed prefixes and random pseudo networks for
both datasets. First, we find at least 90% mean consistency
within organizations across applications. This indicates that
the disparity we detect between IPv4 and IPv6 policy is not
driven by one-off misconfigurations, but is in fact a systematic
difference in policy deployment.

Additionally, the figure shows—across datasets and
applications— higher uniformity within actual organizations
than within randomly selected pseudo networks. This strength-
ens our conclusion that we are detecting in-situ policy dif-
ferences and are not being lead astray by small, but broad
misconfigurations. Also, we elide the results for organizations

Average Network Uniformity

0 02 04 06 038

1

SSH SSH
Telnet Telnet
NTP NTP
SNMP SNMP
HTTP HTTP
HTTPS HTTPS
DNS DNS
BGP FTP
SMB

Prefixes mm—— MySQL

Random s RDP

0 02 04 06 08 1

(b) Servers

(a) Routers

Fig. 3: Average organization uniformity for router (Rr)
and server (S7) dataset compared to the average pseudo-
network of same median host count (each randomly se-
lected from population of host results). Uniformity is more
consistent within network boundaries than within random
groupings.

defined by AS for clarity, however note: (i) the uniformity is
generally lower for AS-based organizations than routed prefixes
due to the increased aggregation across different administrative
domains, and (ii) just as with routed prefixes the uniformity is
greater for actual organizations than for pseudo networks.

B. Intra-protocol uniformity

We next tackle an issue related to organization-level
uniformity: host-level uniformity. That is, how uniform are
individual hosts for the same version of IP across addresses?
This question is important for two reasons. First, if policy
differs for hosts across different addresses via the same protocol,
it may not be surprising that there are differences between
IPv4 and IPv6. Further, non-uniformity at the address level
could indicate ad-hoc policy applied at individual machines
as opposed to systematic policy at the organizational border.
Second, intra-protocol uniformity speaks to the maturity of
security controls and, on average, is useful in comparing the
difference in maturity between protocols. For example, if we
find IPv4 to be more consistent than IPv6, this may be an
indication that security controls for IPv4 are more mature,
tested, and robust than for IPv6.

We calculate the uniformity across each host and IP version
and present the mean uniformity across hosts in Figure 4. In
addition to per-application results, we also show two additional
sets of bars: (i) the overall mean across all applications and (ii)
the mean uniformity for ICMP ping. The plots first show that
the host-level uniformity is higher for servers (90-95%) than
for routers (70-90%). One possible reason for this difference is

10

Average Protocol Uniformity

0 02040608 1

0 02040608 1

Pingable Pingable
SSH SSH
Telnet Telnet
NTP NTP
SNMP SNMP
HTTP HTTP
HTTPS HTTPS
DNS DNS
BGP FTP
Mean SMB
MySQL
IPv4 == RDP
[Pv6 Mean

[N B

(a) Routers (b) Servers

Fig. 4: Average intra-IP version uniformity within hosts
having more than one IP of the given version. We see that
results are more consistent for IPv4 than IPv6, and more in
the server (S57) dataset than the router (®y) dataset. Also,
we show that the fraction of addresses that are ICMP-
pingable when multiple addresses are associated with the
same host is higher for IPv6 than IPv4.

router IP addresses identify individual interfaces, which have
different tasks (i.e., peering with different networks). Therefore,
it may be natural to find different policy applied to different
interfaces. On the other hand, servers do not have the same sort
of natural per-IP division of labor and therefore show higher
uniformity across addresses.

In the Sr dataset we find approximate parity between [Pv4
and IPv6 in terms of uniformity across applications. This is
in contrast to the Ky dataset where we generally find higher
uniformity in IPv4 compared to IPv6. There are two exceptions
where IPv6 is more uniform than IPv4: BGP and ICMP. While
we cannot readily explain BGP’s disparity, the ICMP difference
may stem from ICMP being less strictly filtered in IPv6 due
to a deployment requirement for IPv6 (e.g., [23]).

VI. BLOCKING ENFORCEMENT

Having established that myriad filtering occurs, we next
turn our attention to the mechanisms employed to block traffic
and where those mechanisms are implemented. To study this,
we use traceroute probes, as described in § II-B, for both
routers (Rr) and servers (Sr). For each application, and each
address associated with each host, we first determine whether
the application is open or closed. For each closed application
we determine the enforcement mechanism. As we note in the
last section, we do find cases where policy differs within the
same IP protocol. In these cases, we label the host based on

the majority enforcement mechanism. We classify each attempt,
as follows.

e Open: In this case, the target host responds favorably
(i.e., with a TCP SYN+ACK or a UDP response).

e Passive:Target: In this case, the target host silently
drops the SYN or UDP request. We detect this by
observing that the last responding host within the
traceroute is the hop immediately prior to the target
host (as established by ICMP-based traceroutes and/or
traceroutes involving other applications).

e Passive:Other: In this case, we find that a hop in the
path prior to the hop before the target host is the
last hop to respond to the traceroute. Therefore, we
conclude that a firewall is silently dropping the traffic
before arriving at the target host.

e Active:Target: In this case, the target host actively
responds to our SYN or UDP request with an error
indicating the service is not available (e.g., TCP reset
or ICMP error message).

e Active:Other: In this case, a device on the path towards
the target host issues an active ICMP error or TCP
reset that indicates the service is not available.

Note, firewalls typically simply drop undesired traffic
silently without generating error traffic (i.e., fall in the ‘“Pas-
sive:Other” category). Closed ports on hosts are more prone to
generating an active error message (i.e., “Active:Target”). Thus,
the breakdown between our various categories can shed light
on firewall, access control list, or other similar policy-enforcing
device in the path to the target.

TABLE 1IV: Connection failure mode distribution dif-
ferences. We observe that connection failures are more
frequently active for IPv6 than for IPv4 in both datasets,
suggesting fewer silently-dropping policy devices in IPv6.

Router (Rr) Server (S7)

Mode Mean IPv4 Mean IPv6 Mean IPv4 Mean IPv6
Open 4.17 6.04 18.57 18.89
Passive:Target 43.50 27.15 36.06 31.17
Passive:Other 10.12 15.82 16.31 14.20
Active:Target 30.93 36.14 22.82 27.61
Active:Other 3.55 6.94 2.09 2.79

A. Typical Connection Failure Modes

Table IV shows the average breakdown across applications
into the categories above for each dataset and for IPv4 and
IPv6. We first note that across dataset and IP version host-based
policy enforcement accounts for the majority of the cases where
traffic is filtered (i.e., the “:Target” categories). Additionally,
silent dropping by the network accounts for 10-15% of the
filtering cases, while active errors are relatively rare for the
network to generate (2—7% of the cases). However, there are
also differences between IPv4 and IPv6. For instance, IPv4
shows Passive:Target is more prevalent than Active:Target in the
router dataset, but IPv6 shows the opposite. Further, an active
error message is more likely in IPv6 than in IPv4—perhaps
indicating traditional border firewalls are silently discarding

11

unwanted IPv4 traffic and not yet dealing similarly with IPv6
traffic. At a high level these results show that even when both
protocols implement the same high-order policy to block some
service, they are not always doing so in the same manner.

While we omit individual applications’ failure distributions,
one interesting outlier to mention in the router dataset is NTP.
We find NTP is five times more likely (24% versus 5%) to
respond with an active error in IPv6 than in IPv4. Given the
widespread IPv4 NTP DDoS spike and subsequent operator
mitigations reported in recent years [18], we might expect silent
dropping of NTP to be a prevalent security posture. However,
our results suggest that while this is a reasonable expectation
in IPv4, sadly this mitigation is not as common in IPv6.

B. Connection failure Locations

A second aspect of policy enforcement is the location of
filtering. We started to address this above by detecting whether
policy is applied on the host or by some on-path network
element prior to the target host. In this section, we analyze
cases where policy is being enforced by the network and not
the host and attempt to locate where. For each failing traceroute
probe not ascribed to the target, we extract the difference in the
hop count between where we know that target host to be—as
established via successful ICMP echo and open application
responses—and the final response from the non-target. This
response could be either an active error message (Active:Other)
or a normal traceroute (TTL expired) probe response in the case
of a silent drop (Passive:Other). Figure 5 shows the fraction of
these responses at each hop distance prior to the target host.

First, we find that the differences between IPv4 and IPv6
drop distance distributions are generally small (< 6%) for
servers at each hop distance. Further, 49% of drops in IPv6 and
55% of drops in IPv4 happen two hops away from the server.
This suggests that, when policy is applied along the path to a
server and not at the server itself, it is likely to be applied at
the same point for both protocols. For routers, the difference in
distance distribution between [Pv4 and IPv6 connection failures
was greater (up to 20%). IPv6 drops are most likely to happen
at a distance of three hops away. Conversely, IPv4 is most
likely to see drops two hops from the target. The distribution
at earlier and later hops shows rough parity between IPv4
and IPv6. In sum, although the differences between IPv4 and
IPv6 enforcement location are not stark in general, we did find
some differences which, when combined with the connection
failure mode distributions we show above, lead us to conclude
that deployment of policy enforcement mechanisms, both in
number, kind, and to a lesser extent, location, differs measurably
between the two protocols.

VII. VALIDATION AND CASE STUDIES

We solicited validation on our methods and our findings
from 16 networks for which we had contacts. These networks
were varied in their types, including access, transit, university,
content, and hosting networks, and they varied in their location
footprints, ranging from Asia, Europe, Oceania, and North
America. For each network, we emailed our findings with a
project summary, listing IPv4/IPv6/name tuples with associated
information on which ports were apparently blocked in IPv4 but
were not blocked in IPv6. We received responses from twelve

0.6 .

Router IPV‘4
Router IPV6 -----
* Server [Pv4 oo 1
g Server IPv6 -—--—
Z 04 ,
:E ‘.__ ” ‘\
Qa .'. ’ ‘\
= 03 A
2 G
51 '
< . N
I 0.2 i \
o1 \ \\\\
0 =1
2 0 5

Hops Before Destination
Fig. 5: Fraction of hosts (mean across all applications
in dataset) where failure response (Passive:Other or Ac-
tive:Other) originated given hops prior to target.

TABLE V: Validation summary. Twelve of sixteen opera-
tors of various types responded, and each indicated that
discrepancy was unintentional. Ten took steps to remediate.

Operator Host-App Pairs w/Only IPv6 Open Response
Global CDN 1 3 v’
Tierl ISP 1 498
Global Transit Pro. 1 201
Large Hosting Pro. 1 <800
Large University 1 5 v’
Large University 2 6 v’
Large University 3 989 v’
National ISP 1 4757 v’
National ISP 2 89
Research/Ed. ISP 1 1 v’
Research/Ed. ISP 2 523 v’
Research/Ed. ISP 3 77 v’
Research/Ed. ISP 4 17 v’
Small Hosting Pro. 1 17 v’
Small ISP 1 12
Small Transit Pro. 1 2 v’

networks, summarized in Table V. In every case, we received
a confirmation of our hypothesis that the underlying cause was
an oversight on consistent application of security policy. In
addition, ten of the twelve responding networks immediately
worked to establish a congruent policy in IPv6.

When we followed up with individual operators, we found
that policy was typically being applied on the individual devices.
One operator had used IPv4-specific examples for how to
harden the control plane of a router, without adding additional
configuration to accomplish the same in IPv6. Another operator
had an organization-wide standard security policy for IPv6 that
was found to not be applied to a single device; this device was
installed as a IPv4-only system, and had IPv6 later added. The
organization had been working to ensure their [Pv6 posture was
on par with their IPv4 posture, though the firewall configuration
tool their system administrators had been using does not have
an IPv6 option, leaving a lot more manual work for them.
Similarly, a large transit provider confirmed that they did not
intend for external SSH and telnet access for their routers in
IPv6. They deployed configuration on the routers to prevent
external access in IPv6, but were not able to deploy the same
configuration on customer routers that used their address space
to number the interconnection links with their customers. We
also found most transit providers do not block packets headed
towards their customer’s interfaces.

12

Before this paper was published, we took additional steps
to send emails to abuse contacts for 396 remaining autonomous
systems not associated with the 16 operators above, whose
routers were also found with open IPv6 access in Ry, as we
deemed the threat to routers to be of greatest urgency.

VIII. SCANNING FEASIBILITY

As we have shown, IPv6 often provides access to application
ports that are unreachable via IPv4. This in turn provides attack-
ers with a path to vulnerable services. However, an attacker must
first find these hosts and services before attempting to exploit
vulnerabilities. Within IPv4, the most straightforward method
is to scan the entire address space for vulnerable services.
Current scanning techniques allow a single host connected
to a fast network to scan the entire IPv4 address space in
less than one hour [22]. Scanning the IPv6 address space in
this fashion would take on the order of 10?? years. The task
is prohibitively expensive, even considering parallelizing the
work and assuming massive network capacity improvements.
Alternatively, an attacker could leverage the sorts of DNS and
traceroute data we start with to form a hit list for scanning.
Although this is useful to obtain a sample that is suitable for
understanding the general policy posture of the IPv6 network,
it is far from comprehensive.

Although scanning each IPv6 address is impracticable, some
researchers note that feasibility of targeted IPv6 scanning de-
pends on the device addressing strategy within each block [16].
When operators concentrate devices in a contiguous sub-block
of a routed prefix, attackers can concentrate on the sub-block
and ignore everything outside—potentially putting the task
of comprehensive scanning of devices within reach. Random
address assignment within a routed prefix may at first appear as
security-through-obscurity, but the strategy actually determines
whether IPv6 brute-force scanning is practically possible. As
an example, 2008 work by Malone showed that significant
fractions of the host ID portion of IPv6 addresses were derived
from the MAC address using the EUI-64 mechanism [38]. This
addressing strategy effectively reduces the search space for an
attacker from 64 bits to 48 bits—and even further down to
24 bits if the Ethernet card vendor is known or can be guessed.
Further, Malone notes a prevalence of low-integer host IDs.
While EUI-64 is less common in today’s networks, we are
still interested in whether current address assignment strategies
impact an organization’s security posture.

Therefore, we next turn to using addresses found in our
Rr and Sr datasets to understand the addressing practices of
operators. We first note that the high-order network ID portion
of routed IPv6 networks is advertised in BGP—often with a
prefix of /48 or longer. These are available in public routing
table repositories and serve to significantly winnow the scanning
space an attacker would have to cover for a comprehensive
scan. After the prefix, the natural next question is whether
the middle (subnet) portion of the IPv6 address—typically
16 bits—is random. In our target data, we find that 47% of the
router and 45% of the server subnets use only the lower 8 bits.
Additionally, 8% of router subnets and 19% for servers use a
reverse-low pattern, where the high-order four bits are used
and the remainder of the bits are zero, resulting in 15 possible
subnets. Thus, just 270 possibilities account for 55% of router
and 64% of server subnets. Scanning this small fraction (0.4%)

of the theoretical 65,536 possible subnets would have identified
the majority of used networks in our DNS-derived sample.

TABLE VI: IPv6 Interface Identifier (IID) types for all
IPv6 addresses for hosts in the Xy and Sy datasets,
including 30K router and 968K server IPv6 addreses. For
each dataset, we show the percentage in that category and
a cumulative total. We find that 89% of router and 37%
of server addresses are within very low ranges, allowing
discovery within seconds on a subnet. Recall that half of
the bit space (i.e., 32 bits) is a minute fraction of the IPv6
address space—2°2 /2% or 1/4,294,967,296

Router Server

IID Bits Used IID Value Range % Cum. % % Cum. %
1 <= 0x0001 23.74 23.74 5.83 5.83

4 <= 0x000F 37.89 61.63 5.94 11.77

8 <= 0x00FF 6.87 68.49 4.76 16.53

16 <= OxFFFF 11.00 79.50 5.50 22.03

32 <= OxFFFF FFFF 9.81 89.31 14.50 36.53
EUI-64 Middle == OxFFFE 0.92 90.23 4.92 41.45
Other Not in Above 9.77 100.00 58.55 100.00

Finally, we turn to the host ID portion—low-order 64 bits—
of each address. In table VI we classify each address into one of
several allocation ranges based on use of a decreasing number
of leading zeros or use of the EUI-64 scheme. We find nearly
a quarter of routers and 6% of servers use the value of 1 as the
host id, and that scanning just the lower quarter—16 bits—of
the theoretical host ID space will identify 80% of the open
routers and 22% of the open servers. The address assignments
are therefore extremely concentrated and an attacker could get
significant coverage at a miniscule fraction of the cost of a full
scan (2'6/2%% or just 4x 107! of addresses). Further, we find
EUI-64-derived addresses in just under 1% of the routers and
nearly 5% of servers. We also find that the 24-bit vendor ID
portion of the host ID shows eight vendors account for 46% of
the routers and 69% of the servers. This reduces the search space
to the low-order 24 bits, which, even with random assignment,
is tractable to scan.> A 1 Gbps (1.4 Mpps) scanner [22], could
scan all of the categories in table VI except for “Other” and
including only the top eight most common EUI-64 vendor IDs
on any given subnet in 53 minutes. In our dataset this would
identify 90% of routers and 40% of servers at a minuscule
fraction of the cost of scanning a full IPv6 64-bit address block
at that rate (418 thousand years). Given these numbers and the
addressing schemes we saw, brute force scanning for servers
and routers, while not exhaustive or foolproof, is still largely
feasible for enumerating the majority of IPv6 hosts on a subnet.
With prefixes easily identifiable and most subnets using just
one of 270 values, we conclude that scanning is still a viable
way to identify large fractions of hosts within networks, even if
complete scanning of the IPv6 address space is impracticable.
Thus, our main findings reporting greater openness in IPv6
may be exploitable not just by hostname but also via brute
force scans, especially if they target a single network prefix.
One word of caution for researchers interested in applying
scanning as a technique for brute-force measurement in IPv6:

2MAC addresses are often assigned sequentially as the network cards are
manufactured. Thus, they are not uniformly random, and one can expect to find
less entropy within large organizations in EUI-64-derived IP addresses [28].

13

there is a known severe denial of service condition that can be
triggered in many older or improperly configured IPv6 routers
due to memory exhaustion from incomplete neighbor discovery
entries (see e.g., [9]).

IX. RELATED WORK

Standards and deployment guides (e.g., [14], [23], [26],
[32]) have been urging operators to apply firewall rules and
access control lists for IPv6 in parity with IPv4 as part of their
deployment of IPv6. Unfortunately, security researchers as
well as RFC authors have lamented that in practice: “networks
tend to overlook IPv6 security controls: [often] there is no
parity in the security controls [between] IPv6 and IPv4” [5],
and “in new IPv6 deployments it has been common to see
IPv6 traffic enabled but none of the typical access control
mechanisms enabled for IPv6” [15]. Beyond the quotes, we
were not aware of any data that would shed light on the extent of
real-world deployment of security filtering for IPv6. A desire to
measure and raise awareness about these fundamental security
control disparities in IPv6 was the motivation for our work. To
our knowledge, ours is the first such Internet-scale study of
deployed IPv6 security policies.

The IPv6 protocol was standardized nearly twenty years ago,
before many lessons had been learned about Internet security.
On top of that, IPv6 introduces many changes and features that
go far beyond increased address space. As such, issues with the
design and implementation of IPv6 have come to the fore as
IPv6 is given more scrutiny by early adopters and researchers.
For instance, Ullrich ef al., aggregated a taxonomy of 36 known
design and implementation weaknesses in IPv6 [51]. Several of
these problems (e.g., fragmentation header related, hop-by-hop
header) have been discussed for some time by practitioners and
non-academic security researchers (e.g., [8]), and there have
been a number of updates to the original IPv6 specifications
in recent years as a result (e.g., [7], [25], [27]). However,
hardware changes to support the updated specifications in
policy enforcement devices are taking time for vendors to
implement and operators to deploy (e.g., [5]), leaving some
networks vulnerable. A carefully controlled study of such
vulnerabilities would be interesting future work. Our paper,
however, focused on characterizing the apparent misalignment
of network security policy between IPv4 and IPv6, as measured
by relatively reachable application ports. This shines light on
the vulnerability that IPv6 poses as a path to exploit upper
layer applications, rather than exploring weaknesses in IPv6
itself. As such, our work is largely orthogonal to such research
and standards changes.

There has been significant interest in characterizing the size
of the open or vulnerable IPv4 host population for various
ports, with several recent studies related to the topic of large-
scale IPv4 application discovery (e.g., [21], [44]). Our study
seeks an at-scale measurement of commonly vulnerable or
high-value open applications on IPv6 versus IPv4. As recent
studies (e.g., [17], [20]) and data (e.g., [29]) have shown a
surge in IPv6 deployment, security weaknesses related to the
rise of IPv6 are naturally of interest to the network security
community. Ours is the first large-scale study of the degree to
which dual-stacked hosts provide the same services across both
protocols, a metric pertinent to the study of IPv6 adoption.

IPv6 host addressing schemes deployed in the wild were
last studied at scale by Malone in 2008 [38], though much has
changed since that study, including several orders of magnitude
more IPv6 deployment and the phasing out of EUI-64-based
host identifiers by common operating systems. However, the
results from Malone’s September 2007 traceroute data, which
is likely dominated by routers, shows 80-90% of host IDs there
using just the lower 8 bits, suggesting some improvement in
desirable randomness of HIDs in the intervening eight years
(we saw 68%). Methods for discovering IPv6 hosts for scanning
via leveraging secondary information sources such as the DNS
(earlier discussed by Bellovin et al. [11], then in RFC 5157 [16],
and more recently in an IETF draft [28]) have been successfully
applied to IPv6 client discovery in recent years (e.g., [41]). Our
analysis of the host IDs used by servers and routers in particular,
showed secondary sources were not necessary for identifying
large fractions of these high value hosts given today’s address
allocation patterns. This should help dispel the myth that simple
scanning on IPv6 is futile, and it somewhat heightens the risk
associated with our main application openness findings.

X. DISCUSSION

We built lists of 25K dual-stacked pingable routers and
520K dual-stacked pingable servers and tested connectivity
over IPv4 and IPv6 to a set of common application ports. Our
experiments showed that for both routers and servers, 26% of
the hosts were more open for IPv6 than for IPv4 for at least
one tested application (versus 18% and 17%, respectively, that
were more open for IPv4). For routers, the average application
was open for 84% more hosts via IPv6 than IPv4, including
SSH, which was reachable via IPv6 for a staggering 166%
more routers than over IPv4. For servers, this number was a
lower but still significant 12%, which notably included SSH
(5%), and Telnet (46%). The numbers were even higher for
the 37% of servers that did not support HTTP (and, thus, were
less likely to be behind load balancers or gateways). Among
those 191K servers, 49% more servers were open for IPv6
than IPv4 on the often-attacked server message block (SMB)

protocol, 112% for Telnet, and 343% for SNMP, for example.

Lastly, deeper probing we conducted using traceroutes also
showed that even when both protocols blocked an application,
the manner in which policy is deployed (i.e., discrete firewall
or host firewall) also differs between IPv4 and IPv6.

Even when IPv6 was less open, there were hundreds
or thousands of hosts for many applications that were only
reachable via IPv6. While we can speculate that hosts which
only support a service on IPv4 have yet to configure IPv6, it is
more difficult to imagine plausible scenarios where a service
is not intended to be available on IPv4 but is intentionally so
on IPv6. This is the reason we are concerned even when, for
applications where there are relatively more IPv4-reachable
hosts, we still find hundreds or thousands only accessible over
IPv6. While the lack of IPv6 connectivity may be an adoption
problem, it is not a security problem; whereas, each of the
hosts that do have a service reachable over IPv6 only, even if
they are a minority of the hosts, could be exposing the system
to an unexpected attack vector—a back door waiting for an
IPv6-savvy attacker to come along and knock on it.

To have more confidence in both our findings and our
assumptions of policy parity intent, we contacted a sample

14

of network operators who had applications reachable over
IPv6 but not IPv4. We received responses from twelve of
sixteen networks contacted. They validated that (i) our mappings
between IPv4 and IPv6 generally appeared correct, that (if)
indeed these applications were reachable, and that (iii) the
openness on IPv6 was, in fact, not intentional.

We note that the risk due to these services being reachable—
where intended policy appears to be that they are not—is
likely exacerbated by the lack of maturity of IPv6 tools and
processes. For instance, older Netflow version 5 systems, which
are essential elements of aggregating, transmitting, and storing
network traffic data for many network operators, do not support
IPv6 (the newer Cisco Netflow v9 and IETF standard IPFIX
do), requiring both sources of flow information and sinks to be
updated to have visibility into IPv6 traffic. Aside from Netflow,
anecdotal evidence suggests some large organizations, including
service providers, run various homegrown or legacy network
management software that simply does not yet support IPv6.

There is growing awareness of the fundamental yet basic
challenges in securely operating IPv6 networks—including,
for example, due to address presentation differences and IPv6
address agility:

In an IPv4 network, it is easy to correlate multiple
logs, for example to find events related to a specific
IPv4 address. A simple Unix grep command was
enough to scan through multiple text-based files and
extract all lines relevant to a specific IPv4 address.

In an IPv6 network, this is slightly more difficult
because different character strings can express the
same IPv6 address. Therefore, the simple Unix grep
command cannot be used. Moreover, an IPv6 node
can have multiple IPv6 addresses...

In order to do correlation in IPv6-related logs, it is
advised to have all logs with canonical IPv6 addresses.
Then, the neighbor cache current (or historical) data
set must be searched to find the data-link layer address
of the IPv6 address. Then, the current and historical
neighbor cache data sets must be searched for all IPv6
addresses associated to this data-link layer address:
this is the search set. The last step is to search in all
log files (containing only IPv6 address in canonical
format) for any IPv6 addresses in the search set. [15]

We highlight this quote to underline that the deployment of
IPv6 has implications far exceeding merely a larger address
space. The complexity introduced by its many features as well
as lack of stack robustness, process maturity, and available
tooling that come from decades of deployment for IPv4 are
evident both in the number of issues and standards changes
seen in recent years and the breadth of deployments we were
able to find with IPv6 unprotected. We call on operators and
researchers to give IPv6 security a deeper look.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under contracts CNS 1111449, CNS 1111672, CNS
1111699, CNS 1213157, CNS 1237265, CNS 1505790, and
CNS 1518741, and by Intel Corporation. We would like to
thank Young Hyun at CAIDA for helping run DNS lookups,
and HD Moore, Mark Schloesser, and Zakir Durumeric for

DNS data. We are also grateful to the network operators that
responded to our validation emails. Matthew Luckie conducted
part of this work while at CAIDA, UC San Diego.

[1]

[2]
[3]

[4]
[5]

[6]

[7]

[8]

[10]

[11]

(12]

[13]

[14]

[15]

[16]
[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

Cisco Nexus 7000 Series NX-OS System Management Configuration
Guide, Release 5.x. http://www.cisco.com/c/en/us/td/docs/switches/
datacenter/sw/5_x/nx-os/system_management/configuration/guide/sm_
nx_os_cg/sm_3ntp.html#wp1107779.

CloudFlare : IPv6 Gateway Feature. https://www.cloudflare.com/ipv6.

NMAP : ssl-enum-ciphers. https://nmap.org//nsedoc/scripts/ssl-enum-
ciphers.html.

Scamper. http://www.caida.org/tools/measurement/scamper/.

Security Assessments of IPv6 Networks and Firewalls. Frankfurt,
Germany, June 2013. Slides of Presentation at IPv6 Kongress.

World IPv6 Launch : Network Operator Measurements July 8, 2015.
http://www.worldipv6launch.org/measurements, 2015.

J. Abley, P. Savola, and G. Neville-Neil. Deprecation of Type 0 Routing
Headers in IPv6. RFC 5095, 2007.

A. Atlasis. Attacking IPv6 Implementation Using Fragmen-
tation. https://media.blackhat.com/ad- 12/Atlasis/bh-ad- 12-security-
impacts-atlasis-wp.pdf, 2012.

M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan. The Menlo
report. [EEE Security & Privacy, 10(2):71-75, 2012.

D. Barr. Common DNS Operational and Configuration Errors. RFC
1912, 1996.

S. M. Bellovin, B. Cheswick, and A. Keromytis. Worm propagation
strategies in an IPv6 Internet. LOGIN: The USENIX Magazine, 31(1):70-
76, 2006.

R. Beverly and A. Berger. Server Siblings: Identifying Shared IPv4/IPv6
Infrastructure via Active Fingerprinting. In Proceedings of the Sixteenth
Passive and Active Measurement Conference, PAM’15, 2015.

CAIDA. Archipelago (Ark) Measurement Infrastructure. http://www.
caida.org/projects/ark/.

K. Chittimaneni, T. Chown, L. Howard, V. Kuarsingh, Y. Pouffary, and
E. Vyncke. RFC 7381: Enterprise IPv6 Deployment Guidelines, 2014.

K. Chittimaneni, M. Kaeo, and E. Vyncke.
Considerations for IPv6 Networks. 2015.

T. Chown. IPv6 Implications for Network Scanning. RFC 5157, 2008.

J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil, and
M. Bailey. Measuring IPv6 Adoption. In Proceedings of the 2014
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM’ 14, 2014.

J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, and
M. Karir. Taming the 800 Pound Gorilla: The Rise and Decline of NTP
DDoS Attacks. In Proceedings of the ACM SIGCOMM Conference on
Internet Measurement, IMC’ 14, 2014.

E. Davies, S. Krishnan, and P. Savola. IPv6 Transition/Coexistence
Security Considerations. RFC 4942, 2007.

A. Dhamdhere, M. Luckie, B. Huffaker, k claffy, A. Elmokashfi, and
E. Aben. Measuring the deployment of IPv6: Topology, routing and
performance. In Proceedings of the 12th ACM SIGCOMM conference
on Internet measurement, IMC’12, 2012.

Operational Security

Z. Durumeric, M. Bailey, and J. A. Halderman. An Internet-wide view
of Internet-wide scanning. In Proceedings of the USENIX Security
Symposium, SEC’14, 2014.

Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-
wide scanning and its security applications. In Presented as part of the
22nd USENIX Security Symposium, Washington, D.C., 2013.

S. Frankel, R. Graveman, J. Pearce, and M. Rooks. Guidelines for the
secure deployment of IPv6. NIST Special Publication, 800-119, 2010.
S. Gallagher. NSA hacker in residence dishes on how to hunt system
admins, Mar 2014. http://arstechnica.com/security/2014/03/nsa-hacker-
in-residence-dishes-on-how-to-hunt-system-admins/.

15

[25]
[26]

[27]
[28]
[29]
[30]
(31]
(32]

(33]

[34]

[35]

[36]

[37]

(38]

(391

[40]

[41]

[42]
[43]
[44]

[45]
[46]

[47]

(48]

[49]

[50]

[51]

[52]

F. Gont. Processing of IPv6 “Atomic” Fragments. RFC 6946, 2013.
F. Gont and W. Liu. Security Implications of IPv6 on IPv4 Networks.
RFC 7123, 2014.

F. Gont, V. Manral, and R. Bonica. Implications of Oversized IPv6
Header Chains. RFC 7112, 2014.

F. Gont and T.Chown. Network Reconnaissance in IPv6 Networks.
Internet-Draft draft-ietf-opsec-ipv6-host-scanning-07, 2015.

Google. IPv6 Statistics. http://www.google.com/intl/en/ipv6/statistics.
M. Javed and V. Paxson. Detecting stealthy, distributed ssh brute-forcing.
In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, SIGSAC’13, 2013.

D. Kaminsky. Black Ops 2008: It’s the End of the Cache As We Know
It. Black Hat USA, 2008.

C. M. Keliiaa and V. N. McLane. Cyberspace Modernization: An Internet
Protocol Planning Advisory. SANDIA Report, SAND2014-5032, 2014.
C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr:
illuminating the edge network. In Proceedings of the ACM SIGCOMM
Conference on Internet Measurement, IMC’ 10, 2010.

G. Lindberg. Anti-Spam Recommendations for SMTP MTAs. RFC
2505, 1999.

M. Luckie. Scamper: a scalable and extensible packet prober for active
measurement of the Internet. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, IMC’10, 2010.

M. Luckie, R. Beverly, T. Wu, M. Allman, and k claffy. Resilience
of deployed TCP to blind attacks. In Proceedings of the 15th ACM
SIGCOMM conference on Internet measurement, IMC’15, 2015.

D. MacFarland, C. Shue, and A. Kalafut. Characterizing Optimal DNS
Amplification Attacks and Effective Mitigation. In Passive and Active
Measurement Conference, Mar. 2015.

D. Malone. Observations of IPv6 addresses. In Passive and Active
Network Measurement, PAM’08, pages 21-30. Springer, 2008.
MySQL IPv6 Support. https://dev.mysql.com/doc/refman/5.5/en/ipv6-
server-config.html.

P. Porras, H. Saidi, and V. Yegneswaran. An Analysis of Conficker’s
Logic and Rendezvous Points. Technical report, SRI International, 2009.
H. Rafiee, C. Mueller, L. Niemeier, J. Streek, C. Sterz, and C. Meinel. A
Flexible Framework for Detecting IPv6 Vulnerabilities. In Proceedings
of the 6th International Conference on Security of Information and
Networks, SIN *13, 2013.

Rapid7. DNS consumer hostname filtering code, 2015. https://github.
com/rapid7/dap/blob/master/lib/dap/filter/names.rb#L.98.

RIPE NCC. Routing Information Service (RIS). http://www.ripe.net/ris/.
C. Rossow. Amplification Hell: Revisiting Network Protocols for DDoS
Abuse. In Proceedings of the Network and Distributed System Security
Symposium, NDSS’ 14, 2014.

Top Ten Reports. https://isc.sans.edu//top10.html, 2015.

M. Sargent, J. Czyz, M. Allman, and M. Bailey. On The Power and
Limitations of Detecting Network Filtering via Passive Observation.
In Proceedings of the Passive and Active Measurement Conference,
PAM’15, 2015.

Scans.io: Rapid7. DNS Records (ANY) Datasets, 2015. https://scans.io/
study/sonar.fdns.

K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. Assessing DNS
Vulnerability to Record Injection. In Passive and Active Measurement
Conference, Mar. 2014.

O. Tange. Gnu parallel - the command-line power tool. ;login: The
USENIX Magazine, 2011.

The Spamhaus Project - PBL. http://www.spamhaus.org/pbl/.

J. Ullrich, K. Krombholz, H. Hobel, A. Dabrowski, and E. Weippl. IPv6
Security: Attacks and Countermeasures in a Nutshell. In Proceedings
of the USENIX Workshop on Offensive Technologies, WOOT’ 14, 2014.

University of Oregon. Route Views project. http://www.routeviews.org/.

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/nx-os/system_management/configuration/guide/sm_nx_os_cg/sm_3ntp.html#wp1107779
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/nx-os/system_management/configuration/guide/sm_nx_os_cg/sm_3ntp.html#wp1107779
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/nx-os/system_management/configuration/guide/sm_nx_os_cg/sm_3ntp.html#wp1107779
https://www.cloudflare.com/ipv6
https://nmap.org//nsedoc/scripts/ssl-enum-ciphers.html
https://nmap.org//nsedoc/scripts/ssl-enum-ciphers.html
http://www.caida.org/tools/measurement/scamper/
http://www.worldipv6launch.org/measurements
https://media.blackhat.com/ad-12/Atlasis/bh-ad-12-security-impacts-atlasis-wp.pdf
https://media.blackhat.com/ad-12/Atlasis/bh-ad-12-security-impacts-atlasis-wp.pdf
http://www.caida.org/projects/ark/
http://www.caida.org/projects/ark/
http://arstechnica.com/security/2014/03/nsa-hacker-in-residence-dishes-on-how-to-hunt-system-admins/
http://arstechnica.com/security/2014/03/nsa-hacker-in-residence-dishes-on-how-to-hunt-system-admins/
http://www.google.com/intl/en/ipv6/statistics
https://dev.mysql.com/doc/refman/5.5/en/ipv6-server-config.html
https://dev.mysql.com/doc/refman/5.5/en/ipv6-server-config.html
https://github.com/rapid7/dap/blob/master/lib/dap/filter/names.rb#L98
https://github.com/rapid7/dap/blob/master/lib/dap/filter/names.rb#L98
http://www.ripe.net/ris/
https://isc.sans.edu//top10.html
https://scans.io/study/sonar.fdns
https://scans.io/study/sonar.fdns
http://www.spamhaus.org/pbl/
http://www.routeviews.org/

	Introduction
	Methodology
	Developing Target Lists
	Probing
	Ethical Considerations of Probing
	Result Interpretation

	Calibration
	Baseline Policy Discrepancy
	Router Application Openness Results
	Server Application Openness Results

	Policy Uniformity
	Network Response Uniformity
	Intra-protocol uniformity

	Blocking Enforcement
	Typical Connection Failure Modes
	Connection failure Locations

	Validation and Case Studies
	Scanning Feasibility
	Related Work
	Discussion
	References

