Enabling Client-Side Crash-Resistance to
Overcome Diversification and Information Hiding

Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany and Thorsten Holz
Horst Gortz Institute for IT-Security (HGI), Ruhr-University Bochum, Germany
{firstname}.{lastname}@rub.de

Abstract—It is a well-known issue that attack primitives
which exploit memory corruption vulnerabilities can abuse the
ability of processes to automatically restart upon termination.
For example, network services like FTP and HTTP servers are
typically restarted in case a crash happens and this can be used
to defeat Address Space Layout Randomization (ASLR). Further-
more, recently several techniques evolved that enable complete
process memory scanning or code-reuse attacks against diversified
and unknown binaries based on automated restarts of server
applications. Until now, it is believed that client applications are
immune against exploit primitives utilizing crashes. Due to their
hard crash policy, such applications do not restart after memory
corruption faults, making it impossible to touch memory more
than once with wrong permissions.

In this paper, we show that certain client application can
actually survive crashes and are able to tolerate faults, which
are normally critical and force program termination. To this
end, we introduce a crash-resistance primitive and develop a
novel memory scanning method with memory oracles without
the need for control-flow hijacking. We show the practicability
of our methods for 32-bit Internet Explorer 11 on Windows
8.1, and Mozilla Firefox 64-bit (Windows 8.1 and Linux 3.17.1).
Furthermore, we demonstrate the advantages an attacker gains
to overcome recent code-reuse defenses. Latest advances propose
fine-grained re-randomization of the address space and code
layout, or hide sensitive information such as code pointers
to thwart tampering or misuse. We show that these defenses
need improvements since crash-resistance weakens their security
assumptions. To this end, we introduce the concept of Crash-
Resistant Oriented Programming (CROP). We believe that our
results and the implications of memory oracles will contribute to
future research on defensive schemes against code-reuse attacks.

I. INTRODUCTION

In the last years, attackers shifted their focus away from
network services to client applications and especially web
browsers became an attractive target. Adversaries can ap-
parently easily detect memory corruption and similar vul-
nerabilities in such complex programs, as demonstrated by
the steady stream of reported vulnerabilities. In contrast to
server software, client applications have a crucial property:

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS 16, 21-24 February 2016, San Diego, CA, USA

Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23262

they typically terminate immediately on memory corruption
faults or on failed exploit attempts, and do not automatically
restart themselves. Hence, adversaries have usually only one
shot to conduct their attack successfully. In contrast, the
ability of network services to restart initiated research on
developing sophisticated attack primitives: if programs such as
servers automatically respawn after termination due to a crash,
memory layout information or hidden sections can be deduced
which are otherwise not accessible to an adversary [6, 19, 50].
Until now, a common belief is that such attacks can only
be conducted against restarting programs, especially network
services like FTP and HTTP servers.

In this paper, we challenge this assumption and demon-
strate the ability to handle faults in a manner that memory
corruptions no longer remain an all or nothing primitive
against client software. More specifically, we demonstrate that
memory corruption vulnerabilities can in fact be used as a side
channel to weaken available security features.

A. Defenses Against Memory Corruption Attacks

For some years, we observe an ongoing arms race between
attackers and defenders in the area of memory corruption
vulnerabilities. From time to time, novel attacks are proposed
that break existing defenses and it is still an open research
problem how memory corruption vulnerabilities can be pre-
vented with a reasonable performance overhead. Gradually it
became apparent that there are several building blocks that can
be used on the defense side to hamper attacks. First, there is
the W & X (Writable xor eXecutable) security model [39]
that prevents an attacker from redirecting the hijacked control
flow to data of her choice that is then interpreted as code. The
W & X security model is nowadays directly supported within
processors and the Windows operating systems supports Data
Execution Prevention (DEP) since 2004. In response, different
kinds of code-reuse attacks such as for example return-to-libc,
Return-Oriented Programming (ROP) [49], and many more
variants [7, 12, 44] were developed. Recently, many detection
techniques for code-reuse attacks were proposed [20, 36], but
most of them were also broken shortly afterwards [10, 22, 47].

A second building block is randomization of the address
space, a strategy which can be leveraged to prohibit an
attacker from re-using existing code since the location of
code (or data structures) is not known beforehand. Many
kinds of randomization strategies were proposed over the
years [4, 24, 38] that hide the code layout, and Address Space
Layout Randomization (ASLR) [38] is widely deployed on
modern operating systems. It is a well-known issue that the
low entropy used to randomize a program’s address space

on 32-bit systems is susceptible to brute-force attacks [50].
However, discovering parts of the memory layout in a brute
force manner requires a program which tolerates crashes. Thus,
this way of exploitation is normally only viable on certain
kinds of server software, where each request spawns a new
but equally randomized process. With increasing entropy to
randomize the address space on 64-bit architectures and a hard
crash policy which forbids restarts of the program, brute-force
attacks do not seem to be a viable option anymore these days.
In addition, efficient (re-)randomization schemes seem to be
a promising direction and several papers that propose such
randomization schemes were recently published [3, 13, 17]. It
remains an open question if attacks against such schemes are
viable, especially in the light of memory disclosure attacks.

A third building block attempts to enforce Control-Flow
Integrity (CFI) [1]. The basic idea behind CFI is to verify
that each control flow transfer leads to a valid target based on
a control flow graph that is either (statically) pre-computed
or dynamically generated. Several implementations of CFI
with different design constraints, security goals, and perfor-
mance overheads were published [18, 26, 59, 60]. However,
several papers recently demonstrated bypasses of these CFI
solutions [16, 19, 21].

B. Subverting Information Hiding

In the presence of these defenses, the successful exploita-
tion of a memory corruption vulnerability poses a challenge
to an adversary. We observe that a successful attack is typ-
ically based on a memory disclosure vulnerability (so called
information leak): such leaks are often the first step utilized to
gain some knowledge about the memory layout. Once the code
locations are collected, they can be used to mount a code-reuse
attack (which is in turn used to disable W @ X).

More importantly, we observe that hiding of information in
a program’s address space is a crucial aspect: data structures
with sensitive information have to remain hidden in order to
prevent weakening available security features. For example, in
the presence of ASLR, base addresses of shared modules as
well as stack addresses of running threads, heap boundaries,
and exception handlers have to remain hidden from an attacker.
With fine-grained randomization schemes [5, 24, 56], the same
problem applies: an adversary might be able to uncover the
address space via novel attack methods and leverage this
information to perform just-in-time attacks similar to the work
by Snow et al. [51].

Other security features rely on information hiding as
well, for example hidden regions to store metadata used to
perform integrity checks. Consider for example Code-Pointer
Integrity (CPI) [26], the state-of-the-art code pointer protection
approach: on platforms where the implementation is based
on information hiding (e.g., Intel’s x86-64 architecture), such
pointers (and pointers to such pointers) are stored in a hidden
memory region to impede tampering with them. Recently
and concurrently to our work, a successful attack against the
current CPI implementation was demonstrated that leaks this
hidden memory region [19]. Furthermore, all CFI implemen-
tations that leverage a shadow stack need to prevent this stack
from being leaked to an attacker [9, 15].

C. Novel Memory Probing Method

In this paper, we show that fault-tolerant functionality is
available in web browsers and—when combined with memory
disclosures—delivers a novel way to explore unknown memory
territories. It is a common belief that a hidden memory region
without references to it is undiscoverable in practice with-
out code-execution or code-reuse attacks. Thus, an important
building block towards revealing reference-less memory is the
ability to scan the address space without forcing the program
into termination. This is viable in server software [6, 19, 50],
but seems impossible in web browsers due to their hard crash
policy (i.e., after three consecutive crashes, Internet Explorer
stops restarting automatically). We demonstrate that a memory
scanning ability in web browsers can be achieved and use
this as a base to subvert memory secrecy and randomization
approaches without control-flow hijacking, code injection or
code-reuse attacks. Deducing hidden information with memory
scans in turn enables an adversary to conduct code-reuse
attacks.

In our experiments, we were able to scan the address space
with 18,357 probes per second in 64-bit Firefox on Linux,
with 718 probes per second in 64-bit Firefox on Windows,
and 63 probes per seconds in 32-bit Internet Explorer. We
leverage memory oracles as an extension of information leaks,
which either return the content at specified memory or de-
liver an event in case of unmapped memory, to learn more
about the structure of the address space. This enables us to
circumvent standard ASLR implementations and recently pro-
posed defense schemes are undermined. Additionally, we use
our crash-resistance primitive together with function chaining
to achieve Crash-Resistant Oriented Programming (CROP):
arbitrary exported system calls or functions can be dispatched
in a fault-tolerant manner.

In summary, we make the following contributions:

e To the best of our knowledge, we are the first to introduce
the ability in web browsers to survive crashes and to run
in fault-tolerant mode. We term this new class of primitive
crash-resistance.

e We develop new methods allowing to scan memory inside
client software based on crash-resistance and memory
oracles. We thereby do not need control-flow hijacking,
code injection, or code-reuse. Furthermore, we demon-
strate the practical feasibility of our methodology for
Internet Explorer 32-bit on Windows and Mozilla Firefox
64-bit on Linux and Windows.

e We present the advantages an adversary gains with
crash-resistance and memory oracles to weaken recently
proposed security features based on code hiding and
(re-)randomization. More specifically, we show that mem-
ory secrecy enforced through memory layout randomiza-
tion is ineffective even in a large address space (i.e.,
on x86-64 systems), uncovering sensitive information
protected via information hiding.

o Finally, we develop a new code-reuse technique based on
function chaining in combination with crash-resistance.
We term this technique Crash-Resistant Oriented Pro-
gramming (CROP).

II. TECHNICAL BACKGROUND

In the following, we first introduce the adversarial capabil-
ities and the defense model we use throughout this paper. Fur-
thermore, we describe several state-of-the-art defense strategies
and briefly discuss potential shortcomings.

A. Adversary Model

We assume that the adversary has an initial vulnerability
such as a use-after-free or a restricted write (such as a byte
increment/decrement or null byte write) to an attacker-chosen
address. We assume as well that the initial vulnerability leads
to the ability to read from and write to arbitrary addresses,
using a scripting environment such as JavaScript. These as-
sumptions are consistent with recent exploitation of memory
corruptions in web browsers [13, 14, 17]

Furthermore, we assume that the target system incorporates
the following defense mechanisms against the exploitation of
memory corruption vulnerabilities:

o Non-executable memory: The target OS implements the
W& X security model that is applied to all non-executable
pages. Thus, only code pages gain the execute permission
in order to hamper code injection attacks.

e Memory diversification: The adversary has to tackle sev-
eral levels of randomization techniques starting with the
widely deployed coarse-grained ASLR that randomizes
modules, over to fine-grained address space randomiza-
tion on the instruction/basic block/function level [5, 23,
24, 37, 56], to re-randomizing code such as proposed in
Isomeron [17].

e Control-flow integrity: As CFI implementations such as
Microsoft’s Control Flow Guard (MS-CFG) begin to be
deployed in commodity operating systems, we assume
that coarse-grained CFI [59, 60] and ROP protections [20]
are active on the target OS.

e Execute-no-read memory: We further restrict the attacker
by enforcing non-readable code pages (R & X) as pro-
posed by recent JIT-ROP defenses [2, 13]. Consequently,
any read attempt to code results in an access fault.

e Hard crash policy: We assume that a program does not
automatically restart after a crash and that a user will
not open a potentially dangerous web page again after it
crashed a web browser once.

B. Randomization Techniques

Several randomization techniques were proposed over the
last years and we briefly review the different approaches. Fur-
thermore, we discuss potential shortcomings of such methods.

1) Address Space Layout Randomization: All state-of-the-
art operating systems deploy ASLR. This feature randomizes
the base address of shared libraries and executables, all stacks,
heaps, and other structures. Randomization is performed at
load time of a program and ideally no locations of specific
memory are predictable. However, there exist drawbacks: off-
sets to data structures and code within a shared library remain
constant and are susceptible to static code-reuse attacks. If one
library base address is revealed with one memory disclosure,
the adversary knows the layout of the complete module [53].

2) Fine-Grained ASLR: To overcome the constant layout
in shared modules and to prevent an attacker to conduct static
code-reuse attacks, several schemes of fine-grained random-
ization were developed. They randomize the code layout [23],
replace instructions with semantic equivalents [37], or alternate
the order of basic blocks [56]. These methods are applied
during load time of a program. Unfortunately, these defenses
can be bypassed if an adversary discloses code pages and
assembles a code-reuse payload dynamically on the fly [51].

3) Re-Randomization: To hinder dynamic code-reuse at-
tacks, re-randomization is applied to programs: if an adversary
discovers code locations via memory disclosure vulnerabil-
ities, she cannot use them as re-randomization changes the
code layout in between. Isomeron [17] applies fine-grained
randomization in the load phase of a program to ensure that not
only basic blocks or modules are placed at different addresses,
but also single code snippets. Furthermore, Isomeron applies
re-randomization on the granularity of function calls during
runtime. In a coin-flip manner, it decides whether the original
or a diversified copy of a function is executed. This approach
thwarts code-reuse attacks like ROP and JIT-ROP. However,
we found that specific structures are very challenging to re-
randomize, especially data structures to which dynamic access
needs to be maintained during a program’s runtime (see
Section IV-Al). Thus, we show that an adversary can still
gather sufficient information and conduct code-reuse attacks.

C. Security by Information Hiding

As noted above, hiding of information in a program’s
address space is getting more and more into the spotlight
of interest. Note that all structures with sensitive information
have to remain hidden to prevent an adversary from leaking
them (and thus weakening available security features). In the
context of ASLR, the following information is for example
considered to be sensitive: base addresses of shared modules,
stack addresses of running threads, heap boundaries, and
exception handlers. Based on information hiding, memory
regions without references to them exist for similar reasons:
they are based on the assumption that memory disclosures
cannot reveal them, as knowledge about their location is
not available and they are reference-less. We explain several
instances of information hiding in the following.

1) Sensitive Application Structures: Microsoft Windows
maintains a Process Environment Block (PEB) for each running
process. Similarly, a Thread Environment Block (TEB) is
included in each process’ address space for each thread. The
legitimate method to gain access to either of them is to use
the official Windows API call NtCurrentTeb(). Accessing a
TEB or the PEB illegitimately is often done by using the FS
register on x86 architectures: the address of the currently active
thread’s TEB is found at FS:0 and the address of the PEB at
[FS:0x30]. To the best of our knowledge, references to both
structures do not exist anywhere in user-space memory.

In presence of ASLR, it is nearly impossible for an
adversary to reveal the structures with complete read access
to memory, unless prior knowledge of the memory layout is
available to her. Trying to read unreadable memory results in
access faults and termination of the program. For an adversary,
the only possible way to reveal them is to hijack the control-
flow and execute her code of choice. In Section III-E, we show

that this hidden information is accessible even if code-reuse
attacks are not an option (e.g., due to control-flow integrity).

Valuable information for an attacker in a TEB is the
thread’s stack boundaries or the chain of exception handlers.
Very critical is an undocumented code-trampoline field at
offset @xC@: every system call of a 32-bit process running
on 64-bit Windows is going through this CPU-modeswitch
trampoline. If an attacker manages to overwrite that field, she
can gain control over every system call in that process.

Among other information, the PEB contains the base ad-
dresses of all mapped modules and a function callback table for
the Windows kernel. While disclosing a module’s base address
by reading another module’s import address table (IAT) may
be an option, reading the PEB directly yields all executable
modules of a process at once. Note that there are no references
to kernel callback tables in the user-mode address space for
obvious reasons.

2) Reference-Less Regions for Pointer Safety: Another
notable example of this concept are implementations of Code-
Pointer Integrity (CPI [26]) on x86-64 and ARM systems.
In absence of hardware enforced segmentation protection, the
CPI implementation on these platforms relies on hiding the
location of the safe region that contains the sensitive metadata
for pointers. The safe region is used by CPI to enforce its
policies. The most restrictive variant of the CPI policy tracks
all sensitive pointers in a program. A pointer is considered
sensitive if it is a code pointer or a pointer that may later
be used to access a sensitive pointer. This recursive definition
ensures that all control flow information is protected.

The security of CPI on the x86-64 and ARM architectures
relies on hiding the precise location of metadata from an
attacker. This concept has already been shown to be susceptible
to attacks by Evans et al. [19]. In Section III-E, we present
an even more efficient mechanism to determine the location of
hidden memory. It is used to launch a similar attack on CPI
without crashes in a shorter time.

3) Code and Code Pointer Hiding: In case fine-grained
randomization is in place, an adversary can still conduct JIT-
ROP attacks [51]. To prevent the attacker’s ability to discover
enough code to reuse, recent research has focused on mapping
code as execute-only [2] or hide pointers in code behind a
layer of indirection [3]. In another recent work, Crane et. al
developed a framework called Readactor which aims to be
resilient against memory disclosures and aims to provide a
high degree of protection against code-reuse attacks of all
kinds [13]. Code pointers in code are not readable, as code is
mapped as execute-only, and code-pointers in data are replaced
by execute-only trampolines to their appropriate functions.
However, the authors note that hidden functions which are
imported from other modules can be invoked by an adversary
through the trampolines if she manages to disclose trampoline
addresses. Based on Readactor, Readactor++ was developed
which additionally randomizes the entries in function tables
such as in virtual function tables and procedure linkage
tables [14]. Export symbols, however, are and must remain
discoverable (see Section III-F on dynamic loading for details).

We show in Section V that this leaves enough space to
conduct powerful code-reuse attacks, when combined with
crash-resistance. Additionally, we found that it is challenging

to hide pointers in structures which are allowed to be accessed
legitimately (see Section III-F for details).

III. UNVEILING HIDDEN MEMORY

In the following, we demonstrate that a memory scanning
ability can be achieved by abusing the fact that certain code
constructs enable a crash-resistance. We introduce the technical
building blocks and show how they can be used to subvert
memory secrecy and randomization without control-flow hi-
jacking, code-injection, or code-reuse attacks.

A. Fault-Tolerant Functionality

Querying characteristics of memory regions is a legitimate
operation in a standard user-mode program. For example,
Windows provides API functions for that purpose: IsBadRead-
Ptr() and related functions allow a programmer to investigate
if a certain memory pointer is accessible with certain permis-
sions without raising faults. Similarly, VirtualQuery() yields
memory information of a range of pages. Furthermore, other
functionality exists whose primary purpose is not to deliver
information about memory permissions. However, exception
handling and system calls can be (ab)used to deduce whether
memory is accessible or not.

1) Exception and Signal Handling: Program code in Win-
dows can be guarded via Structured Exception Handling
(SEH) [41, 45] and Vectored Exception Handling (VEH) [42].
A programmer can install exception handlers and define filter
functions which decide if the handler is executed. In case of
C/C++ code and SEH, this is achieved with _ try{. . . }
__except(FILTER){. . . } and similar constructs, and in
case of VEH with the Windows API. This way, a chain of
exception handlers can be constructed: If an exception like an
access violation is raised, the exception handlers’ filters are
inspected successively until one handler is picked to process
the exception. It can then decide to pass the exception to
the next exception handler, terminate the program, or return
a status, such that program execution is resumed. In case of
SEH, program resumption can continue to execute the code
which follows the except(){} block, and in case of VEH,
the program is resumed at an address specified within the VEH
information. Signal handling is achieved in a similar way in
Linux: callback functions can be specified which are called
upon a signal raised by the program, such as a segmentation
fault. Similar to Windows, the callback function can process
the reason for the signal and decide to terminate the program
or to resume normal execution.

As we demonstrate in the following, legitimate exception
handling can be utilized to achieve crash-resistant functionality
within a higher-level interpreter language like JavaScript in a
browser without hijacking the control-flow.

2) System Calls: System calls in Linux have the ability
to return specific status codes based on the parameters they
were called with. If a system call expects a pointer to memory
and receives a pointer to an unreadable memory address, it will
return a different status code than when called with a parameter
which points to a readable memory address. For example, the
access() system call in Linux is normally used to check
different characteristics of a file whose name is passed as a
string pointer. If the pointer points to an unreadable memory

#include<windows.h>
#include<stdio.h>

PCHAR ptr = 0;
typedef VOID (*function)();

7 | VOID CALLBACK triggerFault(){

8 CHAR mem;

9 ptr++;

10 switch ((INT)ptr % 3){

11 case 0:

12 printf ("Execute 0x%.8x\n", ptr);
13 ((function) (ptr)));

14 break;

15 case 1:

16 printf ("Read at 0x%.8x\n", ptr);
17 mem = *ptr;

18 break;

19 case 2:

20 printf("Write to 0x%.8x\n", ptr);
21 *ptr = 0;

22 break;

23 }

24 printf("No fault");

25 |}

26

27 | INT main(){

28 MSG msg;

29 SetTimer (@, @, 1000, (TIMERPROC)triggerFault);
30 while (1){

31 GetMessage (&msg, NULL, @, 0);

32 DispatchMessage (&msg);

33 }

34 |}

Listing 1. Crash-resistant program in Windows

page, access() returns the error “Bad Address”, while it
returns “No such file or directory” for a readable memory
address (which does not have to constitute a valid filename).
A similar behaviour can be observed with system calls on
Windows. The system call NtReadVirtualMemory() returns
a different status code when applied to a readable memory
address than to an unreadable memory address.

However, both Windows and Linux do not raise any
exception or access fault. This side channel is still used by
egghunt shellcode. It is a specific type of injected code which
searches the memory space for the actual malware code after
the control-flow was hijacked with a vulnerability [43]. In this
paper, we show that actually searching the memory space is
possible without control-flow hijacking.

B. Crash-Resistance

Memory access faults like memory access violations in
Windows programs or segmentation faults in Linux programs
are fatal and lead to the abnormal termination of the program.
In both operating systems, exception handling is allowed to
inspect the type, reason, and faulting code which caused the
exception. If the faulting code is not handled by any exception
handler, the OS terminates the program. Surprisingly, we
discovered that faulting code which should crash a given
program does not have to bring down the program necessarily.
If we can force a program to stay alive despite its code
producing memory corruptions and access faults, we denote
this as crash-resistance.

Consider for example the Windows C-code in Listing 1.
On line 29, the timer callback function triggerFault() is
installed. It is executed in a loop with DispatchMessage()

(line 30 to 33). triggerFault() generates read, write, and
execution faults depending on the value of ptr which is
increased each time it runs. There are no custom SEH or
VEH handlers installed, thus the OS should terminate the
program on the first access fault. However, this is not the
case: the function triggerFault() is stopped at access faults,
but is executed permanently anew. Hence, ptr is continuously
increased and each access fault is triggered without forcing
the program into termination. Consequently, the program is
crash-resistant.

This behaviour was observed for both 32-bit and 64-bit
programs and we found the following reasons for it: the
timer callback triggerFault() is called by the function
DispatchMessagerWorker () from user32.dll. The callback
is wrapped by an exception handler. If an exception in
triggerFault() is raised, the corresponding filter function
executes and decides if the installed exception handler is
going to handle the exception. The filter returns EXCEPTION -
EXECUTE HANDLER independently of the exception type. This
instructs the exception handler to handle any exception.
DispatchMessagerWorker () returns and the program contin-
ues running without executing line 24.

After coorperation with Microsoft, this issue was confirmed
to be security relevant (tracked as CVE-2015-6161, see Sec-
tion VII-B for a discussion). There exist similar design choices
and a more in depth technical analysis can be found in an
article by Permamedov [40].

1) Crash-Resistance in Microsoft Internet Explorer: 1Tt is
important to note that we can exploit this feature inside Internet
Explorer and prevent it from abnormal termination on memory
corruption errors. We developed two ways to achieve this
behaviour in Internet Explorer:

1) A web page can use the JavaScript method window.-
open() to open a new browser tab window. JavaScript
code which is dispatched via setTimeout() or set-
Interval() inside that window can produce memory
corruptions without forcing the browser to terminate.

2) Since the introduction of HTMLS5, web workers are
available and dispatched as real threads in script en-
gines. JavaScript code executed with setTimeout() or
setInterval() inside web workers can generate access
faults without crashing Internet Explorer.

2) Crash-Resistance in Mozilla Firefox: While the crash-
resistance in Windows may seem like an obscure feature, we
were able to achieve crash-resistance in Mozilla Firefox as
well. We utilized the Firefox JavaScript engine SpiderMonkey
and its asm.js optimization module, called OdinMonkey. It is
able to compile a subset of JavaScript code ahead of time into
high performance native code [33].

We observed that OdinMonkey uses exceptions instead of
runtime checks in special cases. Most prominently, bounds
checking is not performed explicitly. Instead, page protections
on memory are used to check bounds implicitly. Every asm.js
function can access a pre-determined heap of a fixed size.
On creation, the heap is initialized as an array with zeros.
Thus, any access in bounds will not lead to an exception.
On 64-bit machines it is then guarded by a non-accessible
memory region of slightly more than 4GB. As asm.js only

permits 32-bit indices, this guarantees that any offset from the
beginning of the heap will either point into the valid array
or into the guard region. Out of bound memory accesses
on that array are not treated as critical faults. Instead, a
default value of NaN is returned to indicate that an element
outside of that array was accessed. This is accomplished by
an exception handler which prevents program termination:
OdinMonkey sets a global signal handler that gets called for
every unhandled exception in the process. The handler is
defined in AsmJSSignalHandlers.cpp. Out of bound memory
accesses provoke checks to ensure only the intended faults are
caught. First, the exception code itself is inspected to determine
if it is really an access violation. The faulting instruction
address is checked against the location of the asm.js compiled
code to ensure that it has thrown the exception. The last
check determines if the accessed address lies within the heap
and the guard pages of the asm.js code, but outside of the
bounds indicated by the size of the array buffer. Only if these
conditions are met, the handler signals that the exception has
been successfully resolved. It sets the instruction pointer to
the instruction following the one causing the fault and sets
the default value to be returned. Execution can continue safely
as if the access occurred correctly. The asm.js generated code
can then perform calculations with the default value or return
it into the fully featured JavaScript context. Setting the asm.js
heap pointer with a vulnerability is sufficient to achieve crash-
resistance in Firefox. Accesses to unmapped memory are then
treated as standard out of bound array accesses.

C. Memory Oracles

Armed with crash-resistance, we are able to develop a
novel memory probing method for web browsers. We denote
memory oracles to accomplish the following functionality
within JavaScript:

e If non-readable memory is accessed with read access, an
access fault is generated and handled in a way that allows
recognizing this event.

e In case memory is successfully read, the oracle returns
the bytes at that memory location.

In the following, we present the basic design of our
memory oracles. Due to the differences between the two
scripting engines within Internet Explorer and Mozilla Firefox,
the technical implementations differ, but the general approach
and the end result are the same for both browsers.

1) Memory Oracles for Internet Explorer: Assume an
adversary controls the buffer pointer in a string object by a
vulnerability. She can misuse that string object as a mem-
ory oracle as shown in the HTML Listing 2: In line 7
of oracle.html, a JavaScript string pointing to the four-
byte sized wide char buffer "AB” is allocated. Then, it is
modified with a vulnerability by the attacker on line 8 to a
memory address whose permissions are uncertain. This is only
illustrated with a comment in Listing 2. Thus, strObj does not
point to the actual data ("AB") anymore, but to an attacker-
chosen address. Line 5 of runOracle.html dispatches the
JavaScript function memoryOracle() in crash-resistant mode.
If the modified pointer points to unreadable memory, then
memoryOracle() stops running, but Internet Explorer stays
alive. Thus, the oracle can be queried again with another

1| <!-- file oracle.html -->
2 | <script>

3 | function memoryOracle (){

4 mem = strObj.substring(0,1);

5 /* continue computation */

6|}

7 | var strObj = "AB"

8 | /x modify WCHAR buffer pointer of strObj =x/
9 | var mem = undefined;

10 | window.open("runOracle.html");

11 | </script>
1 | <!-- file runOracle.html -->
2 | <body onload=runOracle()>
3 | <script>
4 | function runOracle(){
5 setTimeout ("window.opener.memoryOracle();", @)
6|3
7 | </script>
8 | </body>
Listing 2. Memory oracle in Internet Explorer 11. oracle.html is

used to open runOracle.html

pointer value. If a readable address is found, two bytes are
returned and further computations are carried out (line 5 in
oracle.html). Note that memory oracles can be seen as an
extension of memory disclosures, but are more powerful as
they can discover reference-less memory.

2) Memory Oracles for Mozilla Firefox: As mentioned
earlier we use asm.js to implement our memory oracle for
Mozilla Firefox. Due to the extensive checks performed by
this browser, developing a memory oracle is more complex
than in Internet Explorer. An object of type AsmJSModule
tracks all information related to an asm.js-compiled module.
This includes the location of the native code as well as the
asm.js heap location. As mentioned earlier, we do not only
need to perform our invalid access from an asm.js function,
but also are limited to the heap location plus the size of
the guard region. But with a vulnerability, the location of
the AsmJSModule object is disclosed, as it is reachable with
memory disclosures (see Section V-B). Then, the heap address
stored in the object’s metadata is overwritten to an attacker-
chosen address. A read attempt via an array access yields either
the default value or content at that address. The former is only
retrieved if memory is not readable. Hence, this constitutes
already our basic memory oracle. To query the oracle again,
the heap address in the AsmJSModule object is set to another
value and an array access is performed anew. As we will
demonstrate in Section V-B, the complete virtual address space
can be probed continuously.

D. Web Workers as Probing Agents

Web Workers are a feature of modern browsers. They are
intended to run as separate threads in a script environment. We
found that web workers can also be used as memory oracles
since they can be made crash-resistant. We developed a way
to utilize web workers to deduce information whether memory
is accessible or not.

In Listing 3, an attacker can control the wide char buffer
pointer of object strObj with the first element of the array
object bufPtr. Triggering the vulnerability and initializing
bufPtr is omitted in Listing 3, but as we show in Section V,
such a powerful control is realistic and can be achieved with

1 |<!-- file main.html -->

2 | <script>

3 |w = new Worker("worker.js")

4 |// register worker message receiver
5 |w.onmessage = function(e){

6 handleMessageFromWorker (e)

70}

8 | // start web worker

9 | w.postMessage("startWorker")

10 | function handleMessageFromWorker (e){
11 /* continue computation */

2|}

13 | </script>

// file worker.js

1
2 | self.addEventListener (’message’, initProbe, true)
3 | function initProbe(){
4 strObj = "AB"
5 pageStep = 0x1000; pageCount = @
6 idProbeMemory = setInterval (probeMemory, 0)
703
g8 | function probeMemory (){
9 addr = pageStep * pageCount
10 /* increase WCHAR ptr of strObj via bufPtr x/
1 bufPtr[@] = addr
12 pageCount++
13 /* try to read at address bufPtr[Q] =*/
14 mem = strObj.substring(@,2)
15 /* return here only if addr was readable x/
16 clearInterval (idProbeMemory)
17 postMessage ({ firstPage: addr, content: mem })
18 |}
Listing 3. Using web workers to find the first readable memory page

in Internet Explorer 11

a single memory corruption such as a null byte write or a
use-after-free vulnerability.

The web worker is started on line 9 in main.html. On
line 6 of worker.js, the function probeMemory() is dispatched
in crash-resistant mode with setInterval(). This causes
probeMemory () to start subsequently anew, but it stops at line
14 due to read access faults. It only runs further if the read
attempt on line 14 succeeds. This occurs eventually: as the
read attempt starts at address @x@9 but is increased by 0x1000
bytes on each run, four bytes of the first memory page are
returned finally. The content is transfered from the worker to
the context of main.html on line 17 and can be processed
further in handleMessageFromWorker () in main.html.

E. Finding Unreachable Memory Regions

With the ability to probe memory in browsers, we can
discover hidden memory areas like the Thread Environment
Block (TEB) or the safe region used by CPI to store pointer
metadata. Note that no references to these structures exist in
memory, and hence, they are not locatable by simple memory
disclosure attacks. The intuition behind our attack is that we
can probe for specific information and these probes enable us
to deduce if we have found the correct region. We thereby
neither use control flow-hijacking nor code-reuse nor code-
injection techniques as part of our attack.

We first explain how we can find the TEB. In 32-bit
processes, the structure within a TEB from offset 9x00 to 0x18
is known as Thread Information Block (TIB) and contains a
pointer to ExceptionList at offset 0x00. This pointer points
into a thread’s stack, because the OS places at least one
exception structure on the stack. Thus, the pointer’s value is

Algorithm 1: Discover a TEB via memory oracles

Data: Globals: addrT oProbe, pageCount, pageStep, tebMaxzEnd,
1dGetTEB, teb

Result: address of TEB in teb

Function startProbe

pageStep < 021000

tebMaxEnd < 0280000000 — 4

pageCount < 0

1dGetTEB < setInterval(getTEB,0)

end

Function getTEB

addrToProbe < (tebMazEnd — pageStep X pageCount)

pageCount < pageCount + 1

oracleProbe addrT oProbe

/% at this point probing succeeded */
clearInterval(idGetT EB)
teb <« setToPageBegin addrT o Probe

/* read TEB specific fields */
ExcList < readDword(teb)

StackBase < readDword(teb + 4)

StackLimit < readDword(teb + 8)

tebSelf < readDword(teb 4+ 0x18)

/* heuristic to identify TEB */

bool isTEB <« (teb == tebSelf)

ifisTEB A (ExcList < StackBase) A (ExcList > StackLimit)

then

| success = 1

else
/* we found other readable memory */
/* continue probing for a TEB */
1dGetTEB <+ setInterval(getTEB,0)

end

end

between the values StackBase and StackLimit at offset 0x04
and 0x08, respectively. Additionally, the field at 0x18 contains
the address of the TEB/TIB itself.

Thus, we can apply a simple heuristic to scan over the
memory space and discover a TEB (see Algorithm 1). Probing
for a TEB in a 32-bit process (e.g., Internet Explorer tab pro-
cess) starts at the end of the last usermode page ox7ffffffc
(tebMaxEnd). TEBs can reside somewhere in the address
space between 0x78000000 to 0x80000000 [45]. No other
structures except for the PEB and shared data are in that
memory region. The call to setInterval() in startProbe()
sets getT E B() as timed function to execute permanently anew.
An address is queried with a memory oracle (oracle Probe())
which either returns when the address is readable, or produces
an access fault. In the latter case, getT EB() executes again
and the address to probe is decreased by the size of a memory
page. As soon as an address is readable, its first three least
significant bytes are set to zero (setToPageBegin()). The
timed execution of getT EB() is cleared with clearInterval()
and specific fields are read via memory disclosures. If the fields
conform to a TEB structure, then success is set, otherwise
setInterval() sets getT EB() again to be executed in inter-
vals. On success, the adversary can read any TEB or PEB
information to abuse them in malicious computations further
on.

The same method can be applied to 64-bit processes as
well to discover the TEB: the offsets have to be adjusted to
conform with the 64-bit pointer size and the address of the
last possible usermode page, where probing starts, has to be
modified. The algorithm can be extended to probe fields of
a PEB in case the TEB heuristic triggers. This avoids false
positives, which may be hit on 64-bit, as TEBs are mapped
below shared libraries.

1) Discovering CPI Safe Region: The linear table-based
and hashtable-based 64-bit implementations of CPI rely on
hiding the location of the safe region from an attacker [27].
In the linear table-based implementation, the safe region is
242 Bytes (4 TiB) in size, out of the 247 Bytes (128 TiB)
of available virtual userspace memory on modern x86-64
processors. Trivially an attacker can guess any address inside
the safe region with a probability of 3.125%, but has no way of
knowing where exactly this address is located in relation to the
start of the region. Thus, she cannot deduce where the metadata
for a specific pointer resides. Without a memory oracle, this
provides an acceptable level of security. However, an attacker
capable of probing memory can quickly find the exact location
of the safe region without the risk of crashing the process.

The safe region consists of mostly zero bytes pagewise.
Thus, we can distinguish a non-mapped address from an
address containing one or more zero bytes. We use an approach
that merely scans for zero bytes. If it locates a mapped address,
it samples more addresses in the same page. This determines
whether it is part of the safe region or if a false positive was
hit. Due to the sparsely populated region, this yields correct
results under nearly all circumstances. Evans et al. [19] also
observed this behaviour in their work.

After we hit the safe region, we still have no knowledge
about where it exactly begins. As we can safely cause access
violations due to the crash-resistance, we employ a binary
search downward from this address until we find the first
page. The algorithm works due to the fact that access to an
address before the safe region will cause a fault, while an
access anywhere after the start of the mapped area will not
cause a fault. Consequently, we can approximate the beginning
of the region by halving the error margin with every step.
The maximum number of probes with binary search is log, n,
with n being the number of elements to search in. There are
4TiB/4KiB = 1,073,741, 824 possible pages containing the
start of the safe region. This means we need a maximum of
logy 1,073, 741,824 = 30 tries after we located an arbitrary
address in the safe region to determine the start. Assuming the
worst case, we need 32 (1287'iB/4T'iB) probes to locate the
safe region and afterwards 30 probes to locate the exact starting
address. To decrease the likelihood of erroneously marking an
address containing zero bytes not belonging to the safe region,
the algorithm can be modified to sample more addresses in the
same page.

With the ability to alter the information on any pointer we
want, the protection of CPI can be circumvented as we can
just set the value allowing the action we need to perform with
the pointer. Note that the attack assumptions (i.e., a read and
write primitive as well as an information leak) required for our
memory oracle are within the threat model of CPI.

F. Subverting Hidden Code Layouts

Data structures related to exports are an essential aspect
of dynamic loading. These data structures contain function
addresses allowed to be imported by other modules, as ex-
plained in the following. We first cover this background
information before discussing which challenges this introduces
for defenses.

1) Dynamic Loading: Windows as well as Linux provide
legitimate methods to load shared libraries into a running
process. This procedure is known as dynamic loading. Shared
libraries in Windows contain an Export Address Table (EAT)
with pointers of exportable functions. This structure is often
accessed by legitimate code even during a program’s runtime
and not only at load time. For example, the Windows API
function GetProcAddress() solely needs the module base and
the function name to retrieve a function address. It reads the
module’s Portable Executable (PE) metadata until it discovers
the appropriate function and returns its address. Hence, know-
ing a module’s base address is sufficient to retrieve any of its
exportable functions. Linux provides a similar API: dlopen()
can be used to load a shared library into a running process
and dlsym() returns the address of a needed symbol (e.g., a
function).

The key observation is that export symbols and export
addresses are available throughout the complete runtime of
a process. This is necessary because a library loaded dy-
namically during runtime may import functions which are
exported by system libraries like ntdll.d1ll (Windows) or
libc.so (Linux). Therefore, exports in system libraries are
inevitable. Dynamic loading is especially important in web
browsers: Firefox implements a plugin architecture to load
desired features on the fly. Similarly, Windows implements
the Component Object Model (COM) which is indispensable
for ActiveX plugins in Internet Explorer [11].

Note that disabling dynamic loading is not an option in
practice, as it would break fundamental functionality and
compatibility, and would require loading all libraries at startup
of a process. To the best of our knowledge, there is no defense
which protects export symbols against illegal access. However,
Export Address Table filtering Plus (EAF+) of EMET [31]
forbids reading export structures based on the origin of the
read instruction. We show in Section V-A that this is only a
small hurdle in practice.

2) Leveraging Crash-Resistance to Subvert Hidden Code
Layouts: In case of code pointer hiding, which is utilized
by Readactor [13], the functions’ addresses are hidden be-
hind execute-only trampolines which mediate execution to the
appropriate functions. Thus, their start addresses cannot be
read directly. However, with crash-resistance, an adversary can
discover the TEB without control-flow hijacking. After she
reads information of a TEB, she can read the base addresses
of all modules out of the PEB. Another option despite TEB
discovery is to sweep through the address space in crash-
resistant mode. As the PE file header starting at a module’s
base is characteristic, memory oracles can provide modules’
base addresses. Furthermore, by utilizing memory disclosures,
the attacker can resolve trampoline addresses corresponding
to exported functions. She can then chain together several
trampoline addresses to perform whole function code-reuse,
as we will demonstrate later on.

IV. CONQUERING (RE-)RANDOMIZATION

Randomization of the memory layout or the code itself
has been proposed by various works (e.g., [23, 37, 56]) and
much attention was payed to their security and effectiveness.
Thus, the latest outcome of this evolution are fine-grained re-
randomization schemes such as Isomeron [17], which aims

at preventing code-reuse primitives (see Section II-B3 for
details). When utilizing crash-resistance, an adversary can
abuse weak points in the defenses.

A. Defeating Fine-Grained Re-Randomization

In the case of Isomeron, re-randomization is applied to
the layout of the code. Hence, in two different points of time
one of two different code versions can be used for a specific
execution flow. However, to the best of our knowledge, data is
not re-randomized at all. Thus, constant data is a foothold for
an adversary to undermine the security guarantees of Isomeron
as we discuss in the following.

1) Constant Structures: As explained above, the knowledge
about a module’s base address is sufficient to resolve any of its
exported functions. While re-randomizing the code layout dur-
ing runtime can be performed efficiently, re-randomizing the
layout of data structures and the base addresses of modules has
yet to be shown. Moreover, the PE metadata layout of a module
needed to discover export functions must stay consistent such
that legitimate code can traverse it. Dynamic loading crucially
relies on this aspect. The same holds for the metadata of the
ELF file format. The potential shortcoming is that an attacker
can read that metadata with memory disclosures as well. Re-
randomizing the metadata such that its field offsets change
would require adjusting legitimate code which accesses it.
Additionally, data structures in other modules which reference
the metadata need to be updated, too. Thus, we assume re-
randomization of data structures allocated in a large number
across the complete virtual address space is a challenging and
yet unsolved task.

2) Pulling Sensitive Information: A TEB also contains
a pointer to a process’ PEB. One of its fields, namely
PPEB_LDR DATA LoaderData, contains the base addresses,
names, and entry points of all loaded modules. We extract that
information after we found a TEB with memory oracles. Then
we can traverse the PE metadata of each module and retrieve
all exported functions independent of the randomization ap-
plied. We therefore read the individual PE fields with memory
disclosures and follow the specific offsets until we reach the
EAT. Then, we can loop over the function names and extract
the function addresses. As noted above, EMET applies filters
to EATs, such that only legitimate code can traverse it. These
are ineffective in practice and can be bypassed as we show in
Section V-A.

B. Code Execution under Re-Randomizing and CFI

Abusing a memory corruption vulnerability in an address
space which is randomized in a fine-grained way on the
instruction level and additionally re-randomizes before each
function call is very challenging. To further harden exploita-
tion, indirect calls are only allowed to dispatch functions and
returns can only target instructions which are preceded by call
instructions. This is consistent with coarse-grained CFI like
Microsoft’s Control Flow Guard, BinCFI [60], CCFIR [59] or
code-reuse protections in EMET [20, 36]. Thus, known code-
reuse primitives such as ROP or Call-Oriented Programming
(COP [10]) are not an option. Return-to-libc is inappropriate
as well since a shadow stack can detect such attacks.

However, as we can retrieve all export functions of all
modules via crash-resistance and memory oracles, we opt to
chain exported functions in a call-oriented manner. As re-
randomization preserves the semantic of functions indepen-
dent of the code (layout) mutations, they are reusable in a
consistent way. The basic idea is to invoke exported functions
which dispatch other exported functions on indirect call sites.
Ultimately, an adversary can achieve the goal of executing her
code of choice.

1) Discovering Functions for Code-Reuse: At the point of
control-flow hijacking, when the adversary dispatches her first
function of choice, we assume that she can control the first
argument’s memory (see Section V for details). Thus, we want
functions which contain indirect calls whose targets can be
controlled with values derived from the first argument. To find
possible candidate functions usable for function chaining, we
apply static program analysis and symbolic execution.

An executable module is disassembled, its Control Flow
Graph (CFG) is derived, and all exported functions are dis-
covered. We then mark all indirect calls in them. In the
next step, we extract the shortest execution paths between
the beginning of a function and its indirect calls. We utilize
the symbolic execution functionality of miasm2 [28] on the
gathered paths to detect if the first argument to the function
influences the target of the indirect call. If this is the case,
we symbolically propagate potential arguments the functions
receives to potential parameters a function may take when
dispatched at the indirect call site.

Figure 1 illustrates the concept of argument propagation to
an indirect call instruction inside Rt1InsertElementGeneric-
TableFullAvl in the NT Layer DLL. ARG, are arguments
the function receives via the stack. At the indirect call site
memory at ARG, + 0x2C is taken as a call target E1P,,;.
Additionally, arguments are propagated to parameters for the
callee (argy,). For example, the first argument ARG, becomes
the first parameter for the callee, ARG} is increased by ten to
become the callee’s second parameter args. Such propagation
summaries for export functions serve as a base to build code-
reuse function chains. The ultimate goal is to control the
parameters of the /ast function, which eventually performs the
operation wanted by an adversary.

2) Crash-Resistant Oriented Programming (CROP): Be-
sides function chaining, an adversary can also utilize the crash-

args <« EBP;
args <+ FEBX;,
args <+ FESI;
args <« ARG3+ 0x10
argy, <+ ARG,
FAX,,: <« ARG3+0x10
ECX,,;: <+ ARGs
EBX, <+ ARG,
EIP,,; <+ [ARG;+ 022C]

Figure 1. Propagation summary for RtlInsertElementGenericTableFullAvl.
REG,;,, are registers which are not redefined until the indirect call.

resistance feature to sequentially execute exported system calls
or exported functions. Each call is thereby triggered within
JavaScript and ends with a fault. As faults are handled, a
new call to another exported function or function chain can
be prepared and issued as we explain in the following.

The exported function NtContinue() in ntdll.dll can
be used to set a register context [58]. This context is taken
as first parameter by NtContinue() and registers are set such
that program execution continues within that context. At the
point of control-flow hijacking which starts a function chain
of choice, eventually NtContinue is dispatched as the last
function in our chain. It takes a propagated argument field as its
only parameter PCONTEXT. In the PCONTEXT parameter, we let
the stack pointer point to attacker-controlled memory and the
instruction pointer to an exported function like NtAllocate-
VirtualMemory (). The return address for the function is set to
NULL in the controlled memory. NtContinue() sets the register
context and the function of choice (e.g., NtAllocateVirtual-
Memory()) executes successfully. Upon its return, an access
fault is triggered as it returns to NULL. However, this fault is
handled and the browser continues running.

This way, exported functions or syscalls can be dispatched
subsequently in crash-resistant mode. Similar to our scan-
ning technique shown in Section III-E, this happens within
JavaScript with setTimeout or setInterval. We term this
technique Crash-Resistant Oriented Programming (CROP)
and in spirit it is similar to sigreturn-oriented programming
(SROP) [8], as we discuss in Section VL.

V. PROOF-OF-CONCEPT IMPLEMENTATIONS

To demonstrate the practical viability of the methods dis-
cussed in the previous sections, we developed proof-of-concept
exploits for Internet Explorer (IE) 10 on Windows 8.0 64-bit,
for IE 11 and Firefox 64-bit on Windows 8.1 64-bit, and for
Firefox 64-bit on Ubuntu 14.10 Linux 3.17.1. IE is a multi-
process architecture whose tab processes run in 32-bit mode.
We utilized CVE-2014-0322 which is a use-after-free bug in [E
10. It allows increasing a byte at an attacker controlled address.
For IE 11, we utilize an introduced vulnerability which only
allows writing a null byte to an attacker-specified address.

The general procedure we utilize to ultimately execute code
consists of the following six steps:

1y
2)

Trigger the vulnerability to create a read-write primitive
usable from JavaScript.

Utilize the primitive as memory disclosure feature to leak
information accessible with memory disclosures.

Use the primitive as memory oracles to find constant
hidden memory such as the TEB or module bases.
Traverse the modules’ EATs and extract exported func-
tions.

Prepare attacker-controlled objects and set up the function
chain.

Invoke a JavaScript function to trigger execution of the
first function in the chain at an indirect callsite.

3)
4)
5)

6)

A. Exploiting IE without Knowledge of the Memory Layout

We use heap feng shui to align objects to predictable
addresses [57]. The use-after-free vulnerability in IE 10 and

10

the null byte write in IE 11 are used to modify a JavaScript
number inside a JavaScript array. In IE, a generic array
keeps array elements in different forms, which depend on
their type. Numbers lower than 0x80000000 are stored as
element = number < 1 | 1. In contrast, objects are stored as
pointers and their least significant bit is never set. We use the
vulnerability to modify an element which represents a number.
This way, we create a type confusion and let the number point
to memory of choice (see Figure 2). We control 0x400 bytes
at that location and can read and write it with byte granularity.
We craft a fake Js::LiteralString object, including the
buffer pointer to any address we want, a length field, and the
type flag'. When the modified number element is accessed, IE
will interpret it as a string object. This way, we can use the
JavaScript function escape() on that element to retrieve the
data where the string’s pointer is pointing to. This functionality
is used to (i) probe addresses we set in our fake string object
with crash-resistant memory oracles (see Section III-C) and
(ii) read memory content at addresses which are readable.

+0x8
typePtr

+0x10

vtablePtr length bufPtr

Attacker controlled
JavaScript array

Figure 2. After modifying a number, IE interprets it as pointer to an object
(fakePtr). As it points to a JavaScript array, elements can be set and fake
objects can be created. By varying the buffer pointer (bufPtr), a fake string
object can be used for crash-resistent memory probing attempts.

1) Memory Probing: After setting the scene, we probe with
page-granularity for a TEB starting from @x7ffffffc and ex-
tract addresses of all exported functions. Optionally, we probe
with a granularity of 64KB (module alignment) and check
for the DOS header and PE header in case probing returns
readable memory. Similar to the former, this circumvents re-
randomization schemes which do not re-randomize metadata
in a mapped module.

As another hurdle, Export Address Table Filtering Plus
(EAF+) of Microsoft EMET [31] needs to be bypassed, too,
since it checks read attempts to export-metadata of mapped PE
modules. If the read originates from illegitimate instructions,
then the program is terminated. This should prevent reading
export or import metadata with JavaScript. Therefore, modules
are blacklisted which are not allowed to access it. However,
we discovered that applying escape() on large-sized string
objects triggers memory copying instructions from whitelisted
modules (e.g., msvert.dll). Thus, we can simply copy a com-
plete PE module into a JavaScript string by using escape() on
our fake Js::LiteralString object. Finally, we can resolve
exports within the copy of the module.

2) Code Execution and Function Chaining: With all
exported function addresses available, we craft a fake vtable
and insert the addresses of five exported functions into the
fake object. We dispatch a JavaScript method of the fake string
object, which triggers a lookup in the vtable and a dispatch
of the first exported function in our chain. Thereby, the first
function also receives our fake object as first argument, such
that we control two parameters for the last function in the

! Most JavaScript objects are C++ objects and contain a vtable pointer. As we do not
know the location of any module’s data yet, we do not set it. However, accessing the
fake string object with e.g. escape() still works.

AsmJSModule object
vtablePtr 7
struct pod

+0x8

size_t codeBytes_ generated code

+0x280 | yint8_t* code

Asm]JSActivation*
uint8_t* heaplLoc

Figure 3. Location of the asm.js heap pointer (heapLoc) needed to modify
in order to gain crash-resistance.

chain (LdrInitShimEngineDynamic). The chain propagates
our first controlled argument P in a way that

LdrInitShimEngineDynamic([P+0x0@8]1+0x20, [P]+0x18)

is executed. If the first parameter points to any module,
the second parameter can specify a string pointer to a DLL
name. This DLL can reside on a remote server and is
loaded into the address space of the program. Hence, the
adversary reaches her goal of code execution. We opted to
use LdrInitShimEngineDynamic because neither EMET [31]
nor CCFIR [59] blacklist the function, and normally dynamic
loading of remote DLLs via the standard Windows API is
monitored. We can also use WinExec([P+0x08]+0x20, <*>)
with a chain of four functions to achieve the execution of
arbitrary programs.

B. Memory Probing in Mozilla Firefox

Next, we describe the steps we used to scan memory in
64-bit Mozilla Firefox on Windows 8.1 and Ubuntu 14.10
Linux 3.17.1 All steps are also applicable to any other 64-
bit application embedding the SpiderMonkey engine. This
includes for example Mozilla Thunderbird with asm.js enabled.
We introduced a vulnerability into Firefox 38.0 to simulate
a real-world bug. This allows to leak information into the
JavaScript context and write to memory addresses. With these
primitives, we show the creation of crash-resistance and the
feasibility of memory oracles to scan arbitrary memory.

In contrast to Internet Explorer, we do not need to rely on
setInterval() and web workers. Instead of creating a fake
object, we need to change fields in Firefox’ object metadata
to obtain crash-resistance. However, web workers can be used
to increase the performance, especially since calling into and
out of asm.js is an expensive operation. The main bottleneck
is the handling of generated faults, because they are delivered
with four context switches for every exception.

a) Manipulating the Function Object: We let Firefox
create an asm.js function by utilizing the asm.js subset of
JavaScript. This leads to a AsmJSModule memory object. We
then overwrite the heap location to point to the memory region
we want to scan. To achieve this goal, we use an information
leak to first deduce the location of the JSSValue object,
which constitutes the function reference. Then, we utilize
targeted reads to learn the location of the heap address in the
AsmJSModule. We then set the heap location to the region we
want to scan (see Figure 3). It is possible to use the function
object several times: by setting the heap location to another
address for each probe, we use the ahead-of-time compiled
asm.js code repeatedly.

11

b) Probing the Memory: A loop in JavaScript is utilized
which calls into asm.js and utilizes the asm.js crash-resistant
functionality to probe target regions. We use an asm.js function
which returns a 64-bit double float value at a given address.
The target region may contain entries that are interpreted as
NaN. Due to the way floating point numbers are handled, the
result is NaN if a value with the highest 11 bits set to 1 is
hit. This cannot be distinguished from a faulting read attempt,
as this yields NaN as well. This needs additional byte-shifted
probes around that address to verify that the page is indeed
mapped. By retrieving a value which is not NaN, we are certain
that the page is mapped.

We are able to scan 4GiB beginning from the heap start.
Once this space is scanned, the heap address of the asm.js
module needs to be adjusted and scanning can continue. Care
has to be taken to only perform probes which attempt to read
out of bounds of the asm.js heap size. The heap size is specified
on creation of the asm.js object. Normally, when the heap
pointer is not modified, inbound accesses do not throw an
exception, while out of bound accesses do. As we modified the
heap location to point to an unmapped address, inbound heap
accesses will throw exceptions. These are not crash-resistant.
Simply moving the initial heap location to a lower address and
scanning with an offset from the targeted address avoids this
problem. Thus, only out of bound probes are utilized, as these
do not terminate Firefox.

c) Determining Memory Contents: Once a mapped
page is found, we need to determine what it contains. When
sweeping the complete memory, we can hit shared modules,
data structures like the TEB, or application heaps. Learning
what memory contains can be done using regular JavaScript
by utilizing the capability to call fully featured JavaScript
functions from asm.js. We can therefore use the same heuristics
used with Internet Explorer to, for example, safely deduce a
TEB. At the end, the same techniques used in Internet Explorer
can be utilized to gain code execution.

C. Memory Scan Timings

We used performance.now(), the high-resolution per-
formance counter of JavaScript. We performed 268,369,911
probes with Firefox (Windows and Linux) and 32,768 probes
with IE on unmmapped memory to measure the probes per
seconds a single browser thread can achieve. We observed
different scanning rates between the two tested browsers. 32-
bit Internet Explorer was only able to reach 63 probes/s, while
Firefox was able to scan with 718 probes/s in Windows and
18,357 probes/s in Linux on average. However, this includes
optimizations as explained below.

The difference in scanning speeds is caused by the different
methods used for probing. While Internet Explorer needs to
spawn a new JavaScript function with setInterval() for
every probe, Firefox uses ahead-of-time compiled code of
asm.js. This causes significantly less overhead. We were able
to move parts of the JavaScript scanning loop into the asm.js
code, providing another speedup. This is due to fewer calls
into the asm.js JavaScript subset, which are expensive. We
provide only maximum scanning times, as these are already
small enough to be practical for an adversary.

In 32-bit Internet Explorer it takes at most (0280000000 —
0278000000) /021000 32,768 crash-resistant probes to
locate the TEB. Thus, the maximum scanning time is
(32,768/63)s = 520.1s (8.7 minutes). To locate the most
upper mapped DLL, 23 256 probes are necessary at
most. This is due to the module base entropy of 8 bits, the
64KB alignment of modules, and the address scan range from
0x77000000 to 0x78000000 where at least one module resides.
This yields a maximum scanning time of (256/63)s = 4.1s.

In Firefox 64-bit in Windows we scanned for PE metadata
of mapped modules. To locate the DLL mapped on top of the
address space, it takes at most 2'9 = 524, 288 probes due to
a module base entropy of 19 bits in 64-bit processes. Thus,
the maximum scanning time is (524, 288/718)s 730.2s
(12.2 minutes). Scanning starts at the top usermode address
of Ox7FFFFFE@Q@Q and is performed toward lower addresses
in 64KB steps.

In Firefox 64-bit for Linux, we focus on finding reference-
less hidden memory. An instantiation of reference-less memory
is the linear safe region of the 64-bit implementation of CPI.
Locating the safe region of CPI can be done in very few steps.
As outlined earlier, we first probe for a location in the region
and then use binary search to locate the exact starting address.
As this requires less than 1,000 probes, it is almost instant
((1,000/18,357)s = 0.058).

The difference in probes/s between the Windows and Linux
version of Firefox is due to the fast signal handling in Linux
in comparison to the exception handling in Windows. Speed
increases further when spawning several workers that perform
the scanning. This is due to multiple cores on modern CPUs,
which run the worker threads in parallel.

VI. RELATED WORK

Recent years of research show a continuously rising
amount of achievements on both the offensive and defensive
side. Back in 2004, Shacham et al. [50] showed the inef-
fectiveness of ASLR on 32-bit systems due to its suscep-
tibility to brute-force attacks. Their work suggested defense
mechanisms like subsequent re-randomization. While their
approach targeted servers on 32-bit systems, we show that
similar capabilities are possible with web browsers on 32-bit
and 64-bit platforms.

Since then, several approaches have been proposed to
tackle different levels of randomization problems. Binary
Stirring [56] randomizes basic blocks at the cost of high
performance loss. Oxymoron approaches the problem by using
information hiding techniques [3]. By rewriting 32-bit Linux
binaries and adding an additional protected layer of indirec-
tion for control flow transfers, Oxymoron allows fine-grained
ASLR without losing code sharing capabilities. However,
these defenses are still vulnerable against data-only attacks
combined with information leakages. Snow et al. introduced
just-in-time code-reuse (JIT-ROP) [51] that can repeatedly
utilize an information leak to bypass fine-grained ASLR im-
plementations. The authors suggest frequent re-randomization
at runtime as a possible solution. Isomeron [17] approaches
that problem by applying re-randomization at different lev-
els of granularity. This approach has an immense effect on
thwarting code-reuse attacks. However, our work shows that

12

re-randomization of code is not enough, as constant structures
can be misued to bypass it. Especially with crash-resistance
and memory oracles, constant structures are locatable without
control-flow hijacking.

Bittau et al. [6] proposed another interesting flavor of ROP
attacks which they called Blind ROP (BROP). The authors
show how stack buffer overflows can be utilized to bypass
ASLR and conduct code-reuse attacks remotely. BROP uses
server crashes as a side channel which, in turn, reveals infor-
mation about the memory layout. By locating and arranging
specific gadgets remotely, they trigger a write over a socket
that transfers the binary to the attacker to find more gadgets.
Our work is different in that it focuses on browsers, which
have a hard crash policy. Nevertheless, with crash-resistance
and memory oracles we are able to undermine memory secrecy.

Seibert et al. introduced another approach on the Apache
server by reading bytes and measuring the time [48]. It turns
out that specific bytes leave different timing patterns and thus,
probed in sequence, reveal information about the memory
layout. Our work differs in that we introduce fault-tolerant
functionality in browsers, which has not been shown before.
Its result, however, is similar, in that we can deduce memory
which is not locatable by simple memory disclosures.

Another branch of defense mechanisms involves CFI. Due
to its performance overhead, research has put its focus on
the coarse-grained variant of CFI. However, recent research
demonstrates that the coarse-grained variants are prone to
code-reuse attacks [16, 21, 47]. Schuster et al. introduce
Counterfeit Object-Oriented Programming (COOP) [46] that
ranks itself on the same line with other code-reuse attacks.
The authors manage to bypass many CFI defense mechanisms
by using chains of existing C++ virtual function calls. The
drawback is that semantic-aware C++ defenses check virtual
function table hierarchies and prevent COOP. In contrast, we
present a different function-reuse technique in addition to
the contributions of crash-resistance and memory oracles. It
uses exported function chains and C-like indirect calls instead
of virtual function calls. Thus, C++ defenses are insufficient
against it. Furthermore, we combined function chaining with
fault-tolerance to gain a novel function-reuse technique named
Crash-Resistant Oriented Programming (CROP).

Note that register or data-flow randomization is insufficient
as a defense against function chaining as well: function pro-
totypes of exported functions are mostly documented to ease
their usage by a programmer. Thus, the number of arguments
and their types are known. If an exported function propagates
fields of its first argument structure to parameters for a function
at an indirect call site, the propagation is unaffected by register
or data-flow randomization. As the propagated fields constitute
parameters, they always need to be pushed onto the stack or
put into parameter registers specified in the ABI. Shuffling the
parameters makes is necessary to adjust the parameter handling
of each function which is allowed at the indirect call site. To
our knowledge this is not done by current defenses [13, 37].

In 2014, Kuznetsov et al. introduce CPI [26]. As discussed
before, CPI is prone to data pointer overwrites: Evans et al.
showed that such overwrites can be utilized to launch timing
side-channel attacks that lead to information leakages about
the safe region [19]. Similarily, we can deduce the reference-

less safe region. However, we show that it is possible within
Firefox which does normally not allow faults, while Evans et
al. utilize the web server Nginx, which respawns upon a crash.

CROP is in spirit similar to sigreturn-oriented program-
ming (SROP [8]), as we can set register contexts as well.
While SROP is only possible on Linux, we can utilize crash-
resistance to perform arbitrary exported function chaining and
system call dispatching on Windows in a fault-tolerant way.

VIL

In the following, we discuss the implications and limita-
tions of crash-resistance and memory oracles. Additionally, we
elaborate on potential countermeasures and design choices to
thwart fault-tolerant memory scanning.

DISCUSSION

A. Novel Memory Scanning Technique

The existence of reliable and fast memory oracles enables
an attacker to bypass all defenses that rely in any way on
metadata that is stored in userspace. A common approach was
to keep the data in reference-less memory so an attacker would
need to hijack the control flow, inject code, or perform code-
reuse attacks, before disabling that protection. This implies that
the defense also protected itself. However, we show that hidden
information in the userspace can be found by an attacker,
without control-flow hijacking, code-injection or code-reuse
attacks. While this primitive alone does not allow an attacker
to exploit an application, it provides a valuable addition to her
arsenal. It is an advantage when simple memory disclosures are
not an option. Hence, it might allow circumventing previously
effective defense mechanisms.

With the knowledge obtained by crash-resistant address
space scanning, an attacker can overwrite data considered to be
unreachable by adversaries. If such data serves as metadata for
protection mechanisms, it can enable the successful execution
of other exploit stages. This might enable control-flow hijack-
ing again or might endanger the security provided by shadow
stacks [15]: modifying a reference-less shadow stack after it is
discovered with memory oracles might allow traditional code-
reuse attacks again.

Another notable example is the reference-less safe region
used by 64-bit CPI implementations. CPI is able to prevent
control-flow hijacking exploits, but altering the safe region’s
metadata effectively disables it. This allows control-flow hi-
jacking and thus, the realization of traditional code-reuse
attacks such as ROP. However, CPI also provides a Software
Fault Isolation (SFI [55]) and hash table-based implementation
of the safe region [27]. While the SFI version is immune
against memory oracles, it has an additional performance
overhead of about 5%. The hash table-based version is located
in userspace and can have a size of 230 bytes, while the
original linear-based safe region has a size of 2*2. According
to Kuznetsov et al. [27], it requires around 51,000 probes to
locate the hash table-based safe region. In Firefox on 64-bit,
we achieve a rate of 18,357 probes per seconds. Thus, locating
the safe region would still be fast with only 2.78 seconds. As
the 32-bit safe region is protected by segmentation, we cannot
reach it with memory oracles.

Recent work named Readactor++ [14] protects C++ vir-
tual function call sites. We do not claim to have bypassed

13

Readactor++. However, we weakened it in the sense that we
can leak information about the memory layout with memory
oracles. More specifically, we can extract trampoline addresses
corresponding to exported functions.

The speed of memory scanning with memory oracles
currently varies across browsers and platforms. This is due to
a) the way they are implemented and b) the runtime overhead
of the exception/signal handlers. Firefox 64-bit on Linux
achieves the fastest scanning as ahead-of-time asm.js code is
used, which intentionally uses exceptions for bound checks.
Additionally, signal handler on Linux are faster than exception
handler on Windows. In contrast, the fault-tolerant feature in
Internet Explorer is harnessed with code normally used to
execute JavaScript timer functions. Thus, much boilerplate
code is executed and slows down the scanning ability, in
addition to the SEH exception handling overhead. An increase
in performance might be gained with typed arrays, as element
accesses map to array element accesses on the assembly level.
Currently we use a fake string object in Internet Explorer. With
asm.js coming to Internet Explorer on Windows 10 [30], it
might be possible to increase the speed further.

We currently only make use of fault-tolerant functional-
ity based on exception/signal handling for crash-resistance,
memory oracles, and memory scanning. While we show their
existence and powerful advantages, crash-resistance might be
achieved with system calls or functions intended to query
memory information. We hope that future work will reveal
more crash-resistant functionality for different purposes such
as CROP (see Section IV-B2). Automated approaches utilizing
static analysis might simplify that process, such that legitimate
crash-resistant code paths become controllable by an attacker
without control-flow hijacking [54].

B. Design Choices, Countermeasures, and Defenses

Several choices can be made to prevent crash-resistance.
Single instances of crash-resistance are fixable. For example,
we do not see any legitimate uses in the crash-resistance of
Internet Explorer. Actually, after cooperation with Microsoft it
was determined that this issue is security relevant and affects
Internet Explorer 7 to 11 and the Microsoft Edge Browser
(see CVE-2015-6161). It was fixed for Microsoft Edge during
the Patch Tuesday cycle in December 2015 and hardening
settings for Internet Explorer were made available [32]. In the
past, a few vulnerabilities had the ability to survive crashes,
and thus, adversaries were able to trigger them several times
in order to bypass ASLR or to increase successful exploit
chances [25, 52]. Hence, Microsoft’s Security Development
Lifecycle (SDL) suggests avoiding global exception handlers
which can catch all violations [29]. Note that single instances
of buffer overflow vulnerabilities can be fixed as well, while
the class of buffer overflows cannot be easily completely
eliminated. Crash-resistance is similar and we argue that
constructing a memory oracle is possible on every modern
system which has a way for applications to handle faults.

1) Crash Policies: A general countermeasure is to limit the
number of faults that can be caused. This means an attacker
must find ways to reduce probing attempts and hit the right
location in one of her first scans. However, this only provides
a probabilistic solution as there is a small chance for the first

probe to succeed. In addition, a hard crash policy can interfere
with use cases where legitimate exceptions can occur and are
expected. As described in Section III-B2, Firefox leverages
exceptions for fast array accesses to avoid bounds checking.
An attempted out of bound read is caught with the help of the
exception handler and returns a default value (undefined).
Removing exception support would decrease the performance,
because additional bound checks for every array access would
have to be performed.

2) Accurately Checking the Exception Information: The
most effective countermeasure against crash-resistance is to
accurately check the exception information of a triggered fault.
The triggered exceptions we used in Internet Explorer for
crash-resistance allow any fault to be used as a side-channel.
Exception handlers should catch only faults which are expected
in guarded code. Therefore, the exception type should be
inspected carefully as well as the address of the instruction
which caused the fault. This information is necessary to verify
that only the intended faults are caught. Additionally, it is
necessary to make sure that guarded code cannot throw other
exceptions. While it might be difficult to always handle all
faults accurately, unintended faults should always be forwarded
unhandled. This way the operating system can safely terminate
the program and prevent crash-resistance. Note that the fault
handler of Firefox performs rigorous checks on the data pro-
vided by the OS. This includes information about the address
of the instruction causing the fault, the error code, and the
exception type. Thus, we needed to modify metadata in the
process in order trick the checks before triggering a fault.

Exception information is processed differently in Windows
and Linux. Linux can differentiate if a fault occurred due to
unmapped memory or due to an access with wrong permis-
sions. As such, exception handling in the asm.js functionality
of Firefox can utilize this subtlety to prevent crash-resistance.
Actually, this is a good example for fixing a single instance of
crash-resistance. Surprisingly, the Firefox developers added a
check to the asm.js exception handling in Firefox 39. Accesses
to unmapped memory are not handled anymore, but only
accesses with wrong permissions. As a guard region follows
the asm.js heap, bound checks can still be performed with
exceptions. As the fix was not flagged as a security issue, the
developers unintentionally eliminated a security issue. How-
ever, crash-resistance within asm.js remains in the Windows
version of Firefox.

3) Using Guard Pages to Prevent Probing: We realized in
our tests with Firefox in Windows that accesses to guard pages
around the stacks were not crash-resistant. Guard pages around
the stack normally prevent stack overflows. An access to a
guard page delivered an error code different to the error code of
a heap guard region access. This was not handled by the asm.js
handler. By placing guard pages around critical structures,
scanning attempts performed by an attacker can be detected.
The program can then be terminated immediately whenever
an illegal access is detected. The difference in the exception
code allows distinguishing potentially intended faults from
exceptions caused by an attacker. However, the same fault in
Internet Explorer still allows complete crash-resistant memory
scanning as any fault is handled. Thus, probing an unmapped
page yields the same result as touching a guard page.

4) Defenses against Crash-Resistance: Softbound [34] and
CETS [35] are memory corruption defenses and memory
safety solutions for C programs. The former provides spatial
safety, while the latter prevents temporal bugs. As memory
corruptions are eliminated, our current approach of crash-
resistance is not possible in C programs. However, most parts
of Firefox and Internet Explorer are written in C++, which
Softbound and CETS do not support.

VIII. CONCLUSION

In this paper, we demonstrated that even client applications
such as web browsers can be resistant to crashes. We showed
that an adversary can safely query the address space, which is
normally not legitimate and should lead to program termina-
tion. We thereby do not rely on control-flow hijacking, code-
injection or code-reuse attacks. To this end, we introduced the
concept of crash-resistance and developed memory oracles.
This enables an adversary to use fault-tolerant functionality as
a side channel to obtain information about the memory layout.
Furthermore, we introduced the concept of Crash-Resistant
Oriented Programming (CROP) that leverages crash-resistance
to execute function chains in a fault-tolerant manner. As a
result, recently proposed information hiding and randomization
defenses are weakened, and control-flow hijacking and code-
reuse attacks can be enabled again.

ACKNOWLEDGMENT

This material is based upon work partially supported by
ERC Starting Grant No. 640110 (BASTION).

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow
Integrity. In ACM Conference on Computer and Communications
Security (CCS), 2005.

[2] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Niirnberger, and
J. Pewny. You can run but you can’t read: Preventing disclosure
exploits in executable code. In ACM Conference on Computer and
Communications Security (CCS), 2014.

[3] M. Backes and S. Niirnberger. Oxymoron: Making fine-grained memory
randomization practical by allowing code sharing. In USENIX Security
Symposium, 2014.

[4] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error
Exploits. In USENIX Security Symposium, 2003.

[5] S. Bhatkar, D. C. DuVarney, and R. Sekar. Efficient techniques for
comprehensive protection from memory error exploits. In USENIX
Security Symposium, 2005.

[6] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh.
Hacking blind. In /IEEE Symposium on Security and Privacy, 2014.

[7]1 T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
Programming: A New Class of Code-reuse Attack. In ASIACCS, 2011.

[8] E. Bosman and H. Bos. Framing signals-a return to portable shellcode.
In IEEE Symposium on Security and Privacy, 2014.

[9] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-
flow bending: On the effectiveness of control-flow integrity. In USENIX
Security Symposium, 2015.

[10] N. Carlini and D. Wagner. Rop is still dangerous: Breaking modern
defenses. In USENIX Security Symposium, 2014.

[11] D. Chappell. Understanding ActiveX and OLE: a guide for developers
and managers. Microsoft Press, 1996.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy. Return-oriented programming without returns. In

ACM Conference on Computer and Communications Security (CCS),
2010.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz. Readactor: Practical code randomization
resilient to memory disclosure. In IEEE Symposium on Security and
Privacy, 2015.

S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. D. Sutter, and M. Franz. It’s a TRAP: Table
Randomization and Protection against Function Reuse Attacks. In ACM
Conference on Computer and Communications Security (CCS), 2015.

T. H. Dang, P. Maniatis, and D. Wagner. The performance cost of
shadow stacks and stack canaries. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2015.

L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose. Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection. In USENIX Security Symposium, 2014.

L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose.
Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming. In Symposium on Network and Distributed System
Security (NDSS), 2015.

U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
XFI: Software Guards for System Address Spaces. In Symposium on
Operating Systems Design and Implementation (OSDI), 2006.

I. Evans, S. Fingeret, J. Gonzélez, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi. Missing the point
(er): On the effectiveness of code pointer integrity. In IEEE Symposium
on Security and Privacy, 2015.

1. Fratric.
ming Attacks.
doc/ropguard.pdf.

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of
control: Overcoming control-flow integrity. In IEEE Symposium on
Security and Privacy, 2014.

E. Goktas, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-
tokalidis. Size does matter: Why using gadget-chain length to prevent
code-reuse attacks is hard. In USENIX Security Symposium, 2014.

J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR:
Where’d My Gadgets Go? In IEEE Symposium on Security and Privacy,
2012.

C. Kil, J. Jim, C. Bookholt, J. Xu, and P. Ning. Address space layout
permutation (ASLP): Towards fine-grained randomization of commod-
ity software. In Annual Computer Security Applications Conference
(ACSAC), 2006.

K. Kortchinsky. Escaping VMware Workstation through COMI1. https:
/Iwww.exploit-db.com/docs/37276.pdf, 2015.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song.
Code-pointer integrity. In Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, and D. Song. Poster:
Getting the point(er): On the feasibility of attacks on code-pointer
integrity. In IEEE Symposium on Security and Privacy, 2015.

Runtime Prevention of Return-Oriented Program-
http://ropguard.googlecode.com/svn-history/r2/trunk/

miasm2 Authors. Miasm2: Reverse Engineering Framework in Python.
https://github.com/cea-sec/miasm, 2015.

Microsoft. The Microsoft SDL and the CWE/SANS
Top 25. http://download.microsoft.com/download/C/A/9/
CA988ED6-C490-44E9- A8C2-DE098 A22080F/Microsoft%20SDL %
20and%?20the%20CWE-SANS %20Top%2025.doc, 2009.

Microsoft. Bringing asm.js to the Chakra JavaScript engine
in Windows 10. http://blogs.msdn.com/b/ie/archive/2015/02/18/
bringing-asm-js-to-the-chakra-javascript-engine-in-windows- 10.aspx,
2014.

Microsoft. EMET 5.2 is available. http://blogs.technet.com/b/srd/
archive/2015/03/16/emet-5-2-is-available.aspx, 2014.

Microsoft. ~ Microsoft Security Bulletin Summary for December
2015. https://technet.microsoft.com/en-us/library/security/ms15-dec.
aspx, 2015.

Mozilla. asm.js working draft. http://asmjs.org/spec/latest/.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound:
Highly compatible and complete spatial memory safety for C. In ACM
Sigplan Notices, 2009.

15

[35]

[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]1

[55]

[56]

[57]

[58]
[59]

[60]

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. CETS:
compiler enforced temporal safety for C. In ACM Sigplan Notices,
2010.

V. Pappas. kBouncer: Efficient and Transparent ROP Mitigation. http:
/Iwww.cs.columbia.edu/~vpappas/papers/kbouncer.pdf.

V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization. In IEEE Symposium on Security and Privacy, 2012.

PaX Team. Address Space Layout Randomization.
grsecurity.net/docs/aslr.txt, 2001.

https://pax.

PaX Team. Pageexec. https://pax.grsecurity.net/docs/pageexec.txt, 2001.
A. Permamedov. Why it’s not crashing? The Code Project, 2010.

M. Pietrek. A crash course on the depths of Win32 structured exception
handling. Microsoft Systems Journal-US Edition, 12(1):41-66, 1997.

M. Pietrek. New vectored exception handling in Windows XP. MSDN
Magazine, 16(9):131-142, 2001.

M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Comprehen-
sive shellcode detection using runtime heuristics. In Annual Computer
Security Applications Conference (ACSAC), 2010.

M. Prandini and M. Ramilli. Return-Oriented Programming. In /IEEE
Symposium on Security and Privacy, 2012.

M. Russinovich, D. A. Solomon, and A. Ionescu. Windows Internals,
Part 1. Microsoft Press, 6th edition, 2012.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz. Counterfeit object-oriented programming: On the difficulty of
preventing code reuse attacks in c++ applications. In IEEE Symposium
on Security and Privacy, 2015.

F. Schuster, T. Tendyck, J. Pewny, A. MaaB, M. Steegmanns, M. Contag,
and T. Holz. Evaluating the effectiveness of current anti-ROP defenses.
In Symposium on Recent Advances in Intrusion Detection (RAID), 2014.

J. Seibert, H. Okkhravi, and E. Soderstrom. Information leaks without
memory disclosures: Remote side channel attacks on diversified code.
In ACM Conference on Computer and Communications Security (CCS),
2014.

H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86). In ACM Conference on
Computer and Communications Security (CCS), 2007.

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh.
On the effectiveness of address-space randomization. In ACM Confer-
ence on Computer and Communications Security (CCS), 2004.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi. Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization. In IEEE Symposium on
Security and Privacy, 2013.

A. Sotirov. Reverse Engineering and the ANI Vulnerabil-
ity. http://www.phreedom.org/presentations/reverse-engineering- ani/
reverse-engineering-ani.pdf, 2007.

R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter. Breaking the memory secrecy assumption. In Proceedings
of the Second European Workshop on System Security, 2009.

S. Vogl, R. Gawlik, B. Garmany, T. Kittel, J. Pfoh, C. Eckert, and
T. Holz. Dynamic hooks: Hiding control flow changes within non-
control data. In USENIX Security Symposium, 2014.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In ACM SIGOPS Operating Systems
Review, 1994,

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code. In ACM
Conference on Computer and Communications Security (CCS), 2012.

T. Yan. The Art of Leaks: The Return of Heap Feng Shui. In
CanSecWest, 2014.

Y. Yu. Write Once, Pwn Anywhere. In Black Hat USA, 2014.

C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and randomization

for binary executables. In IEEE Symposium on Security and Privacy,
2013.

M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In
USENIX Security Symposium, 2013.

http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf
http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf
https://www.exploit-db.com/docs/37276.pdf
https://www.exploit-db.com/docs/37276.pdf
https://github.com/cea-sec/miasm
http://download.microsoft.com/download/C/A/9/CA988ED6-C490-44E9-A8C2-DE098A22080F/Microsoft%20SDL%20and%20the%20CWE-SANS%20Top%2025.doc
http://download.microsoft.com/download/C/A/9/CA988ED6-C490-44E9-A8C2-DE098A22080F/Microsoft%20SDL%20and%20the%20CWE-SANS%20Top%2025.doc
http://download.microsoft.com/download/C/A/9/CA988ED6-C490-44E9-A8C2-DE098A22080F/Microsoft%20SDL%20and%20the%20CWE-SANS%20Top%2025.doc
http://blogs.msdn.com/b/ie/archive/2015/02/18/bringing-asm-js-to-the-chakra-javascript-engine-in-windows-10.aspx
http://blogs.msdn.com/b/ie/archive/2015/02/18/bringing-asm-js-to-the-chakra-javascript-engine-in-windows-10.aspx
http://blogs.technet.com/b/srd/archive/2015/03/16/emet-5-2-is-available.aspx
http://blogs.technet.com/b/srd/archive/2015/03/16/emet-5-2-is-available.aspx
https://technet.microsoft.com/en-us/library/security/ms15-dec.aspx
https://technet.microsoft.com/en-us/library/security/ms15-dec.aspx
http://asmjs.org/spec/latest/
http://www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf
http://www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/pageexec.txt
http://www.phreedom.org/presentations/reverse-engineering-ani/reverse-engineering-ani.pdf
http://www.phreedom.org/presentations/reverse-engineering-ani/reverse-engineering-ani.pdf

	Introduction
	Defenses Against Memory Corruption Attacks
	Subverting Information Hiding
	Novel Memory Probing Method

	Technical Background
	Adversary Model
	Randomization Techniques
	Address Space Layout Randomization
	Fine-Grained ASLR
	Re-Randomization

	Security by Information Hiding
	Sensitive Application Structures
	Reference-Less Regions for Pointer Safety
	Code and Code Pointer Hiding

	Unveiling Hidden Memory
	Fault-Tolerant Functionality
	Exception and Signal Handling
	System Calls

	Crash-Resistance
	Crash-Resistance in Microsoft Internet Explorer
	Crash-Resistance in Mozilla Firefox

	Memory Oracles
	Memory Oracles for Internet Explorer
	Memory Oracles for Mozilla Firefox

	Web Workers as Probing Agents
	Finding Unreachable Memory Regions
	Discovering CPI Safe Region

	Subverting Hidden Code Layouts
	Dynamic Loading
	Leveraging Crash-Resistance to Subvert Hidden Code Layouts

	Conquering (Re-)Randomization
	Defeating Fine-Grained Re-Randomization
	Constant Structures
	Pulling Sensitive Information

	Code Execution under Re-Randomizing and CFI
	Discovering Functions for Code-Reuse
	Crash-Resistant Oriented Programming (CROP)

	Proof-of-Concept Implementations
	Exploiting IE without Knowledge of the Memory Layout
	Memory Probing
	Code Execution and Function Chaining

	Memory Probing in Mozilla Firefox
	Memory Scan Timings

	Related Work
	Discussion
	Novel Memory Scanning Technique
	Design Choices, Countermeasures, and Defenses
	Crash Policies
	Accurately Checking the Exception Information
	Using Guard Pages to Prevent Probing
	Defenses against Crash-Resistance

	Conclusion
	References

