
On the Safety of Enterprise Policy Deployment

Yudong Gao Xu Chen Ni Pan Z. Morley Mao

University of Michigan - Ann Arbor

{stgyd,chenxu,nipan,zmao}eecs.umich.edu

Abstract

Enterprise policy management is challenging and error-

prone. Compared to existing work that focused on analyz-

ing misconfigurations, our work is the first to address the

issues that arose during policy deployment, i.e., effecting

policy changes. In this paper, we demonstrate that naive

approaches to policy deployment can easily create secu-

rity vulnerabilities, such as granting access of sensitive re-

sources to unprivileged users or temporarily allowing mali-

cious traffic to critical network infrastructure. To systemat-

ically solve this problem, we formally define secure and in-

secure intermediate states, and further propose an efficient

algorithm to find a deployment procedure without insecure

intermediate states. We implemented and evaluated our al-

gorithm on Group Policy framework, while only harnessing

existing support and requiring no modification to the cur-

rent infrastructure. Our evaluation shows that our solution

addsminimal overhead to the overall deployment time while

provably eliminating insecure intermediate states.

1 Introduction

Managing enterprise networks is extremely challeng-

ing. While there are many different aspects involved,

such as hardware maintenance, topology design, middle-

box placement, in this paper, we focus on policy manage-

ment, which spans across resource access control, network

security management, etc. Broadly speaking, policy man-

agement [6, 29, 25] in an enterprise network environment

needs to meet the requirements of security, performance,

manageability, and failure resilience. The actual realiza-

tions may include restricting a machine containing sensi-

tive data to be accessed by only a small group of users,

preventing external traffic from directly reaching internal

databases, etc. As easy as it may sound, specifying a correct

network policy is surprisingly difficult, due to the enormous

number of users and end-hosts managed and the compli-

cated policy for each entity. Althoughmillions of dollars are

spent every year by large enterprises on IT support, miscon-

figurations still cause significant network downtime [18].

In today’s networks, policy related misconfigurations are

prevalent [6, 18] and can directly lead to leakage of sensitive

information, impact on critical network infrastructure, per-

formance degradation, or other undesirable consequences.

Although there is a conceptual design goal for an enter-

prise network, the actual policy realization is usually de-

composed into many pieces, in the form of policy objects.

Each policy object controls a specific type of configuration,

such as the IPsec configuration for all computers, or fine-

tunes certain policy for a targeted group of entities, such

as setting the network proxy server for all sales personnel.

Two main reasons contribute to this status quo. On the one

hand, the sheer number of entities to manage and the va-

riety of roles each entity plays is large, and continues to

grow for any active enterprise. On the other hand, the pol-

icy to manage in enterprises is becoming increasingly com-

plicated as the policy management system advances [9]. In

modern enterprises, administrators need to configure for nu-

merous types of setups, including access control, software

installation, system preference, etc. As such, it is hard, if

not impossible, to come up with a holistic policy setup to

cover everything. Instead, generating decomposed and spe-

cialized policy objects is much more scalable in terms of

manageability, allowing the distribution of the management

workload among multiple administrators.

Enterprise policy management systems today indeed rely

on the specification and integration of policy objects [26,

24]; however, this approach has several limitations: 1) Con-

flict resolution is a procedure that determines the actual pol-

icy when multiple choices are available. Although it is a

general problem for policy management, it is particularly

relevant when policy objects are used, because the policy

setups in different objects may not agree with each other

and thus require a resolution procedure. 2) Transactional

update is needed when multiple objects together fulfill a

policy design goal. To reflect a design change, those objects

need to be modified in an atomic fashion without exposing

intermediate states. While conflict resolution is a relatively

well-studied topic [17, 1, 4, 31, 16, 30], in this paper, we

focus on the issues associated with update atomicity.



Existing policy management systems usually have a cen-

tral location for storing policy objects, which are frequently

read by the managed entities. Unfortunately, support for

transactional update of multiple objects is intentionally

missing in favor of performance in current policy manage-

ment systems, because policy reads are more frequent than

policymodifications (thus a write lock would negatively im-

pact performance). As a result, a policy design change that

relies on modifying multiple policy objects has to be car-

ried out in multiple steps. Without transaction support, end-

hosts can retrieve a transient, inconsistent intermediate pol-

icy, easily leading to misconfigurations. This problem is ex-

acerbated by end-hosts only updating policy objects infre-

quently, thus keeping the transient wrong policy setups for

a surprisingly long time. The persistently connected end-

hosts could use a wrong policy for hours before the next reg-

ularly scheduled update. For sporadically connected end-

hosts, e.g., laptops that are only occasionally connected to

the enterprise network, this inconsistency window could be

days or longer. The fact that policies change very frequently

for large enterprise networks makes the problem more se-

vere. Such changes are necessary for reasons including de-

partment hierarchy adjustment, personnel transfer, comput-

ing resource introduction, removal and re-purpose.

Compared to most existing work [13, 20, 23, 32, 22] that

focuses on the correctness of static policy specifications, de-

tection and correction of misconfigurations, such as block-

ing legitimate access or allowing malicious traffic, we are

the first to study the dynamic aspect of policy deployment.

This is the process of committing the new policy, usually

to the central policy storage and management server. This

process is usually overlooked by administrators and can po-

tentially be exploited by stealthy adversaries.

We first make a case for the necessity of preserving pol-

icy integrity, i.e., enforcing the administrators’ intention

throughout the deployment phase, by showing how errors

and inconsistencies can easily occur. To systematically

solve this problem, we formally model the general policy

deployment problem. Within our formulation, we define

secure and insecure intermediate states, and further propose

an efficient algorithm to find a deployment procedure free

from insecure intermediate states. Such insecure states are

inconsistent with administrators’ intentions and can thus re-

sult in security vulnerabilities. To the best of our knowl-

edge, this is the first work to systematically deal with po-

tential problems of policy deployment in enterprise network

environment. We implemented and evaluated our algorithm

on Microsoft’s Group Policy framework [26, 7], while only

harnessing existing support and requiring no modification

to the current infrastructure. Although currently we are

targeting Group Policy framework, our model is general

enough to be applicable to other policy models to solve

similar deployment problems. The evaluation shows that

our algorithm adds minimal overhead to the overall deploy-

ment time while provably eliminating insecure intermediate

states.

1.1 Group Policy Background

We base our study on group policy [26] under the active

directory framework [7] because it is the de facto, widely

adopted, role-based policy management systems in enter-

prise environment [14]. The basic concepts of group policy,

as we describe next, are comparable to other frameworks,

which can be studied using our formulation and algorithms.

This section provides some background information about

active directory and group policy.

Active directory is an important infrastructure in the Mi-

crosoftWindows Server family for managing enterprise net-

works. An entire enterprise network is divided into domains

according to organizational or geographical terms. Objects

in a domain, including users and machines, are grouped into

containers called Organizational Units (OUs), which are or-

ganized as a hierarchical tree structure (Figure 1).

Group Policy is an infrastructure for designing and de-

ploying desired configurations or policy settings to differ-

ent sets of target objects. In particular, administrators spec-

ify network policies at a central location (on domain con-

trollers), and the policies are downloaded, filtered and en-

forced on clients by a set of client-side extensions.

In the group policy framework, policy settings are stored

in Group Policy Objects (GPOs) [8], which are the man-

agement units of group policy framework. GPOs control

settings in Windows systems such as IPsec policies, reg-

istry table entries, software settings (e.g., Internet Explorer

or Word configurations). A GPO can be linked to one or

more OUs, whose members will apply the settings speci-

fied in the GPO. Note that the members of a child OU will

also apply the GPOs linked to the parent OUs. As a result,

a GPO can be linked to multiple OUs, while one OU can

have multiple GPOs attached - this reduces the management

overhead by maximally reducing the amount of overlapping

policy configurations.

For example, in the setup illustrated in Figure 1, GPO1

is linked to the domain so it is applied to all the members

inside this domain; GPO2 is linked to two OUs: OUA and

OUB; OUD have two GPOs attached: GPO3 and GPO4.

In this case, User1 receives GPO1 and GPO2; User3 and

Mach1 receive GPO1, GPO2, GPO3 and GPO4.

Different GPOs may try to configure the same aspect on

target computers, e.g., a domain-wide GPO tries to config-

ure a default IPsec policy, while a GPO linked to Servers

OU specifies an IPsec policy with higher security require-

ments. In these cases, GPOs in child OUs will override the

same configurations specified in GPOs from parent OUs.

For GPOs linked to the same OU, the one with the highest



Figure 1. Organizationof GroupPolicy Frame­

work

precedence value is effective.

All the GPOs in one domain are stored in centralized do-

main controllers. For redundancy and reliability purposes,

multiple domain controllers can run simultaneously, each

holding a copy of the GPOs. When a domain-joined com-

puter boots up, it downloads the GPOs applicable to the

computer object from one of the domain controllers. During

user login process, the GPOs applicable to the user object

are downloaded and applied. A background process on each

computer periodically, with a default period of 90 minutes,

queries domain controllers to download and update modi-

fied GPOs.

1.2 An ExampleMisconfigurationCaused by Pol­
icy Deployment

Here we perform a case study about how errors and in-

consistencies can be easily introduced if the policy deploy-

ment is not carefully inspected, despite the correctness of

the policy specification.

Consider the case of assigning access to critical re-

sources, e.g., server machines, to a small group of privileged

users while preventing access from other users. A common

approach is to first define a background policy to block all

access to these resources, and then override it with a more

specific policy which grants access to only privileged users.

While each specific policy is inserted one by one, the tran-

sient state right after committing the background policy but

before committing the specific policy for privileged users,

creates a misconfiguration. In this state, legitimate access

of privileged users is temporarily disabled.

In large enterprises, policy settings are constantly up-

dated for a variety of reasons, e.g., handling department hi-

erarchy change, implementing new software policies, and

preventing recent attacks. Unfortunately, due to a lack of

transactional support, security vulnerabilities can be ex-

ploited when a policy change is carried out as multiple suc-

cessive policy modifications. These modifications are usu-

ally manually performed, thus leaving a very large vulnera-

bility window. Between the start and end of a modification

sequence, an entity that happens to query the policy stor-

age server would receive an intermediate state with a subset

of the modifications in effect. This intermediate state could

break software integrity or even open up security holes, e.g.,

new email application installed but without proper network

filters specified. The severity of this problem is exacerbated

by the fact that typical enterprise networks have enormous

number of user and computer objects.

For the sake of illustration, let the duration of an inse-

cure intermediate state be T , the average policy update in-

terval for each machine be I , and the number of computers

in the domain be N . The expected number of computers

which download this insecure state is S = N × T/I . With

a very conservative estimation of T = 10 sec, I = 90 min,

N = 20, 000, we still get S = 37. In a large enterprise with
frequent policy modifications, hundreds or even thousands

of machines can download insecure states in one day. In

our lab experiments with the group policy framework, de-

ploying a GPO with a few settings takes several seconds.

In practice, a GPO has hundreds of settings, and an update

usually involves multiple GPOs, leading to a much longer

T . Manual updates can easily increase T to be on the order

of minutes. Thus many more computers can be impacted.

To make matters even worse, machines with insecure set-

tings do not perform another policy update until the next

policy update event, causing them to stay in a potentially

insecure state for hours or even days.

2 Related Work

In a broad sense, our work of enterprise policy deploy-

ment touches on a vast array of research projects including

firewall policy analysis [33, 3], policy configuration mod-

eling [23, 12, 13, 20], and policy misconfiguration detec-

tion [17, 16, 5, 22, 2, 15, 30].

The safety issues in policy deployment have received

little attention. To the best of our knowledge, Zhang et

al. [33, 3] presented the first work on the safety issues in

firewall policy deployment. They proposed an efficient al-

gorithm with provable safety guarantees for firewall policy

deployment, eliminating unsafe intermediate states. Our

work, on the other hand, covers generic policy setup for

complex enterprise network environment, where firewall

policy setup is a small subset. A detailed comparison can

be found in §3.3.
To assist systematic analysis of policy configurations,

many models have been proposed [23, 12, 13, 20]. The

concept of role-based access control was introduced [23]

to ease policy management for collections of users and ma-

chines. A role-based policy specification language called

Ponder was proposed in [12, 13]. Ponder is declarative and



object-oriented, and it also supports event triggered obli-

gation policies. McDaniel et al. [20] created a general-

purpose policy model and concluded that reconciliations for

three or more policies are intractable. These models are too

general since they try to cater to all kinds of application en-

vironment, preventing them from widely deployed. In con-

trast, the Group Policy framework provides a straightfor-

ward model for managing Windows machines, and is thus

widely deployed in enterprise environment.

Identifying misconfigurations and reconciling con-

flicts [17, 16, 5, 22, 2, 15, 30] in policy setup are endur-

ing topics. Jaeger and Zhang proposed using the concept of

Access Control Spaces [17] to discover the policy coverage

issue and identify vulnerable or unspecified policy spaces

automatically. Also related is work by Hicks et al. [16]

on modeling the SELinux Multi-Level Security with a logi-

cal specification, testing properties such “read-down” and

“no write-down” as well as the compliance of two poli-

cies. Their work relies on high-level security assignments

and constraints, which are difficult to identify in real en-

vironment. Bauer et al. [5] employed a machine learning

approach on access log data to discover association rules.

However, this approach can only detect cases in which a

user is denied access to a given object. Our work does not

rely on the high-level information about the design inten-

tion.

There is also related work which applies rule reason-

ing and graph-based algorithm to policy analysis. Mul-

VAL [22] determines the security impact of software vul-

nerabilities on a particular network. It also uses a modeling

language and reasoning rules to check for violations with

given control policies. Hamed and Al-Shaer proposed ap-

plying graph-based Boolean function manipulation to dis-

tributed policy analysis [2] and using taxonomy to detect

conflicts among policies running on network security de-

vices [15]. Wang et al. [30] captured dependencies between

policy components with directed acyclic graphs and pro-

posed a linear algorithm for reconciliation. Unlike most

work in this space, we do not focus on identifying conflicts

in policy specification, but instead ensure secure intermedi-

ate states during the deployment process.

3 Safe Deployment Formalization

To systematically analyze the problem of policy deploy-

ment, in this section, we describe a model that captures the

fundamentals of policy expression and processing in the

Group Policy framework. This model is general and can

be easily extended to other frameworks, as we later demon-

strate in §3.3.

Table 1. Notation Table
Notation Meaning

Uppercase Letter

(e.g., A)
A GPO

Lowercase Letter

(e.g., k)
A key

A[k] Key k’s value defined in GPOA

OL Original GPO list

TL Target GPO list

OS Original state

TS Target state

IS Intermediate state

LastOL[k]
(LastTL[k])

The last GPO that defines a value for key

k in OL (TL)

<O (<T )

GPOA <O (<T ) GPOB means that

A has lower precedence than B in OL

(TL),

→ “happen before” relationship

L sum of the sizes of OL and TL

K number of different keys

F number of different filters used

3.1 A Generalized Model

GPO Setup 1

Key Values in GPOA

Windows Firewall: Protect all network

connections
Enabled

Access to command prompt Disabled

In our model, each GPO is viewed as mappings from

keys to values. For example, in GPO Setup 1 that defines

GPOA, “Windows Firewall: Protect all network connec-

tions” and “Access to command prompt” are keys, and “En-

abled” and “Disabled” are the corresponding values. The

mapping from a key to a value, such as “Windows Firewall:

Protect all network connections = Enabled”, is called a set-

ting. If two GPOs map the same key to different values, the

settings in these two GPOs are in conflict, and the settings

in the GPO with higher precedence would override the set-

tings with lower precedence. Each GPO has an effecting

scope, which is a set of objects that the GPO can be applied

to. By default, when a GPO is linked to an OU, its effect-

ing scope contains all the objects in the OU. Filters can be

linked to a GPO to restrict its effecting scope.

We use an uppercase letter to denote a GPO, and a low-

ercase letter to represent a key, and A[k] to denote key k’s
value defined in GPOA. For example, in GPO Setup 1,
A[“Windows Firewall: Protect all network connections”] =
“Enabled”. If GPOA does not define any value for key k,
then A[k] = undefined. Table 1 summarizes the notation

used in this paper.



We restrict our discussion to a single OU for brevity.

For the cases where modifications across multiple OUs are

made, our algorithm can be applied multiple times. Each

run of our algorithm will generate a sequential list of modi-

fications for each impacted OU. All the GPOs linked to the

OU constitute a GPO list. They are applied sequentially,

where GPOs appearing later in the list have higher prece-

dence. All the GPOs inherited from the ancestor OUs are

not modified during the update process, since we are target-

ing a single OU and all the modifications are related to the

GPOs directly linked to this OU. So the inherited GPOs can

be consolidated into a single GPO, which is linked to the

front of the list and given the lowest precedence. Our update

scenario can thus be defined as follows: given an Original

GPO List (OL): O1, O2, . . . , On, we need to update it to

the Target GPO List (TL): T1, T2, . . . , Tm.

The result of a GPO list is a state, which also consists

of mappings from keys to values. The state’s key set is the

union of key sets defined in the GPOs in the list; the value of

a key equals to the value that takes the highest precedence

in the list.

For example, GPO Setup 2 is a GPO list ofA, B in which

B has higher precedence. The resulting state of this list is

shown in the last column. Note that A’s value “90 min” is

overwritten by that of B.

GPO Setup 2

Key GPOA GPOB State

Group Policy refresh

interval for computers
90 min 180 min 180 min

Access to command

prompt
Enabled Enabled

The resulting state of the original GPO list (OL) and the
target GPO list (TL) are called the original state (OS) and

target state (TS), respectively.

An intermediate state (IS) is the resulting state of the

runtime GPO list at a particular time instant during the up-

date process.

We first assume that each key is independent so that the

effect of one key is independent of the values of the other

keys. Then we extend the model to cover dependent keys

later.

When all keys are independent, each particular behavior

of the system is determined by the value of one correspond-

ing key. For example, in GPO Setup 2, the key “Group Pol-

icy refresh interval for computers” and the key “Access to

command prompt” are independent. We assume that both

OS and TS are stable and secure, since their key values

are carefully assigned by the administrator. (The problem

of telling whether there is misconfiguration in OS or TS is

outside the scope of this paper.) So as long as the value of

each key in an intermediate state equals to that in the OS or

TS, the system will behave according to the expectation of

the administrator, and we say it is in a secure state, since it

will not create any unexpected security hole.

Definition 3.1. IS is a Secure Intermediate State if and

only if for each key k in IS, its value equals to either the

value in OS, or the value in TS, i.e., IS[k] = OS[k] or
IS[k] = TS[k]. Otherwise it is an Insecure Intermediate

State.

The values OS[k] and TS[k] are secure values for key
k. Any other values for key k are insecure values. Inse-

cure intermediate states may either block legitimate access

or mistakenly elevate privilege, impacting usability or cre-

ating security holes. These cases are not differentiated in

our model, all of which are judged as insecure values and

should be prevented.

Definition 3.2. A Secure Update is an update process in

which the intermediate state after each operation is secure.

Nowwe extend the model to consider dependent keys. In

a real environment, a set of keys can be dependent, mean-

ing that together they control one particular behavior of the

system. In this case, it is the combined values of these keys,

instead of each individual value, that matters. Since modifi-

cations to any key result in new combinationswith unknown

effect, the intermediate state can be insecure.

Definition 3.3. Suppose that there is a set D in which all

keys are dependent, an intermediate state is secure if and

only if IS[k] = OS[k] for each key k in D, or IS[k] =
TS[k] for each key k in D. Otherwise, it is an insecure

intermediate state.

Dependent keys exist in real policy management sys-

tems, although they may not be prevalent. For example, in

Group Policy, the key “Windows Firewall: Allow authen-

ticated IPSec bypass” instructs the firewall to allow IPSec

traffic. The value set to this key makes sense only when

“Windows Firewall: Protect all network connections” is en-

abled, which turns on the Windows firewall. Suppose that

currently the firewall is off so all traffic is accepted, and we

need to turn on the firewall to block all traffic except those

authenticated with IPSec. If the firewall is enabled first, au-

thenticated IPSec traffic will be blocked temporarily until

the key to allow IPSec bypass is set.

As another example, the key “Group Policy refresh in-

terval for computers” specifies how often group policies for

a computer are updated while the computer is in use, but

if the key “Turn off background refresh of Group Policy”

is enabled, background refresh will never happen no matter

what value is set for the first key. In both cases, one key

depends on another to take effect, and if only one of them is

updated, the intermediate state is unknown and potentially

insecure. So all the operations that update the values of



dependent keys from OS[k] to TS[k] should be executed

simultaneously in order to preserve secure state.

Overall, our goal is to find a secure update using the ex-

isting APIs provided by the Group Policy framework with-

out any modification to the platform itself. These APIs per-

form basic policy operations, which are also available on

other policy management platforms. In most cases this can

be achieved by merely reordering the update operations,

causing no overhead to the update process. However, in

some cases additional GPOs must be inserted during the

update process to guarantee secure update, which will in-

evitably introduce extra overhead. Details are presented in

§4.

3.2 Available Update Operations

In §3.1 we presented the policy model, now we discuss

how to incorporate our model with the Group Policy frame-

work, so that the model can extract input from the frame-

work and invoke the APIs to perform secure policy update.

Similar policy operating APIs are also provided by other

policy management platforms, to which our model can be

ported easily.

In our policy deployment scenario, we assume that in-

formation about the OL and TL, and the settings of GPOs

in both lists are available before each deployment. When

an administrator finishes staging and planning an update,

this information can be trivially collected from the planning

and management tools, e.g., the Group Policy Management

Console [10] in the Group Policy framework. These are the

input to our model.

To update the GPO list from OL to TL, two types of

operations are necessary: list operations (operations on the

GPO list) and key operations (operations on the GPO key

settings).

If a GPO Ti in TL does not appear in OL, “ADD GPO”

operation is needed to add Ti to the list and assign it with

a proper precedence. “MOVE GPO” operation is used to

change the precedence of Ti. Similarly, if Oi is not in TL,
a “REMOVEGPO” operation is needed to remove it. These

list operations automatically assign a proper precedence to

each GPO according to its position in TL.
If Ti and Oj refer to the same GPO, but with different

key settings, then key update operations on Oj are required.

There are three kinds of key operations: “ADD Key Ti[k]”
if k is defined in Ti but not Oj , “REMOVE Key Ti[k]” if

k is defined in Oj but not Ti, or “SET Key” if both Oj and

Ti define k but Oi[k] 6= Ti[k]. Therefore, for each GPO

there is at most one list operation; for each of its key setting

k, there is at most one key operation, since the update op-

erations are determined only by the original and the target

state.

These update operations are all available in the Group

Policy framework. Each of them is supported by a corre-

sponding API, which performs the operation atomically.

The intermediate states during the execution of these APIs

are not exposed.

3.3 Comparison with the Firewall Deployment
Model

To the best of our knowledge, Zhang et al. [33] proposed

the first and the only work to formally analyze the policy

deployment problem for firewall polices. This is our closest

work. But the firewall policy model lacks the expressive-

ness to describe enterprise policies which are much more

general and comprehensive, making it impossible to apply

their algorithms to enterprise policies deployment, as we

will demonstrate later.

Next we briefly introduce the firewall policy model and

then compare it with our policy model.

In the firewall model, a firewall policy is an ordered list

of rules with a “first match” semantic. Each firewall rule r
specifies an accept or deny action on a filtering set, which is

a set of flows; a packet p matches r if p belongs to a flow in

r’s filtering set. For example, in the setup of the following

policy

(1) Deny TCP 10.1.1.0/24 80

(2) Deny TCP 10.1.2.0/24 any

(3) Permit IP 10.0.0.0/8 any

HTTP traffic from 10.1.1.0/24 first matches rule (1) and

gets blocked, while the traffic from 10.0.0.0/24matches rule

(3) and gets permitted.

In this model, policy deployment is a process to update

the running policy from the initial policy to the target pol-

icy. They defined the concept of safe deployment, during

which any packet that is permitted/denied by both the ini-

tial and the target policy is always permitted/denied. For

policy modification languages which support only append

and delete rule operations, they prove that safe deployment

is not always possible. For more powerful languages sup-

porting additional move operations, they show the existence

of a safe deployment containing the minimum number of

operations.

Our proposed model is similar to this firewall model. An

OU is linked with a list (analogous to a policy in firewall)

of GPOs (analogous to rules in a firewall policy), and each

GPO has a precedence (analogous to the rule’s position in

the list). And for a particular key (analogous to a packet),

the value (analogous to the action on the packet) is decided

by the GPO with the highest precedence (analogous to the

first rule that matches the packet) among all the GPOs that

set a value for this key.

Note that our model is more comprehensive:



(1) GPOs are reused across OUs i.e., a GPO can be linked

to multiple OUs1;

(2) Key operations are supported to update the settings in

GPOs;

(3) Filters and related operations are supported to provide

fine-grained control over the effecting scope of each

GPO.

In contrast, for the firewall model:

(1) Firewall rules are not reused since only one firewall list

is considered;

(2) There is no update operation for rules, because an up-

date operation can be viewed as removing the old rule

and inserting a new one as long as rules are never

reused;

(3) There is no concept of filter or scope, and each rule in

the list applies to all packets.

In summary, the firewall model can be considered as a

simplified special case of our model, if we view each fire-

wall rule as a GPO without key update operation. So the

algorithms proposed for the firewall deployment model do

not apply, and a new algorithm to guarantee safe deploy-

ment for the GPO model is required.

4 Algorithms for Secure Policy Deployment

Based on the model described in §3, we present our al-
gorithm that aims to find a secure update from OS to TS,
i.e., an ordered sequence of operations that guarantees se-

cure intermediate state after each operation. We first in-

troduce the concept of “happen before” relationship among

update operations, which should be enforced to prevent in-

secure states. A set of rules are defined to identify all rele-

vant “happen before” relationships, described by a directed

graph. Then by breaking strongly connected components

and performing topological sort on the graph, we can find

an order in which the update operations should be executed

for a secure update. Note that it is possible that there are

multiple orders which all achieve secure updates. In this

case our algorithm will return the one with minimal deploy-

ment cost. We also prove that with any given OS and TS,
our algorithm can always find such an order for secure up-

date.

1Although our update scenario targets one particular OU at a time, our

algorithm takes into account that the GPOs linked to the target OU can

also be used by the other OUs within the same domain, and updates to the

GPOs affect the states of those OUs as well.

4.1 “Happen before” Relationship

As defined in §3.1, an intermediate state is insecure when

it contains insecure values, which do not occur in either OS
or TS. During the update process, there can be time peri-

ods, e.g., after the original secure value OS[k] is removed

and before the new secure value TS[k] is added, during

which the insecure values are exposed externally in the in-

termediate state, making the policy setting potentially inse-

cure.

For example, suppose we are going to update an original

state described in GPO Setup 3 to the target state described

in GPO Setup 4.

GPO Setup 3

Key GPOA GPOB GPOC State

key i 1 2 3 3

key j 4 5 5

GPO Setup 4

Key GPOA GPOB GPOC State

key i 1 1

key j 4 5 5

Both the key settings B[i] = 2 and C[i] = 3 should be

removed. B[i] = 2 is an insecure value since it is overrid-

den by C[i] = 3 in OL, and is removed in TL. During

the update, if C[i] = 3 is removed, before B[i] = 2 is re-

moved, we would enter into an insecure intermediate state

in which B[i] = 2 is unmasked and takes precedence, as

demonstrated in GPO Setup 5.

GPO Setup 5

Key GPOA GPOB GPOC State

key i 1 2 2

key j 4 5 5

To prevent this kind of situation, some operations should

be executed first to introduce secure values to the list or to

remove insecure values, guaranteeing that insecure values

are always masked by secure values. This is what we called

a “happen before” relationship. 2

Definition 4.1. If operation X should occur before opera-

tion Y in order to maintain the secure intermediate state, we

say that X should “happen before” Y .

In the previous example, insecure value B[i] = 2 is orig-

inally masked by the secure value C[i] = 3, and both of

these two values are to be removed. To prevent B[i] = 2

2Note that this is also similar to the concept of “order constraint” in

partial order planning [21] in AI area. We refer to it as “happen before”

which is a more general idea [19].



from appearing in the intermediate state, its removal should

“happen before” the removal of C[i] = 3.
The basic idea of our algorithm is to identify “happen

before” relationships (HBRs) among update operations in

order to prevent insecure intermediate states. We define sev-

eral rules to identify all the HBRs.

Basically, insecure intermediate states occur when inse-

cure values take precedence at a particular moment. An op-

eration may change a secure state into an insecure state in

three ways:

(1) Add insecure values which take precedence in the inter-

mediate state;

(2) Elevate the precedence of existing insecure values so

they take precedence in the intermediate state;

(3) Remove secure values so the originally masked inse-

cure values now take precedence.

All these situations are prevented by the 6 rules proposed

later in this section. Rule 2, 3, 4, 5(a)(b) target situations (1)
and (2). They guarantee that before each possible operation

is executed, the secure values in TS, which are necessary

to mask the to-be-added or to-be-elevated insecure values,

already exist in the list and take precedence. For situation

(3), Rule 1, 5(c), 6 guarantee that either the proper secure

values to mask the insecure values already exist, or the inse-

cure values are removed. Consequently, these rules prevent

insecure values from appearing in any intermediate state,

guaranteeing a safe update process.

Before moving to the detail of each rule, for ease of ex-

position, we introduce several notations depicted in Table 1.

LastOL[k] represents the last GPO that defines key k in

OL, and its k value takes precedence in OL and is thus se-

cure, i.e., LastOL[k][k] = OS[k]. Here LastOL[k] refers
to a GPO instead of a value, so two brackets are used to refer

to the key value. “GPOA <O GPOB” means that GPOA

appears earlier than GPOB in OL, therefore, A has lower

precedence. LastTL[k] and “GPOA <T GPOB” are the

corresponding notions for TL. The symbol “→” is used to

represent the HBR constraint.

When a GPO is added or moved via “ADD GPO” or

“MOVE GPO”, it is assigned a proper precedence accord-

ing to its position in the TL. We set this precedence

higher than those of unprocessed GPOs in the OL. For

example, to update GPO list GPOA, GPOB, GPOC to

GPOC , GPOB, GPOA, we first moveGPOB , and the list

becomes GPOA, GPOC , GPOB; then we move GPOA

and get GPOC , GPOB, GPOA. This property is impor-

tant, and the following rules depend on this property to

guarantee secure intermediate states.

Now we introduce the rules one by one. Each rule comes

in the form of “OperationX → OperationY ”, meaning

that if both OperationX and OperationY exist in the up-

date process, then OperationX should be executed before

OperationY to guarantee secure intermediate state. If ei-

therOperationX orOperationY is missing, the rule is just

ignored. As discussed in §3.2, the operations in the update

process are predetermined by OL and TL. What’s more,

GPOA refers to each possible GPO while key k refers to

each possible key.

The first rule means that if a GPO is removed in TL, its
new values should be added or modified only after the GPO

is removed.

1. REMOVE GPOA → ADD/SET Key A[k];
REMOVE GPOA → REMOVE Key A[k]
if A = LastOL[k]

If GPOA is to be removed from the GPO list (still exists

in the Active Directory), all the values added or set are in-

secure since these values never appear in OS or TS. So

these values should be added or set safely after GPOA is

removed. No insecure value will be introduced in this case.

If A = LastOL[k], A[k] is a secure value which can be

used to maske insecure values, and keeping it in the list does

not introduce any insecure state. So it is beneficial to keep

it longer in the list. If it is to be removed, we remove it only

after A is removed.

The second rule deals with the cases where there are key

operations related to a to-be-added GPO. This is similar to

Rule 1.

2. REMOVE/SET Key A[k] → ADD GPOA

If GPOA is to be added, it is not in the OL. So all the

values associated with A, which are to be removed or mod-

ified, are insecure since they do not show up in TS either.

So these values can be removed or modified safely before

GPOA is added.

Rule 3 guarantees that when a GPO is added or moved,

it already contains all of its secure values which can mask

insecure values. This rule is commonly referred to by the

other rules.

3. IF A = LastTL[k],
ADD/SET Key A[k] → MOVE GPOA,

ADD Key A[k] → ADD GPOA;

If A = LastTL[k], A[k] is a secure value since it takes
precedence in TL. We safely add A[k] to GPOA before

moving or adding A. So when A is added or moved, A[k]
can be used to mask insecure values.

In some cases the first three rules are redundant, e.g.,

when there is a secure value for k in IS, it is safe to break

Rule 2 by addingGPOA first and then removingA[k], since



A[k] is masked anyway. But these rules help facilitate later

discussions while introducing no extra overhead in the up-

date. None of them results in unnecessary cycles in the de-

pendency graph, which is discussed later in §4.3.

Rule 4 is the most important and commonly used rule.

It ensures that before a GPO is added to TL or moved to

the right position, all the secure values needed to mask its

insecure values are already in the right position in the GPO

list.

4. For each key k in GPOA, including those keys to be

added with “ADD Key A[k]”,
If A 6= LastOL[k] and A 6= LastTL[k] ,
ADD/MOVE GPO LastTL[k]
→ ADD/MOVE GPOA

Each GPO that exists in both OL and TL has an associ-

ated “MOVE GPO” operation. Rule 5 deals with this kind

of to-be-moved GPOs and their related key update opera-

tions. Each kind of key update operations is covered in one

sub-rule.

5. For each GPOA that is in both OL and TL, and

A 6= LastTL[k]:
(a) For “ADD Key A[k]”,
ADD/MOVE GPO LastTL[k]
→ ADD Key A[k]

(b) For “SET Key A[k]”,
IF A 6= LastOL[k],
ADD/MOVE GPO LastTL[k]
→ MOVE GPOA,

ADD/MOVE GPO LastTL[k]
→ SET Key A[k];

IF A = LastOL[k],
ADD/MOVE GPO LastTL[k]
→ SET Key A[k];

(c) For “REMOVE Key A[k]”,
IF A 6= LastOL[k],
REMOVE Key A[k] → MOVE GPOA;

IF A = LastOL[k] and LastTL[k] 6= NULL,
MOVE/ADD GPO LastTL[k]
→ REMOVE Key A[k],

and for each GPO X that LastTL[k] <T X <T A
and sets k
REMOVE Key X [k] → REMOVE Key A[k];

IF A = LastOL[k] and LastTL[k] = NULL, for
each GPO X <T A that sets k and

REMOVE Key X [k] → REMOVE Key A[k];
REMOVE GPO X → REMOVE Key A[k]
if no "REMOVE Key X [k]" and X /∈ TL

Sub-rule (a) guarantees that masking values already exist

in the list before “ADD Key” operation introduces insecure

values. For to-be-added GPOs, its insecure values will take

effect only after the GPO is added, so their masking values

need only be added before the GPO is added. This is cov-

ered in Rule 4. But it is insufficient for to-be-moved GPOs,

since the GPO is in the original list, and a new value will

take effect immediately when it is added. So the masking

values should also be added before adding A[k]. Note that
Rule 3 guarantees that before LastTL[k] is added or set, it

already contains all its secure values.

Sub-rule (b) is the same as the rule for “ADD Key”, ex-

cept that if A = LastOL[k], the masking values only need

to be added before the setting of A[k], since A[k] is secure
and it can appear in intermediate states.

In sub-rule (c), if A 6= LastOL[k], A[k] is a insecure

value and it masks no other values in OL. So it can be

safely removed before GPOA is moved without exposing

any insecure values.

But if A = LastOL[k], A[k] is a secure value, and it

may mask some insecure values in OL. So before remov-

ing A[k], we should make sure that a new secure value, if

exists (LastTL[k] 6= NULL), is already in the IL to mask

these insecure values. So “MOVE/ADD GPO LastTL[k]”
should be executed first. But there can be cases that in TL,
LastTL[k] has lower precedence than A, and LastTL[k][k]
cannot mask the to-be-removed k values3 defined in GPOs

between LastTL[k] and A. To prevent them from being

unmasked, these to-be-removed values should be removed

before the removal ofA[k]. Note that since processed GPOs
always have higher precedence than unprocessed and to-be-

removed GPOs, LastTL[k] can mask all the other insecure

values of k.

Consider the example demonstrated in GPO Setup 3,4,5.

A = LastTL[i] but it has the lowest precedence in TL, so
although A[i] takes precedence, it cannot mask B[i] = 2
in the intermediate state. In this case, B[i] = 2 should be

removed before C[i] = 3 is removed.

It is also possible that there is no LastTL[k]
(LastTL[k] = NULL) since all settings for key k are re-

moved in TL, and TS[k] = undefined. In this case, we

guarantee that all the insecure values masked by A[k], in-
cluding the values to be removed by “REMOVE Key” and

“REMOVE GPO” operations, are removed before the re-

moval of A[k].

The situation that A = LastTL[k] is already covered in

Rule 3.

The last rule is for “REMOVEGPO” operations. It guar-

antees that before executing the “REMOVE GPO” opera-

tions and their associated “REMOVE Key” operations, ei-

ther there are new secure values in the list, or all the inse-

cure values originally masked by the to-be-removed GPO

are removed. “ADD/MOVE Key” operations are covered in

3If these value are not to-be-removed, they would override the current

LastTL[k].



Rule 1.

6. For each GPOA in OL but not in TL, and A =
LastOL[k],
IF LastTL[k] exists,
MOVE/ADD GPO LastTL[k]
→ REMOVE GPOA

IF LastTL[k] does not exist,
for each GPO X <O A that sets key k,
REMOVE Key X [k] → REMOVE GPOA;

REMOVE GPO X → REMOVE GPOA

if no "REMOVE Key X [k]" and X /∈ TL;

This is similar to the “REMOVE Key” case in Rule 5. If

A = LastOL[k], A[k] may mask key k’s insecure values,

which should be removed before the removal of A[k]. We

do not need to consider the case that A 6= LastOL[k] inde-
pendently, since it does not mask any insecure value and the

presence of A in the list does not affect the value of key k.

4.2 Extension to Support Filters

In the previous discussion, we assume that no filter is

used. In this section, we extend our proposed algorithm to

support filters. A filter defines a scope consisting of users

and machines. When a filter is linked to a GPO, only the

users and machines in the scope of the filter can apply to the

GPO. Without filters, each GPO is applied to all the objects

(users and machines) in the OU by default. In a real envi-

ronment, filters are widely used to limit the effecting scope

of each GPO, providing further flexibility in management.

For example, the following filter limits a GPO’s targets to

only computers running Windows 2000 Server:

Select * from Win32 OperatingSystem

where Caption = "Microsoft Windows 2000

Server"

The global scope in a domain is divided into a set of

disjoint scopes, each of which contains one or more objects.

A filter consists of a set of disjoint scopes. A GPO can

be linked with at most one filter,4 which limits the GPO to

apply to only the objects within the filter’s scopes. If a GPO

is not linked with any filters, it has a global scope and it

would be applied to all the objects in the OU by default.

Accounting filters in our model introduces a new kind of

update operations: “LINK Filter” links a filter to a GPO,

replacing its original filter if exists; “UNLINK Filter” re-

moves the filter linked to a GPO; “MODIFY Filter” changes

4This is consistent with the existing group policy framework, and more

importantly, it is unnecessary to use multiple filters. Given that the OU

hierarchy already provides coarse-grained scope control, a single filter with

expressive specification language e.g., SQL in the group policy framework,

is flexible enough to meet the need for fine-grained scope control. Support

of multiple filters only increases the complexity of policy management and

debugging.

the scope of a filter. These operations also have correspond-

ing atomic APIs in the group policy framework.

There are additional HBRs among filter related opera-

tions, and between filter related operations and GPO list/key

operations.

GPO Setup 6

Key GPOA GPOB GPOC State

Filter NULL NULL NULL

Sx key i 1 2 3 3
Sy key i 1 2 3 3
Sz key i 1 2 3 3

GPO Setup 7

Key GPOA GPOB GPOC State

Filter NULL Fr Fs

Sx key i 1 2 2
Sy key i 1 3 3
Sz key i 1 1

For example, there is an original state described in GPO

Setup 6. Initially, no filter is linked to the GPOs, so the

GPOs are applied to all the scopes (Sx, Sy , Sz). Accord-

ing to the preferences of the GPOs, each object in the OU

receives “i = 3”. Now suppose we need to perform the

following operations:

(a) LINK Filter Fr to GPOB , to limit its scope to Sx (e.g.,

only Windows XP machines)

(b) LINK Filter Fs to GPOC , to limit its scope to Sy (e.g.,

only Windows Vista machines)

Scope Sx and Sy are disjoint, and the rest of the objects

in the OU constitute scope Sz . The target state is shown in

GPO Setup 7.

Consider the order in which we execute these two op-

erations. If filter Fs is linked to GPOC before filter Fr

is linked to GPOB , we would get an intermediate state in

which the objects in Sz have GPOA and GPOB applied,

and receive an insecure value “i = 2”.
When we consider filter operations and list/key opera-

tions together, the cases are much more complicated be-

cause there are more possible combinations.

We first define three rules to identify HBRs among filter

related operations.

7. MODIFY Filter Fr → LINK Filter Fr.

A filter should be updated before it is linked to a GPO,

preventing insecure values in the GPO to be introduced to

the scopes defined in the filter’s old value. For example, in

GPO Setup 8, there are three disjoint scopes: Sx, Sy , Sz .

Initially, no filter is linked to GPOA so it is applied to all



scopes by default; filter Fs is linked to GPOB to limit its

scope to Sx.

GPO Setup 8

Key GPOA GPOB State

Filter NULL Fs

Sx key i 1 2 2
Sy key i 1 1
Sz key i 1 1

Now suppose we want to perform the following opera-

tions:

(a) LINK Filter Ft (initially specifies Sy) to GPOB ;

(b) MODIFY Filter Ft from Sy to Sz .

If filter Ft is linked to GPOB before its scope is mod-

ified, GPOB would be applied to Sy in the intermediate

state, causing Sy to get an insecure value “i = 2” from

GPOB . Therefore, “MODIFY Filter Ft” should be exe-

cuted before “LINK Filter Ft to GPOB”.

8. UNLINK Filter Fr → MODIFY Filter Fr.

If a filter is to be unlinked from a GPO, it should be up-

dated after unlinking, so as to avoid the GPO from being

improperly applied to the scopes defined in the filter’s new

value.

9. For each GPO with filter Fr linked, and is to be linked

with a new filter Fs,

LINK Filter Fs → MODIFY Filter Fr.

If a filter linked to a GPO is to be overridden by a new

filter, the new filter should be linked before the value of the

old filter is updated, preventing the new value of the old

filter from introducing insecure values.

For example, consider another scenario in which we are

going to make a different update on the initial setup in GPO

Setup 8. Now the new update operations are:

(a) LINK Filter Ft (initially Sy) to GPOB ;

(b) MODIFY Filter Fs from Sx to Sz .

Now filter Fs is to be modified instead of filter Ft. If

Fs is modified before Ft is linked to GPOB , GPOB will

be applied to Sz , and its insecure value “i = 2” will take

precedence. So “LINK Filter Ft to GPOB” → “MODIFY

Filter Fs”.

Now we consider HBRs between filter related operations

and list/key operations using a perspective from each dis-

joint scope.

To a particular disjoint scope, the effect of linking or un-

linking a filter to a GPO is equal to that of removing/adding

this GPO from/to the list. For example, in GPO Setup 6,

initially Sz has GPOA, GPOB, GPOC applied when no

filter is linked; linking filter Fr to GPOB excludes Sz from

GPOB’s effecting scope, leaving only GPOA, GPOC ap-

plied to Sz , just as GPOB is removed from Sz’s list. In

contrast, if we then unlink filter Fr from GPOB , GPOB

would be applied to Sz again, appearing like addingGPOB

back to the list of Sz .

Therefore, each filter operation can be viewed as list op-

erations that add, move or remove GPOs within a number

of scopes. If a filter operation extends GPOA’s effecting

scope to cover Sx, it is equivalent to an “ADD GPOA” in

Sx; if a filter operation excludes Sx from GPOA’s effect-

ing scope, it equals to a “REMOVE GPOA” in Sx. In the

example shown in GPO Setup 6 and 7, we have:

(a) “LINK Filter Fr to GPOB” == “REMOVE GPOB in

Sy and Sz”;

(b) “LINK Filter Fs to GPOC” == “REMOVE GPOC in

Sx and Sz”.

Now each particular scope has only list operations and

key operations, which is the same as the previous model

without filters. We can harness the rules discussed pre-

viously to identify HBRs for the operations within each

scope, and then map the list operations back to the origi-

nal filter operations to get the real HBRs for the target OU .

In the previous example, for Sz , “REMOVE GPOB” →
“REMOVE GPOC”, so for the corresponding operations,

“ADD Filter Fr to GPOB” → “ADD Filter Fs to GPOC”.

Rules proposed in §4.1 identify all the HBRs within each
scope. By applying these rules to each disjoint scope and

combining the identified HBRs, we guarantee secure inter-

mediate states for all scopes during the update process.

4.3 Graph­based Update Sequence Discovery

Using the rules discussed in §4.1 and §4.2, we can iden-

tify all the HBRs among the update operations. These

HBRs can further be used to find a secure update sequence

that ensures secure intermediate states. To describe these

HBRs, a directed graph G = (V, E) is used. Each vertex

represents an update operation. If operationO → P , we add

an edge from O to P .

In this graph, a vertex should “happen before” all the

vertices that can be reached from it along the edges. So

Topological Sorting can be used to find an ordered sequence

of operations that conforms to all the HBRs, thus guar-

anteeing secure intermediate states. But before executing

the topological sorting, Strongly Connected Components

(SCCs) should be eliminated first. A SCC is a set of ver-

tices such that each pair of vertices in this set are reachable

from each other. In a SCC, each vertex V should “happen



before” all the vertices, including itself, since all of them are

reachable from V . Therefore, all the corresponding opera-

tions in this SCC should be executed simultaneously, since

every possible sequential order of these operations breaks

some HBRs. We call this a circular dependency situation

(CDS). For example, suppose we have operations O, P , Q
in a SCC and “O → P , P → Q, Q → O”. No matter what

order is used, some rules are always broken. For example,

the order “O, P , Q” breaks the rule “Q → O” and the de-

rived rules “P → O, Q → P ”. To eliminate these SCCS

and find a secure update sequence, we propose using auxil-

iary GPOs, which are extra GPOs temporarily added to the

list to mask insecure values.

The key to eliminate SCCs is to remove some edges be-

tween vertex pairs in the SCCs, namely invalidating some

HBRs. It is impossible to remove edges using only the ex-

isting GPOs, otherwise the corresponding HBRs are unnec-

essary and would never exist in the graph. So the possible

approach is to introduce auxiliary GPOs with secure values

for some keys, and assign them higher precedence to mask

the insecure values that would be exposed by invalidating

the HBR.

Each HBR exists to prevent insecure values of one or

more keys from appearing in the intermediate state. We de-

note this set of keys that are “protected” by the HBR as P .

Consider the example in GPO Setup 3 and 4, “REMOVE

Key B[i]” → “REMOVE Key C[i]” is used to prevent the

insecure value B[i] = 2 from occurring in the intermediate

state, so it is used to protect key i, and its P set is {i}.
If we temporarily add a GPO which sets every key in P

with a secure value (equal to the value in IS or TS)5, and
give this GPO higher precedence than all the existing GPOs,

its values can mask all the insecure values. And obviously

it would not introduce any insecure value. In the exam-

ple shown in GPO Setup 3 and 4, if we add a new GPOD

setting “D[i] = 1” and assign it the highest precedence at

the very beginning (so the list become A,B,C,D), we can

execute the two remove key operations safely in arbitrary

order, since the secure value “D[i] = 1” always takes prece-
dence andmasks any other value of i. At last we can remove

GPOD after all the operations are completed, again without

introducing any insecure value.

Using auxiliary GPOs eliminates HBRs, breaks SCCs,

and translates the graph into an acyclic one. Then a secure

update sequence can be found trivially with a topological

sort.

Using auxiliary GPOs inevitably introduces overhead in

the update process, since extra operations should be used to

add, set, and remove the auxiliary GPOs. The overhead in-

5If IS[k]=TS[k]=undefined, the secure value of k cannot mask any

insecure value. But note that in this case k can only exist in “RE-

MOVEGPOA”→ “ADD Key A[k]” or “REMOVE Key A[k]”→ “ADD

GPOA”. And since “ADDKeyA[k]” and “REMOVEKeyA[k]” can take
part in at most one HBR, k should never appear in any SCC.

cludes longer latency of the update process, additional traf-

fic in the network, and computation overhead in the server.

Recall that without using auxiliary GPOs, our algorithm just

reorders the necessary update operations, adding no over-

head except the negligible computation time. To minimize

the overhead of using auxiliary GPOs, we employ a greedy

algorithm to find the minimal set of keys that need to be

added to the auxiliary GPOs. Basically all SCCs are iden-

tified first, and all the edges between vertex pairs in these

SCCs are sorted according to the sizes of their P sets. Then

the first edge is removed, and the keys in its P set are added

to the auxiliary GPOs; if other edges share some keys in the

P set with this removed edge, the shared keys can also be

safely removed from the P set of those edges; an edge is

removed if its P set becomes empty, since the edge is not

used to “protect” keys anymore. This process iterates until

all the SCCs with more than one node are eliminated.

4.4 Support of Dependent Keys

The previous algorithms assume that all keys are inde-

pendent. But as we mentioned in §3.1, there are dependent
keys which control one particular behavior of the system to-

gether. These keys should be updated simultaneously, or the

insecure intermediate states of their combination may result

in unknown behavior.

Identifying dependent keys requires domain knowledge

of the keys (e.g., the meaning and effect of the Group Policy

settings), which is beyond the scope of this paper. Basically,

two approaches can be used to extract dependent keys: (1)

Use controlled experiments to test the effect of the keys; (2)

Parse the definition documents.

To update a set of dependent keys simultaneously, we

add them to an auxiliary GPO, and set their values either as

those in the OS, or as those in the TS, according to the op-
erations to be performed on them. Here we assume there is

no such case where only a (nonempty) subset of the depen-

dent keys are defined in the OS or TS, because the com-

bined result with undefined values are unknown. So either

all the dependent keys in the set are defined, or all of them

are undefined. If all the keys are undefined in both OS and

TS, the existing HBRs prevent their values from changing

into any defined value during the update process, so we do

not need to consider them independently. Otherwise, if all

the keys are undefined in OS and defined in TS, we set

the values in the auxiliary GPO as those in TS, then these

keys are updated simultaneously when the auxiliary GPO is

inserted. In contrast, if all the keys are undefined in TS,
we set the values as those in OS, so these keys are updated

simultaneously when the auxiliary GPO is removed.



4.5 Proof of Completeness

Completeness. For any given OL and TL, our algorithm
can always find an update sequence that guarantees a secure

update process.

Proof. For any given OL and TL, we can always triv-

ially find a set of operations to update OL to TL, which
consists of list, key, and filter operations. Our proposed

rules can identify all the necessary HBRs among this set

of operations to guarantee secure intermediate state during

the update. Using the algorithm proposed in §4.3, we can

always find a secure update sequence in which each HBR is

either satisfied, or its functionality is fulfilled by auxiliary

GPOs. This secure update sequence can update OL to TL
guaranteeing secure intermediate states.

4.6 Algorithm Complexity

Let K be the number of different keys used in all the

GPOs involved, L be the sum of the sizes of OL and TL,
F be the number of different filters used. The number of

list operations is less than L, since for each GPO there is

at most one list operation to ADD, REMOVE or MOVE it.

The number of key settings is at most KL, when each GPO
sets all possible keys. The largest possible number of key

operations is also KL, since there is at most one GPO key

operation for each key setting. (L + F ) is the largest possi-
ble number of filter related operations, since each GPO has

at most one corresponding “LINK/UNLINK Filter” opera-

tion, and each filter has at most one corresponding “MOD-

IFY Filter” operation.

Calculating LastTL[k]/LastOL[k] for all keys takes

O(KL) time. In the worst case, only the first GPO in the list

defines key k, and the whole list should be scanned. Apply-
ing Rule 1, 2, 3 takes O(KL) time, since each rule scans all

the key operations; applying Rule 4, 5, 6 takesO(KL) time,

since each rule scans all the key settings; applying Rule

7, 8, 9 takes O(L(L + F )) time, since each rule scans all

filter related operations (L+F ) and each scan goes through

the GPO list(L) in the worst case.
Usually L + F ≪ K , so the complexity to identify

HBRs for one scope is O(KL). We further define M =
max(Number of objects in the global scope, 2F )which rep-
resents the number of disjoint scopes in the worst case. So

identifying HBRs for all the scopes takes O(KLM) time.

Finding SCCs and executing topological sorting take

O(V + E) time, where V is the number of vertices, i.e., the

number of update operations, and E is the number of edges,

i.e., the number of HBRs. Suppose that the number of edges

in the SCCs is E′, the greedy algorithm of finding the mini-

mal set of keys for auxiliary GPOs takes O(E′ lg(E′)) with
a sorting. In the worst case, E′ = (L + F + K)2 ≈ K2,

when each pair of operations has a HBR, and all the ver-

tices are reachable from each other in the graph. This is

very rare. And since circular dependency situations are also

rare, O(E) ≈ O(V ). So overall the algorithm takes ap-

proximately O(KLM) time. We demonstrate later that the

runtime overhead is negligible compared to the time used to

deploy the update to the production environment.

4.7 Implementation

The implementation is divided into three parts, which are

written in Perl with about 4,000 lines of code. In the center

is the Core Engine which implements the algorithm pro-

posed in §4. It identifies all the HBRs from the input using

the defined rules, and generates a secure update sequence.

The input for the core engine includes: OL, TL, key set-

tings of each GPO, key operations, filter settings, GPO to

filter links, filter operations and sets of dependent keys. The

core engine is platform independent, and it can be used to

find secure update sequence in other platforms using a sim-

ilar model.

To integrate the core engine into the group policy frame-

work, we implement a GPO Parser, which can either dump

GPO settings from the domain controller or parse the set-

tings from the XML backup files. The other input for the

core engine, such as the TL, key update operations, and

filter operations, are provided by administrators, usually in

the form of backup files retrieved from the Group Policy

Management Console.

The last part is a Script Generator that translates the se-

cure update sequence into Powershell [11] scripts, which

invoke GPO APIs to perform updates automatically.

5 Evaluation

In §4.6 we analyzed the runtime complexity of our al-

gorithm, and argued that it is negligible compared to the

deployment time; in §4.3 we mentioned that using auxil-

iary GPOs inevitably introduce overhead. In this section,

we demonstrate that the computation overhead is negligi-

ble and the overhead of auxiliary GPOs is small in common

cases, using test cases generated according to tuned param-

eters. These parameters control the complexity of GPOs

setups, varying from common cases to extreme cases.

5.1 Time Overhead Quantification

We first quantify the overall deployment time and the

insecure time. Suppose a deployment task consists of a se-

quential list of n operations: O1, O2, . . . , On, which would

be executed one by one. Let ti be the time needed to execute

Oi (to deploy the update) and wi be the interval between

Oi and Oi+1. Then the time needed to deploy the task is:

t1 + w1 + t2 + w2 + · · · + tn.



If the intermediate state after Oi is insecure, the system

would stay insecure at least during the period of wi + ti+1,

until Oi+1 is completed and can probably bring the system

back to a secure state. Suppose we have a set S that each

operation Oi ∈ S leads the system to an insecure state after

Oi, the overall time that the system stays insecure during

the deployment would be
∑

{wi + ti+1, for each Oi ∈ S}.

5.2 Evaluation Metrics and Testbed Setup

We generate test cases of different update scenarios and

deploy them on a real server to measure:

1. Computation time of our algorithm (sec-exec);

2. Time to deploy the update to the production environ-

ment using a random update sequence, simulating that

by default, administrators or management tools do the

update in arbitrary order (rand-overall), and the corre-

sponding time that the system stays in insecure states

(rand-insec);

3. Time to deploy the update using the secure update se-

quence generated by our algorithm (sec-overall), and

the corresponding time that the system stays in inse-

cure states (sec-insec), which is always 0.

For each test case, we generate a powershell [11] script to

initialize the original state on the server. Then we run our al-

gorithm and a random algorithm, generating a secure update

sequence and a random update sequence, respectively. Each

update sequence is executed on a simulator first. This sim-

ulator tests whether the intermediate state after each opera-

tion is secure, and generates the set S, the operations which
lead to insecure intermediate state after execution. Update

sequences are further translated into powershell scripts, in

which each operation is mapped to a correspondingAPI call

to deploy the update to the Domain Controller. Each API

call is coupled with a timing command to capture its exe-

cution time. The powershell scripts are then executed, and

the ti for each operation is collected. When the operations

are executed back to back sequentially in scripts, wi is so

small that it is ignored. At last, combining S and the ti for
each operation, the overall time to deploy the update and the

time that the system is insecure during the deployment can

be calculated.

The testbed is aWindows Server 2008 R2 RC running on

VMWareWorkstation 6.5.0, which in turn runs on a Lenovo

X200 machine. This virtual machine serves as a Domain

Controller, on which we also do the update directly, so the

network delay is overlooked. In a real environment where

network delay comes into play, the time to deploy the up-

date, as well as the insecure time, will increase, exacerbat-

ing the vulnerabilities introduced during the deployment.

Table 2. Parameters for GPO and Key Settings

n = 1..9
sizes of the test cases without fil-

ters and dependent keys

num gpo=10 × n # of GPO

num key=30 × n # of different keys

avg key use=2 average # that a key is used

stdev key use=2
standard deviation of # that a key

is used

num ol=5 × n # of GPO is the original list

num tl=7 × n # of GPO in the target list

num add key=10 × n # of GPO Add key operations

num rmv key=10 × n # of GPO Remove key operations

num set key=10 × n # of GPO Set key operations

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3
x 10

4

n: size factor of GPOs

E
x
e

c
u

ti
o

n
 t

im
e

(m
s
)

sec−exec

sec−insec

sec−overall

rand−insec

rand−overall

Figure 2. Execution time without filters

5.3 Experimental Results

This section presents our experimental results. For each

figure, the X-axis is the size factor which controls the size

and complexity of the test cases, and the Y -axis is the time

in ms. For each size, 5 different test cases are generated,

and the results shown in the figures are average values. For

each test case, we measure the execution time of our se-

cure update algorithm (sec-exec), insecure time during de-

ployment (sec-insec) and overall time of the update process

(sec-overall) using our secure update sequence, in compar-

ison to the insecure time during deployment (rand-insec)

and the overall time of the update process using a random

update sequence. Each line in the figure depicts the result

of one metric.

We first consider the situations without filters and depen-

dent keys. Test cases are generated according to the param-

eters listed in Table 2.



Table 3. Parameters for Filter Settings
f = 1..5 size of test case with filters

num filter=8 × f # of filters

num scope=4 × f # of disjoint scopes

avg scope use=3 × f average # that a scope is used

stdev scope use=2
standard deviation of # that a

scope is used

rate gpo link filter=0.5
probability that a GPO has a

scope linked

num link filter=3 × f # of link filter operations

num unlink filter=5 × f # of unlink filter operations

num modify filter=5×f # of modify filter operations

1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

f: size factor of filters

E
x
e
c
u
ti
o
n
 t
im

e
(m

s
)

sec−exec

sec−insec

sec−overall

rand−insec

rand−overall

Figure 3. Execution time with filters

The parameter n is used to control the size of the GPO

setup in each test case. If t different GPOs set values for the
same key k, we say k is used t times. In the test cases, the

key usage behavior conforms to normal distribution, with

an average value of avg key use and standard deviation of

stdev key use. These parameters directly affect the num-

ber of HBRs. avg key use is set to 2 to investigate the

effect of key overriding.

The result is shown in Figure 2. The execution time

of our algorithm is always negligible (less than 1% of the

deployment time), even when the test case is very large.

And deployment times using secure (generated by our al-

gorithm) and random (simulating default admin or manage-

ment tool’s action) update sequence are nearly the same,

both of which increase almost linearly with the sizes of the

test cases. But the random update sequences lead to inse-

cure states during 80−95% of the deployment period, while

the secure update sequences eliminate all insecure states

completely.

For evaluation with filters, we set n = 2 and use the

parameters listed in Table 3 to control the filter settings. The

result is shown in Figure 3. The X-axis is the parameter f
which controls the frequency that filters are used in the test

Table 4. Parameters for Dependent Key Set­
tings

d = 0..9
size of test case with depen-

dent keys

avg dep set size=1+ 3× d
average size of a dependent

key set

stdev dep set size=3
standard deviation of the size

that a dependent key set

num dep sets=3 × d # of dependent key sets

cases. The execution time of our algorithm is still small

across all test cases.

Using random update sequences (no overhead), the de-

ployment time increases slowly, since all the test cases share

the same parameter settings in the number of list and key

operations, and only the parameters related to filters are

changed according to f . In contrast, the deployment with

secure update sequence incurs perceivable overhead, due

to the auxiliary GPOs for addressing circular dependen-

cies. We observe considerable number of circular depen-

dencies in the test cases, especially in the extreme cases 4

and 5 with a large number of filters, scopes and overlap-

ping scopes among filters. Filter link/unlink operations for

almost every GPO and modifications for almost every filter

also contribute to more circular dependency situations. As

a result, the overhead in test cases 4 and 5 is around 130%.

These can be viewed as an approximate upper bound using

filters, since the largest possible filter settings for the given

GPO/key setups are used. In a real environment, the num-

bers of filters and scopes are limited to preserve manage-

ability [27] and performance [28]. Consequently, in com-

mon cases, the overhead is around 30%, which is accept-

able.

Note that when filters are introduced, the system suffers

from even longer insecure periods (85%-96%) using ran-

dom update sequences, while the secure update sequences

still keep the system in secure states during the entire de-

ployment.

Next we further consider dependent keys in the test

cases. Similarly, we set n = 2 for the GPO setups, and

in order to quantify the overhead introduced by dependent

keys, we first set the number of filters to 0. Dependent keys
are described with dependent key sets, in which the keys

depend on each other. So in addition to the parameters in

Table 2, three more parameters in Table 4 are used to con-

trol the number and sizes of dependent key sets.

The result is shown in Figure 4, and the X-axis is the

parameter d, which determines how frequent the depen-

dent keys occur in the test cases. Using random update

sequences (no overhead), the deployment time is approxi-

mately constant with slight variation, since the number of



1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

d: size factor of dependent keys

E
x
e
c
u
ti
o
n
 t
im

e
(m

s
)

sec−exec

sec−insec

sec−overall

rand−insec

rand−overall

Figure 4. Execution time with dependent keys

1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

14000

w: size factor of GPOs, filters, and dependent keys

E
x
e
c
u
ti
o
n
 t
im

e
(m

s
)

sec−exec

sec−insec

sec−overall

rand−insec

rand−overall

Figure 5. Execution time with dependent keys

& filters

update operations is not affected by the size of dependent

key sets. But almost the entire deployment period (> 90%)

is insecure for each case. With secure update sequences, the

deployment time first increases with d and then saturates

when d is large enough. In these extreme cases, almost ev-

ery key belongs to one or more dependent key sets and thus

should be added to the auxiliary GPOs to preserve secure

intermediate states.

But according to our experience on extracting dependent

keys from Group Policy framework by parsing the official

definition documents, less than 100 out of 3000 keys are

identified as dependent keys. Although there could be false

negatives in our approach, the percentage of dependent keys

should still be small, since these internal dependencies com-

plicate the policy design process and make it more error-

prone. Consequently the overhead of our algorithm is small

in normal cases.

At last we combine filters and dependent keys to evaluate

the overhead of using secure update sequences in the worst

case. The result is shown in Figure 5. n is still set to 2, and
the X-axis is w, which controls the parameters for filters

and dependent key sets (f = d = w) at the same time. In

the worst case when w = 5, the overhead is around 130%,

which is the upper bound of using secure update sequences.

Note that these cases are extreme and rare, and the overhead

is much smaller in real scenarios.

In summary, we demonstrate that naive random update

sequences put the system into insecure states 80%-95% of

the time. The secure update sequences, generated by our al-

gorithmwith negligible computation overhead, eliminate all

insecure states. Without considering filters and dependent

keys, circular dependency situations are rare, and the secure

update sequences add nearly no overhead to the deploy-

ment. In contrast, considering filters and dependent keys

results in a considerable number of circular dependency sit-

uations, which require using auxiliary GPOs to prevent in-

secure states. This leads to deployment overheads of less

than 30% in common cases and an upper bound of 130% in

extreme cases.

6 Conclusion

In this paper, we demonstrate that unsophisticated ap-

proaches to enterprise policy deployment will create inse-

cure intermediate states on client machines, leading to po-

tential security vulnerabilities. Unfortunately no existing

mechanisms can ensure safe deployment for enterprise pol-

icy deployment. To address this problem, we propose a

model generalized from the Group Policy framework, de-

fine the concept of secure intermediate state, and present an

efficient algorithm to find secure update sequences, based

on the idea of identifying “happen before” relationships be-

tween update operations. Our algorithm relies only on ex-



isting interfaces provided by the underlying policy manage-

ment platform to achieve transactional safety guarantees,

without requiring any modifications to the platform itself.

The rules we used are proven to be complete in identifying

all the possible “happen before” relationships. Our evalu-

ation shows that the computation time of our algorithm is

negligible compared to the deployment time, and the secure

update sequences generated by our algorithm eliminate all

insecure states while maintaining an acceptable overhead in

common cases.

Although we focus our discussion on Group Policy plat-

form, our model is general enough to be easily ported to

other policy model to solve similar deployment problems.

For example, it can be trivially used for firewall policy de-

ployment, since the firewall model is a special case of our

model. Extending our model to other policy management

frameworks will be our future work.

Acknowledgments

We gracefully acknowledge the feedback we received

from the anonymous reviewers. We appreciate the inspiring

discussions and comments from Feng Qian, Zhiyun Qian,

Qiang Xu, Yunjing Xu and Xinyu Zhang. This work was

supported in part by NSF CNS-0643612, DARPA, and De-

partment of Army.

References

[1] E. Al-Shaer and H. Hamed. Firewall policy advisor for

anomaly discovery and rule editing. In Integrated network

management VIII: managing it all: IFIP/IEEE Eighth In-

ternational Symposium on Integrated Network Management

(IM 2003), March 24-28, 2003, Colorado Springs, USA,

page 17. Kluwer Academic Pub, 2003.

[2] E. Al-Shaer and H. Hamed. Discovery of policy anomalies

in distributed firewalls. In INFOCOM 2004. Twenty-third

AnnualJoint Conference of the IEEE Computer and Com-

munications Societies, volume 4, 2004.

[3] E. Al-Shaer and H. Hamed. Modeling and management of

firewall policies. IEEE Transactions on Network and Service

Management, 1(1):2–10, 2004.

[4] F. Baboescu and G. Varghese. Fast and scalable con-

flict detection for packet classifiers. Computer Networks,

42(6):717–735, 2003.

[5] L. Bauer, S. Garriss, and M. Reiter. Detecting and resolving

policy misconfigurations in access-control systems. In Pro-

ceedings of the 13th ACM SACMAT, pages 185–194. ACM

New York, NY, USA, 2008.

[6] M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown,

and S. Shenker. Ethane: Taking control of the enterprise. In

Proceedings of the 2007 conference on Applications, tech-

nologies, architectures, and protocols for computer commu-

nications, pages 1–12. ACM New York, NY, USA, 2007.

[7] W. S. T. Center. Active directory domain services.

http://technet.microsoft.com/en-us/library/cc770946.aspx.
[8] W. S. T. Center. Group policy ob-

jects. http://technet.microsoft.com/en-

us/library/cc775691(WS.10).aspx.
[9] W. S. T. Center. What’s new in group

policy. http://technet.microsoft.com/en-

us/library/dd367853(WS.10).aspx.
[10] W. T. Center. Group policy planning and de-

ployment guide. http://technet.microsoft.com/en-

us/library/cc754948%28WS.10%29.aspx.
[11] M. Corporation. Windows powershell.

http://www.microsoft.com/windowsserver2003/ tech-

nologies/management/powershell/default.mspx.
[12] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-

der policy specification language. Lecture Notes in Com-

puter Science, pages 18–38, 2001.
[13] N. Dulay, E. Lupu, M. Sloman, and N. Damianou. A pol-

icy deployment model for the Ponder language. In 2001

IEEE/IFIP International Symposium on Integrated Network

Management Proceedings, pages 529–543, 2001.
[14] K. Forster. Windows & .net magazine -

windows active directory/group policy study.

http://windowsitpro.com/article/articleid/44239/complete-

results-of-the-group-policy-survey.html.
[15] H. Hamed and E. Al-Shaer. Taxonomy of conflicts in net-

work security policies. IEEE Communications Magazine,

44(3):134–141, 2006.
[16] B. Hicks, S. Rueda, L. Clair, T. Jaeger, and P. McDaniel. A

logical specification and analysis for SELinux MLS policy.

In Proceedings of the 12th ACM SACMAT, pages 91–100.

ACM New York, NY, USA, 2007.
[17] T. Jaeger, X. Zhang, and A. Edwards. Policy management

using access control spaces. ACM Transactions on Informa-

tion and System Security (TISSEC), 6(3):327–364, 2003.
[18] Z. Kerravala. Configuration management delivers business

resiliency. The Yankee Group, 2002.
[19] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. 1978.
[20] P. McDaniel and A. Prakash. Methods and limitations of

security policy reconciliation. ACM Transactions on Infor-

mation and System Security (TISSEC), 9(3):259–291, 2006.
[21] P. Norvig. Artificial intelligence: a modern approach. Pear-

son Education, 2003.
[22] X. Ou, S. Govindavajhala, and A. Appel. MulVAL: A logic-

based network security analyzer. In 14th USENIX Security

Symposium, 2005.
[23] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-

based access control models. Computer, 29(2):38–47, 1996.
[24] SELinux. Selinux project wiki.

http://selinuxprojet.org/page/Main Page.
[25] Y. Sung, S. Rao, G. Xie, and D. Maltz. Towards systematic

design of enterprise networks. In Proceedings of the 2008

ACM CoNEXT Conference. ACM New York, NY, USA,

2008.
[26] M. S. TechCenter. How core group policy works.

http://technet.microsoft.com/en-us/library/cc784268.aspx.
[27] M. Tulloch. Best practices for designing group pol-

icy. http://www.windowsnetworking.com/articles tutorials/

Best-Practices-Designing-Group-Policy.html.



[28] M. Tulloch. Optimizing group policy performance.

http://www.windowsnetworking.com/articles tutorials/

Optimizing-Group-Policy-Performance.html.

[29] D. Verma, I. Center, and Y. Heights. Simplifying network

administration using policy-based management. IEEE net-

work, 16(2):20–26, 2002.

[30] H. Wang, S. Jhat, M. Livny, and P. McDaniel. Security

policy reconciliation in distributed computing environments.

In Fifth IEEE International Workshop on Policies for Dis-

tributed Systems and Networks, 2004. POLICY 2004. Pro-

ceedings, pages 137–146, 2004.

[31] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohap-

atra. FIREMAN: A toolkit for firewall modeling and anal-

ysis. In IEEE Symposium on Security and Privacy, pages

199–213. Citeseer, 2006.

[32] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapa-

tra. FIREMAN: A Toolkit for FIREwallModeling and Anal-

ysis. In IEEE Symposium on Security and Privacy, pages

199–213, 2006.

[33] C. Zhang, M. Winslett, and C. Gunter. On the Safety and

Efficiency of Firewall Policy Deployment. In IEEE Sympo-

sium on Security and Privacy, pages 33–50, 2007.


