Coordinated Scan Detection

Carrie Gates

CA Labs

carrie.gates@ca.com

A Few Definitions to Start....

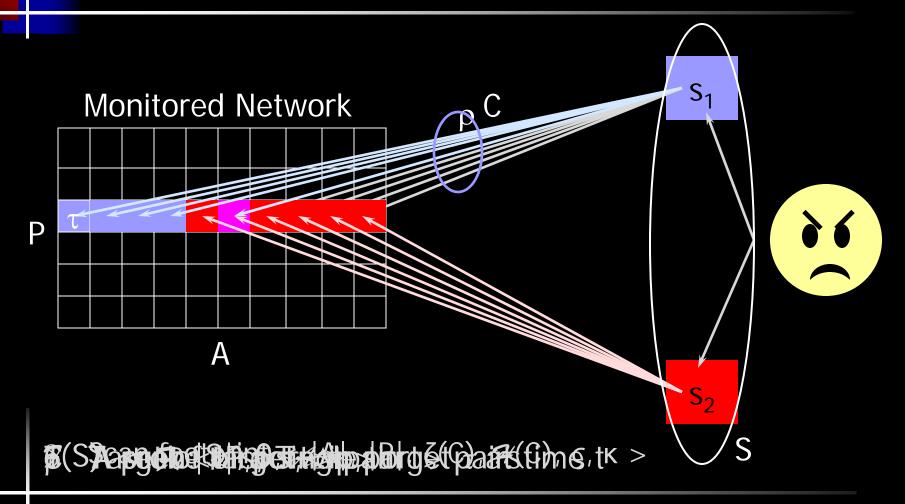
- 1. A target is a single port at a single IP address.
- 2. A scan is a set of connection attempts from a single source to a set of targets during time interval.
- 3. A **source** is a computer system from which a scan originates.
- A coordinated scan is a collection of scans from multiple sources where there is a single instigator behind the set of sources.

What is a co-ordinated port scan?

Monitored Network

Hypothesis

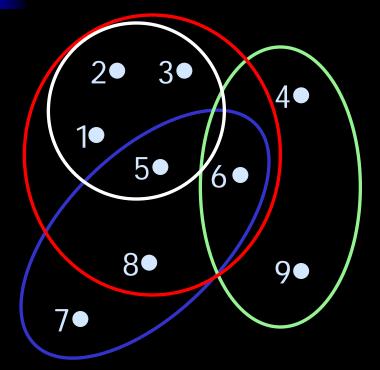
A detector can be designed to detect coordinated TCP port scans against a target network where the scan footprint is either horizontal or strobe with a high detection rate (>= 98%) and a low false positive rate (< 1%) on /16 networks.


Related Work

- Defining a coordinated scan as having very specific characteristics so that scans can be easily clustered
- 2. Clustering packets or alerts based on feature similarities using a machine learning approach
- 3. Manual analysis of network traffic, often aided by visualization approaches, to detect patterns that are representative of coordinated scanning activity

Methodology

- 1. Develop a model of adversary types
- 2. Develop a detector based on the model
- 3. Evaluate the detector
 - 1. Identify key variables
 - 2. Model using regression equations


Adversary Model

Adversary Model

- Developed based on:
 - Adversary targets
 - Footprint scan of these targets generates $(\mathcal{P} = \langle |A|, |P|, \zeta(C), \mathcal{P}(C), \varsigma, \kappa \rangle)$
- 21 adversary footprint patterns identified
 We have developed a detector that can detect
 9 of the 21 adversary types, where either *ς* or
 κ contains at least one subnet.

Detector

- Inspired by the set covering problem - find the minimum number of sets that covers the entire space
- Our modification: find the set of scans that maximizes coverage, ζ(C), while minimizing overlap, θ

Detector

- Coordinated scan recognized in set if:
 - Set consists of more than one scan, |S| > 1
 - 2. Overlap is acceptably small, $\Theta < Y\%$
 - 3. Coverage is acceptably large, $\zeta(C) > X\%$
 - Hit rate is acceptable large, $\mathcal{H}(C) > Z\%$

Algorithm (Altgreedy Portion)

```
S ← smallestScan(A)
```

repeat

 $i \leftarrow \text{smallestOverlap}(A - rejected, S)$ if newlyCoveredIPs(S_i i) > 0 then add scan to solution set else possibly reject scan if overlap(S) > MAXOVERLAP then *i* ← greatestOverlap(*S*) $S \leftarrow S - \{i\}$ possibly reject scan until S U rejected = = A

Algorithm (Detection Portion)

while overlap(S) > MAXOVERLAP

i ← greatestOverlap(*S*)

 $S \leftarrow S - i$

end while

while (! isDPS(S)) && (coverage(S) > MINCOVERAGE)) do

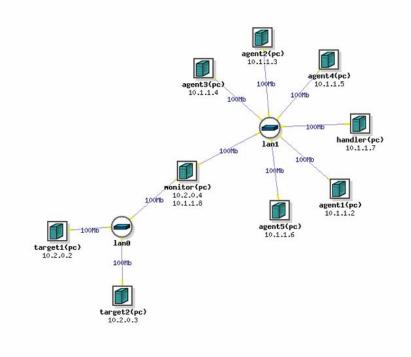
gap \leftarrow largest set of contiguous IP addresses not covered in S

 $S \leftarrow$ scans in largest subset of S when split into two sets

end while

if isDPS(S) then

results $\leftarrow S$


end if

Testing the Algorithm

- Ideal case is real, labeled data
 - Hard to obtain
 - How do you confirm that labels are correct?
 - Red-teaming
- Emulation
 - Uses real data as background noise
 - Uses / restricted to actual scan tools
 - Isolated environment means no legal issues
- Simulation
 - Need to prove that simulation contains no bias
 - Potentially allows greater exploration of space

Experimental Design

Scans were performed on DETER testbed

Noise was obtained from four /16 live networks

Identification of Key Variables

- What are the inputs?
 - 1. Minimum network coverage
 - 2. Maximum overlap
 - 3. Number of (noise) scans
- What are the scan characteristics?
 - 4. Scanning algorithm
 - 5. Number of scanning sources
 - 6. Number of ports scanned

Values for Key Variables

 1
 Network Coverage
 OX 10
 100

 2
 Overlap
 0
 100 20

2

- 3 Number of Noise Scans
- 4 Scanning Algorithm
- 5 Number of Scanning Sources
- 6 Number of Scanned Ports 1

X 1000

X00000X 100

DScan, NSAT

Training and Testing Data

Cov	Ov	Algo	Scan	S	P	DR	FP
%	%	0 - NSAT 1 - DScan	Win				
86	0	0	800	39	1	1.00	0.003
77	11	1	900	36	5	1.00	0.006
64	3	1	200	48	2	1.00	0.000
18	17	1	500	64	1	0.00	0.000

Regression Model (Detection)

 $P(\text{co-ordinated scan is detected}) = e^y / (1 + e^y)$ $y = -1.592 + 0.031 x_1$ $-0.003 x_4 + 0.021 x_5$ 1.0 $+ 0.576 x_{6}$ 0.8 Probability of Detection 0.75 0.5 0.0 1000 Number of Noise Scans 800 25

100

20

200

Regression Model (False Positives)

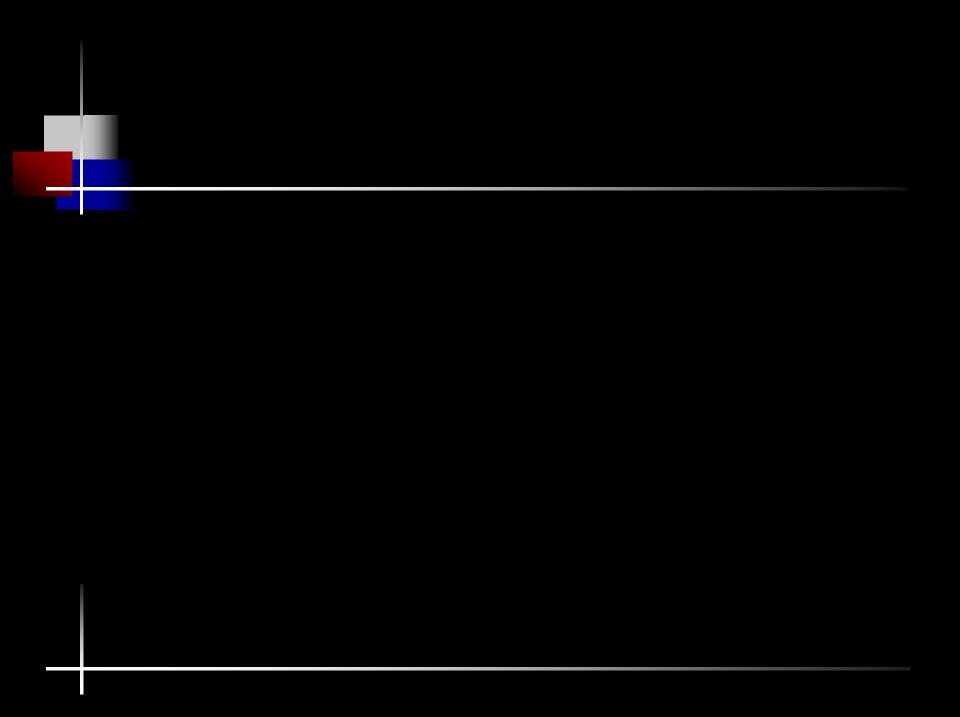
 $fp = -0.007494 + 0.00005559 x_1 + 0.0004216 x_2 + 0.00005877 x_5 + 0.001903 x_6$

- x_1 = network coverage
- $x_2 = overlap$
- $x_5 =$ number of sources
- x_6 = number of ports

Conclusion: Accept Hypothesis

% Cov	% Ov	Noise	S	P	DR	FP
100	0	100	100	5	0.998	0.013
10	0	100	100	5	0.967	0.008
100	0	1000	100	5	0.979	0.013
100	0	100	2	5	0.985	0.008
100	0	100	100	1	0.980	0.006
10	20	100	100	5	0.967	0.017
100	20	100	100	5	0.998	0.022
100	20	1000	100	5	0.979	0.022
100	20	100	2	5	0.985	0.016
100	20	100	100	1	0.980	0.014

How to Game My Detector


- 1. Do not scan a contiguous space
 - E.g., all existing hosts might not be contiguous
 - But... can "compress" non-existing hosts to generate contiguous space *might* address this issue
- 2. Scan less than 95% of contiguous space
 - Hit rate for algorithm is set at >= 95%
 - Need further work to determine lower bound
- 3. Distribute scans from each source over enough time
- 4. Make sure sources are not detected by singlesource scan detection algorithm

What is the Effect of Time?

- Time is the wrong variable
- How well does this work when deployed?
 - How much of each scan is required before recognizing a coordinated scan?
 - How many scans are required before the coordinated scan is detected?
 - How should the sliding window be implemented?

Key Contributions

- 1. Adversary model
 - Provides an enumeration of the possible adversary types in this space
- 2. Detection algorithm
 - High detection rate and low false positive rate under certain (known) circumstances

