
Implementing Protection Domains in the JavaTM Development Kit 1.2

Li Gong and Roland Schemers

JavaSoft, Sun Microsystems, Inc.

fgong,schemersg@eng.sun.com

Abstract

The forthcoming JavaTM Development Kit (JDK1.2)

provides �ne-grained access control via an easily con-

�gurable security policy. In this paper, we describe the

design and implementation in JDK1.2 of the concept

of protection domain, which is a cornerstone of the

new security architecture. We present design ratio-

nales, implementation details, and performance data,

which demonstrate the utility and e�ciency of the new

security architecture.

1 Introduction

The original Java security model [5, 7], known as
the sandbox model, provides a very restricted environ-
ment in which to run untrusted code (called applet)
obtained from the open network. Overall security is
enforced through a number of mechanisms, including
language type-safety, bytecode veri�cation, runtime
type checking, name space separation via class load-
ing, and access control via a security manager.

The essence of the sandbox model is that local ap-
plication is trusted to have full access to system re-
sources while applet is not trusted and can access
only the limited resources provided inside the sand-
box. JDK1.1 introduced the concept of signed applet.
A digitally signed applet is treated as if it is trusted
local code if the signature key is recognized as trusted
by the end system that receives the applet.

The new security architecture in JDK1.2 provides
�ne-grained access control, easily con�gurable security
policy, easily extensible access control structure, and
extension of security checks to all Java programs, in-
cluding applets as well as applications. In other words,
there is no longer a built-in, hardwired notion of which
code is trusted. In particular, not all signed code are
equally trusted. Moreover, the original binary trust
model is extended so that all code (remote or local,
signed or not) runs under a security policy that po-

tentially grants di�erent permissions to di�erent pro-
grams, and these sets of permissions may or may not
overlap, as shown in Figure 1.1

Figure 1: JDK1.2 Security Model

The concept of a protection domain [9] is a vital
component of the new architecture in that it is the
basis for making access control decisions. Moreover,
its design and implementation must be e�cient to
meet the stringent standard required by certain ap-
plications.

In the rest of this paper, we �rst give a quick
overview of the new security architecture in JDK1.2.
Then we present details of algorithms, implementa-
tion, and performance data. We also explain how pro-
tection domain is utilized, and compare it with exist-
ing work.

2 Overview of Security Architecture

Looking from a high level, the new architecture is
symbolized by security policy, access permission, run-

1For a broader overview of the architecture and its motiva-

tion, please refer to [3, 4].

1 of 10



ning code that is granted (some) permissions, and ac-
cess control checking.

First, there is a system security policy, set by the
user or by a system administrator, that is represented
by a policy object, which is instantiated from the class
java.security.Policy.

In abstract terms, the security policy is a mapping
from a set of properties that characterize running code
to a set of access permissions that is granted to the
concerned code.

A piece of code is fully characterized by its origin
(its location as speci�ed by a URL) and the set of pub-
lic keys that correspond to the set of private keys that
have been used to sign the code using digital signa-
ture algorithms. Wild cards are used to denote \any
location" or \unsigned".

Second, we introduced a new hierarchy of typed and
parameterized access permissions. The root class is
an abstract class java.security.Permission. Other
permissions are subclassed either from the root class
or one of its subclasses. Generally, a permission class
belongs to the package in which it is mostly used. For
example, the permission representing �le system ac-
cess, FilePermission, is found in the java.io pack-
age.

Typically, each permission consists of a target and
an action, although either can be omitted. For �le ac-
cess, a target can be a directory or a �le. The actions
include read, write, execute, and delete. A �le
target can be expressed as path, path/file, path/*
(which denotes all �les and directories in the directory
path), or path/- (which denotes all �les and directo-
ries under the subtree of the �le system starting at
path).

We also created, inside the java.security pack-
age, abstract classes PermissionCollection and
java.security.Permissions, where the former is a
homogeneous collection of Permission objects and
the latter is a heterogeneous collection of collections
of Permission objects.

Finally, before a controlled resource is to be ac-
cessed, an access control decision is made, based on
the permissions the executing code has. Note that
anyone can create any number of permission objects,
but holding such objects do not imply having gained
the corresponding access rights. Only those permis-
sion objects that the Java runtime system manages
signi�es granted permissions.

To fully understand the new security architecture,
it is critical to know what algorithms are used for
granting permissions, how the permissions are stored
internally to the Java runtime system, what algo-

rithms are used for access control, and how such algo-
rithms are implemented e�ciently. We answer these
questions in the rest of this paper.

3 Protection Domain

According to the classical de�nition of a protection
domain [9], a domain is scoped by the set of objects
that are currently directly accessible by a principal,
where a principal is an entity in the computer system
to which authorizations (and as a result, accountabil-
ity) are granted. The Java sandbox in JDK1.0 is in a
sense a protection domain with a �xed boundary.

In JDK1.2, permissions are granted to protection
domains, and classes and objects belong to protection
domains. This indirection, where permissions are not
granted to classes and objects directly, is by design be-
cause, in the future, protection domains can be further
characterized by user authentication and delegation so
that the same code could obtain di�erent permissions
when running \on behalf of" di�erent users or princi-
pals.

The new class java.security.ProtectionDomain
is package-private, and is transparent to most Java
developers.

3.1 Creating Domain and Its Permissions

In JDK1.2, protection domains are created \on de-
mand", based on code source { the code base where
the code originated from and the set of public keys
that are used to sign the code.

For example, suppose the following security policy,
given in its ASCII representation, is in force.

grant CodeBase

``http://java.sun.com/people/gong/'',

SignedBy ``*'' {

permission java.io.FilePermission

``read,write'', ``/tmp/*'';

permission java.net.SocketPermission

``connect'', ``*.sun.com'';

};

grant CodeBase ``/home/gong/bin'',

SignedBy ``self'' {

permission java.io.FilePermission

``read,write,delete'', ``/home/gong/-'',

};

The �rst entry in this simple policy says
that any applet that is loaded from the web
page http://java.sun.com/people/gong/, whether

2 of 10



signed or not, can read and write any �le in the /tmp
directory, and can connect to any host within the DNS
domain sun.com.

The second entry says that any applet loaded
from the local �le system under the directory
/home/gong/bin, signed by a key that is referenced
through an alias self, can read and write any �le in
the home directory rooted at /home/gong.

When an applet class �le in Java bytecode format,
http://java.sun.com/people/gong/demo.class, is
�rst loaded, the classloader consults the policy object
(whose content is an internal representation of the pol-
icy earlier given in ASCII form), sees that a matching
entry is found but there is no protection domain that
corresponds to this set of permissions, and proceeds
to create a new domain object. This new object has
reference to the permissions granted to it.

When another applet that �ts the same pro�le is
loaded later, that applet will be granted the same set
of permissions, and no new protection domain needs
to be created. Note that if a third applet that does
not �t the pro�le but ends up obtaining the same set
of permissions, a new domain will be created.2

A policy entry is matched if both the code base and
the signer(s) of the applet (or application) code match
the entry. To be more precise, the actual code base of
an applet matches a policy entry if the latter URL is a
pre�x of the former. The signer of an applet matches
a policy entry if the public key used to verify the sig-
nature matches the key that corresponds to the alias
given in the policy entry. (The mapping from an alias
to an actual key or certi�cate is maintained, for ex-
ample, via a local key store.)

If an applet matches multiple entries in the policy,
the applet obtains all permissions granted in those en-
tries. Speci�cally, for code signed with multiple sig-
natures, permissions granted are also additive. For
example, if code signed with key a gets permission x

and code signed by key b gets permission y, then code
signed by both a and b gets both permissions x and y.

Note that often a class may refer to an another
class and thus cause the second class to be loaded
that belongs to another domain. Typically the second
class is loaded by the same classloader that loaded the
�rst class, except when either class is a system class,
in which case the system class is loaded with a null
classloader [5]. The special null system classloader is
a historical feature { system classes (i.e., those classes

2The current implementation may create more domains

than absolutely necessary. This does not compromise secu-

rity, and further optimization should reduce unnecessary do-

main creation.

on CLASSPATH) are loaded via a mechanism imple-
mented in C.

3.2 Mapping Objects to Domains

Each object or class belongs to one and only one
domain. Otherwise, the security decision is hard to
make. If the same class (represented by a piece of Java
bytecode) is reused as part of two applets that belong
to two di�erent domains, and if the same classloader
is loading both applets, then the class is de�ned only
once and is shared by the two domains.

However, if two di�erent classloaders are loading
the applets, then e�ectively each domain will contain
a distinct copy of the class, unless the class is a sys-
tem class, in which case only one copy is de�ned be-
cause a system class is always de�ned by the null

classloader. For example, suppose the same web page
contains a.class, b.class, and c.class. Further as-
sume that a.class and b.class are signed with dif-
ferent keys but both refer to c.class. In this case, two
protection domains will be created to run a.class and
b.class separately, and two copies of c.class will be
de�ned.

The Java runtime maintains the mapping from code
(classes and objects) to their protection domains and
then to their permissions, as shown in Figure 2.

Figure 2: Mapping A Class to Its Protection Domain

This mapping from a class to its protection
domain is �rst registered when the class is de-
�ned. This is done by calling a private method
setProtectionDomain(Class, ProtectionDomain)

on class ProtectionDomain. Obviously this method
is security sensitive; in fact it is not publicly callable
from outside the java.security package.

3 of 10



From within Java code, the protection domain of a
given class is obtained by invoking the static method
getProtectionDomain(CodeSource), again a private
method within the package. For each class, its protec-
tion domain is set only once, and will not change until
the class object is garbage collected.

Once a domain is created, the permission set
it is granted is made read only, so that further
tampering is impossible. This is achieved by call-
ing the setReadOnly() method de�ned in class
java.security.Permissions.

3.3 System Domain

One protection domain is special: the system do-
main consists of system code that is loaded with a
null classloader (i.e., everything on CLASSPATH) and
that is given special privileges. It is common (but
probably not wise) to use the null classloader to iden-
tify system code:

if (x.getClass().getClassLoader() == null) {

(object x is an instance of system code)

}

It is important that all protected external resources,
such as the �le system, the networking facility, and the
screen and keyboard, are only accessible via system
code.

Prior to JDK1.2, all local applications had to be
installed on CLASSPATH in order to be located and run.
This arrangement mandates that any local application
is treated as system code and by default enjoys special
privileges.

To apply the same security policy to applications
found on the local �le system, in JDK1.2 we provide a
new class path, which is speci�ed as a Java property
named java.app.class.path. For example, one can
set the path as the following:

java.app.class.path=/usr/classes:/usr/bin

Non-system classes that are stored on the lo-
cal �le system should all be on this path, not
on the CLASSPATH. We also provide a class called
java.security.Main, which can be used in the fol-
lowing fashion in place of the traditional command
java application to invoke a local application:

java java.security.Main your_application

This usage ensures that any local application
on the java.app.class.path is loaded with a
SecureClassLoader and therefore is subjected to the

security policy (e.g., the second entry in the example
policy we give earlier) that is being enforced. Separate
protection domains are created for such local applica-
tions.

4 Access Control on Resources

The decision of granting access to controlled re-
sources can only be made within the right context,
which must provide answers to questions such as \who
is requesting what, on whose behalf". In JDK1.2, the
decision is based on the protection domains involved
in any computation.

For example, when an access request is made, if
code involved in the execution all belong to the same
protection domain, then the decision is trivial. If the
protection domain has been granted the said permis-
sion, the request should succeed. Otherwise, it must
fail. However, in most cases things are not so straight-
forward and may involvemultiple domains and various
types of permissions.

In the rest of this section, we �rst describe how com-
parisons are made between permissions. We then give
the algorithm for making access control decisions. We
also report implementation details and performance
data.

4.1 Comparing Permissions

The protection domain does not have to be granted
the identical permission as requested, but only one or
more permissions that imply the said permission. For
example, if the protection domain is granted a permis-
sion to read all �les in directory /tmp, then a request
to read �le /tmp/README.txt should succeed. More-
over, two separate permissions, one for \read" and one
for \write", should imply a combined permission for
\read,write".

Such implication reasoning is encapsulated in
the implementation of the implies(Permission)

method that is de�ned in the abstract base class
java.security.Permission and must have a con-
crete implementation for each type of permission
classes.

For example, the java.io.FilePermission class
implements the implies() method such that it cor-
rectly interprets wild card for �le names, whereas
the java.net.SocketPermission class's implies()

method understands IP addresses and DNS names.
The implies(Permission) method must be im-

plemented carefully, as it can compromise security.
For example, the method should always check that

4 of 10



the permission it is checking against (the permis-
sion passed in as a parameter) must be of the same
type as itself,3 as in the following code fragment from
java.io.FilePermission class:

public boolean implies(Permission p) {

if (!(p instanceof FilePermission))

return false;

FilePermission fp = (FilePermission) p;

... (continue checking other things)

}

Suppose we have the following permissions:

FilePermission p1 =

new FilePermission(``/tmp/*'', ``read'');

FilePermission p2 =

new FilePermission(``/tmp/x.txt'', ``read'');

FilePermission p3 =

new FilePermission(``/usr/bin'', ``read'');

SocketPermission p4 =

new SocketPermission(``*'', ``accept'');

Then p1.implies(p2) is true, p1.implies(p3) is
not true, and p4.implies(p2) is not true.

Note that although it may be convenient to have a
catch-all permission that \implies" other permissions
of di�erent types, such super permissions, if ever cre-
ated, must be handled very cautiously, as they are
risky to give out.

When an access control permission is requested, the
AccessController.checkPermission() method will
go through all the permissions that the protection do-
main has, identify permission objects of the appro-
priate types, and then compare them with the said
permission to see if the latter is implied by any of the
former.

Moreover, when comparing two permissions p1

(which is created as part of the access request)
and p2 (which is stored with the protection do-
main object), we always invoke checking in the
form of if (p2.implies(p1) == true) and not
if (p1.implies(p2) == true), as the implementa-
tion of p2 (which is controlled by system code) is not
less dependable than that of p1, which is controlled
by the calling application.

4.2 Access Control Algorithms

The right context for access control is a thread of
computation, which may involve one or more Java

3This particular rule usually applies only when comparing

individual permission objects. When comparing sets of permis-

sion objects of mixed types, similar precaution must be taken.

threads, for example, when child threads are created.
A thread of computation may occur within a single
protection domain (i.e., all classes and objects in-
volved in the thread belong to the identical protection
domain) or may involve multiple domains.

For example, an application that reads a �le via
a FileInputStream is in e�ect interacting with the
system domain that mediates access to the underly-
ing �le system. In this case, the application domain
must not gain additional permissions by merely call-
ing the system domain. Otherwise, security can be
compromised.

As another example, suppose that a system domain
invokes a method from an application domain, such as
in a call-back situation, again the application domain
must not gain additional permissions merely because
it is being called by the system domain.

The above observation applies to a thread that tra-
verses multiple protection domains. Therefore, for se-
curity reasons, a domain cannot gain additional per-
missions as a result of calling a more \powerful" do-
main, while a more powerful domain must lose its
power when calling a less powerful domain.

Prior to JDK1.2, any code that performs an access
control decision relies on explicitly knowing its caller's
status (i.e., being system code or applet code). This is
fragile in that it is often insu�ciently secure to know
only the caller's status but also the caller's caller's sta-
tus and so on. Moreover, having only a broad distinc-
tion between system code and applet code limits us to
supporting a binary, all-or-nothing access control pol-
icy. Finally, placing this discovery process explicitly
on the typical programmer becomes a serious burden,
and can be error-prone.

To relieve this burden, we automate the most
common scenario for checking access in a new class
java.security.AccessController. Instead of try-
ing to discover the history of callers and their sta-
tus within a thread, any code can query the ac-
cess controller as to whether a permission would
succeed if performed right now. This is done
by calling the checkPermission() method of the
AccessController class with a Permission object
that represents the permission in question. Below is a
small code example for checking �le access.

FilePermission p =

new FilePermission("path/file", "read");

AccessController.checkPermission(p);

The access controller will, as a default, re-
turn silently only if all callers in the thread cur-
rent history belong to domains that have been

5 of 10



granted the said permission. Otherwise, it throws a
java.security.AccessControlException that is a
subclass of java.lang.SecurityException.

Note that the history of a thread includes not only
all classes on the current call stack but also all classes
in its parent thread when the current thread is created.
This inheritance is transitive, and is natural in that a
child thread is simply a continuation of the parent
thread. If we do not enforce this inheritance, a child
thread can unexpectedly gain additional access that is
not permitted in its parent. This phenomenon would
require a programmer be extra careful when creating
threads, which is an undesirable burden.

The default behavior to grant a permission only
when all protection domains involved have that per-
mission, although the most secure, is limiting in some
cases where a piece of code wants to temporarily exer-
cise its own permissions that are not available directly
to its callers. For example, an applet may not have
direct access to certain system properties, but the sys-
tem code servicing the applet may need to obtain these
properties in order to complete its tasks. The default
mode will prevent this from happening, as the system
code called by the applet code would lose its system
privileges.

For such exceptional cases, we provide an over-
riding primitive, in the AccessController class, in
the form of static methods beginPrivileged() and
endPrivileged(). By calling beginPrivileged, a
piece of code is telling the Java runtime system to
ignore the permissions of its callers and that it itself
is taking responsibility in exercising its permissions.
Note that the protection domains of the code that is
subsequently called by the \privileged" code are still
considered when deciding whether to grant permis-
sions.

Looking from another angle, the permission of an
execution thread is the intersection of the permissions
of all protection domains traversed by the execution
thread, except that, when a piece of code calls the
beginPrivileged() primitive, the intersection is per-
formed only on the protection domain of the privileged
code and the domains of its subsequent callees. This
is illustrated in Figure 3. The actual implementation
of the access controller can take various shapes, but it
must follow the above basic principle.

4.3 Implementation of AccessController

The most important method in
the AccessController class is checkPermission(),
and there are at least two strategies for implementing
it. In an \eager evaluation" implementation, when-

Figure 3: Making Access Control Decisions

ever a thread enters a new protection domain or exits
from one, the set of e�ective permissions is computed
dynamically. The bene�t is that checking whether a
permission is allowed is simpli�ed and can be faster
in many cases. The disadvantage is that, because
permission checking occurs much less frequently than
cross-domain calls, a large percentage of permission
updates will be useless e�ort. This observation is crit-
ical as every method call in Java can potentially be a
cross-domain call, and computing the intersection of
permissions can be expensive.

JDK1.2 uses \lazy evaluation". Whenever a per-
mission checking is requested, the intersection is com-
puted with regard to the thread current state as rep-
resented in the form or the equivalent of the current
stack plus its parental history. In fact, the intersection
of all permission sets is not literally implemented.

More precisely, suppose the thread traverses m

callers belonging to n di�erent protection domains, in
the order of domain 1 to domain 2 to domain n. Do-
main n then invokes the checkPermission()method.
The lazy evaluation implements the follow algorithm:

i = n;

while (i > 0) {

if (domain i does not have permission)

throw AccessControlException;

else if (domain i is privileged) return;

i = i - 1;

} return;

One potential downside of this approach is perfor-
mance penalty at actual time of permission checking,
although this penalty would have been incurred any-
way in the \eager evaluation" approach, albeit at ear-
lier times and spread out among each cross-domain

6 of 10



call. Performance data will show later that lazy eval-
uation is e�cient in practice.

4.4 More on Privileged Code

The correct usage of the privilege primitive is the
following:

try {

AccessController.beginPrivileged();

some sensitive code

} finally {

AccessController.endPrivileged();

}

The concept of being privileged is scoped by the
thread within which the call to become privileged is
made. The same protection domain in other threads
are not a�ected. Also, the privilege primitive can be
nested. Moreover, although the code inside try-�nally
is privileged, it will lose its privilege if it calls code
that is less privileged.

Finally, although it is a good idea to use
beginPrivileged() and endPrivileged() in pairs
as this clearly scopes the privileged code, some
programmers may call an extra or forget to call
endPrivileged(). We have provided extra protec-
tion to reduce the risk in such a situation. For
example, to mount an attack through a forgotten
endPrivileged() call, the attacking code must be
able to recreate the stack history, with the correct
frame depth and frame number that is arbitrarily cho-
sen by the Java virtual machine from a pool of avail-
able numbers.

4.5 Performance

Because earlier JDK implementations did ex-
amine stack context to look for the presence of
applets, having the AccessController look over
the stack history is not intrinsicly slower. The
AccessController.checkPermission() method is
implemented as follows (pseudo code).

void checkPermission(Permission perm)

throws AccessControlException {

getProtectionDomainContext();

for each domain in context {

get the permission_set of the domain;

if (permission_set.implies(perm) == false)

throw new AccessControlException();

}

}

Note that an optimization technique, explained
later, eliminates the need to deal with privileged code
here. Also, the implies() method can be expensive
because it goes through all permissions (granted to the
domain) that are of the appropriate type and checks
if any of those implies the requested permission.

We deployed a few optimization techniques in
getProtectionDomainContext() to make access con-
trol go fast, mainly by reducing the size of the context
as it impacts the for loop. Obviously some of these
techniques need to be changed if the basic algorithm
is changed.

� In the protection domain context that is returned
to AccessController, we return only the do-
mains up to (and include) the �rst privileged do-
main, because our algorithm says that if a priv-
ileged class belongs to a protection domain that
has the requested permission, the check should go
through; otherwise, the check should fail.4

� We eliminate system domains from the returned
protection domain context, because the system
domain by default has all permissions.

� We return only distinct domains. For example, if
there are many classes that all belong to one pro-
tection domain, then the returned context con-
tains only one such domain. The order of domains
does not matter for security.

� All above optimizations are applied to the cur-
rent thread context as well as the inherited parent
thread context.

We tested our implementation on a Sun Sparc
Ultra-1 running Solaris 2.5.1 with the latest in-house
build of JDK1.2, but without a JIT compiler. We
used loops with 10,000 iterations, and used the simple
System.currentTimeMillis()method call to obtain
time in milliseconds.

We �rst created call chains of the following struc-
ture, which we use S2A(BC)nB to denote, where the
chain starts with two classes of the system domain
(S) and an application domain (A), n iterations of
the two applications domains (B and C) calling each
other, and ends with domain B invoking the call
AccessController.checkPermission(). We con�g-
ured the security policy to grant the requested permis-
sion to all application domains, which ensures that all

4This optimization is also convenient, because information

about privilege status is stored in a C structure. If we have to

return domains beyond the �rst privileged one, we would create

additional storage and processing overhead in Java, not only for

the extra domains but also their privilege status.

7 of 10



application domains are checked. For comparison, we
also measured time without optimization (by remov-
ing those techniques from the code). The results are
reported in the left half of Table 1.

domains checking time checking time
n (2n+4) (optimized) (non-optimized)

0 4 174.6usec 177.8usec
1 6 252.2usec 308.0usec
2 8 261.6usec 444.3usec
3 10 270.7usec 580.2usec
4 12 283.7usec 730.4usec
5 14 297.5usec 878.7usec
6 16 302.9usec 1001.8usec
7 18 312.2usec 1151.6usec
8 20 324.9usec 1270.4usec
9 22 333.7usec 1403.2usec

Table 1: Performance of checkPermission (08/01/97)

We can see that for every two additional domains,
about an extra 10usec is used. We also imagined
that, if we have a large number of distinct pro-
tection domains, the checking time should increase
roughly linearly. For validation, we repeated the
same experiments, except that we removed the op-
timization technique that caches already-checked do-
mains. This means that none of the application do-
mains are collapsed or cached, so that a stack of the
form S2A(BC)nB is equivalent to having 2n + 2 dis-
tinct application domains. The results are reported
in the right half of Table 1 below. We can see that
for each additional domain, about 70usec more time
is required. Figure 4 illustrates the numbers reported
in Table 1.

The above experiments were performed where each
protection has 4 or 5 di�erent permissions. When the
number of permissions increase, we expect the check-
ing time to increase too, although we use a variety of
optimization techniques there. We currently do not
have any performance numbers in this regard. We
also do not report experiment results with more than
20 distinct application domains, as we do not envision
the number being signi�cantly larger in real-world ap-
plications.

We faced more problems with the privileged
construct. We started o� by implementing the
privileged mechanism in Java code. This imple-
mentation included a hash table indexed on the
thread object, and stored information that correspond
to beginPrivileged() and endPrivileged() calls.

Figure 4: Performance of checkPermission (08/01/97)

This was fairly e�cient for the sort of access control
checking we envisioned, such as checking for �le access.

However, soon the security model became widely
used throughout the JDK code base itself, and pack-
ages for debugging and reection (among others) de-
manded super fast speed. The earlier pure Java im-
plementation became somewhat problematic for these
new areas of applications, because they would have
to originate calls from C into Java and then back to
C, where the round trip cost is too high, and because
having to manage a hash table for every privilege call
was relatively expensive.

We subsequently changed our implementation to
maintain and manipulate a record of privileged frames
in a per-thread environment in C. After other various
tuning, we obtained the following rough estimate, on
the same test platform described earlier, except that
we used loops with 100,000 iterations. We ran tests
over several method calls (including a void call that
does nothing) and the results for comparison, in mi-
croseconds (usec), are in Table 2.

plain privileged increase
call call

m1 0.86usec 2.96usec 2.10usec (244%)
m2 2.72usec 4.92usec 2.20usec (81%)
m3 5.83usec 7.96usec 2.13usec (37)%
m4 31.03usec 33.98usec 2.95usec (10%)
m5 815.20usec 816.94usec 1.74usec (< 0.3%)

Table 2: Performance of Privileged Blocks (07/30/97)

This table shows that the extra e�ort for creating

8 of 10



and dismantling a privileged block is consistently at
not more than 2 or 3usec. Here, we use the following
notations.

m1 = void method
m2 = File(\/tmp/a")

m3 = Date()

m4 = System.getProperty(user.home)
m5 = Date(1, 2, 3)

5 Discussion and Future Work

To provide a rough sense of the scale of the work,
we counted the number of lines of Java source code in
newly introduced classes that related directly to the
protection concept and its usage. We did not count
classes that existed in JDK1.1, some of which are ex-
tensively modi�ed, and the relatively small amount of
new C code. The total number of lines of code in newly
created classes excluding the copyright notices comes
to about 5000. The total footprint (i.e., size of byte-
code) of these classes is about 48.5Kbytes. Numer-
ous existing classes (perhaps with another 5000 lines
of code) have been changed, so the total implemen-
tation e�ort went much beyond creating the counted
new classes. For example, supporting packages, such
as java.security.cert and the entirely X.509v3 im-
plementation, have been added for the �rst time.

It is worth noting that we have been able to evolve
the existing security mechanisms in JDK1.0.x and
JDK1.1.x to implement the new security architecture
without changing the underlying Java virtual machine
and without causing any incompatible API changes.
Our design and implementation follow strictly the bi-
nary compatibility rules given in the Java language
speci�cation.

We can imagine several re�nements. For example,
the privileged primitive as currently designed would
enable privilege for all the permissions granted to a
domain. We can extend the primitive so that a pro-
tection domain can request privilege for only a subset
of all its granted permissions. This could further re-
duce the security impact of making a programming
mistake. The pseudo code segment below illustrates
how to request privilege of reading one �le.

FilePermission p =

new FilePermission("/tmp/x.txt", "read");

try {

AccessController.beginPrivileged(p);

some sensitive code

} finally {

AccessController.endPrivileged(p);

}

Moreover, we tend to think of the system domain
as a single collection that includes all system code.
It is possible to arrange so that system code run in
multiple system domains, where each domain protects
a particular type of resource and is given a special set
of permissions. For example, we can grant �le system
code only access permissions to �le system resources,
and network system code only access permissions to
network resources. This would be one step closer to
the least-privilege principle, and the consequence of
an error or security aw in one system domain is more
likely to be con�ned within its smaller boundary.

Finally, protection domain also serves as a conve-
nient point for grouping and isolation between units
of protection within the Java runtime. For example,
although the AppletClassLoader class used by the
appletviewer in JDK1.2 will load classes from di�er-
ent domains, it is possible to customize a classloader
that will create di�erent domains such that they are
separated from interacting with each other. In this
case, any permitted interaction must be either through
trusted system code or explicitly allowed by the do-
mains concerned.

Note that, in JDK1.2 architecture, the issue of ac-
cessibility is orthogonal to security. In the Java virtual
machine, a class is distinguished by itself plus the class
loader instance that loaded the class. Classes loaded
by di�erent class loaders live in di�erent name spaces.
Thus a class loader can be used to isolate and pro-
tect code within one protection domain if the loader
refuses to load code from di�erent domains. On the
other hand, if one wishes to allow code from di�erent
domains to interact with each other, one could use
a classloader, such as the AppletClassLoader, that
de�nes classes in di�erent domains.

6 Related Work

The fundamental ideas adopted in the new JDK1.2
security architecture have roots in the last 40 years
of computer security research. Signi�cantly, our de-
sign has been inspired by the concept of protection do-
mains and the work dealing with mutually suspicious
programs in Multics [10, 8], and right ampli�cation in
Hydra [6, 12].

One feature that is not present in operating systems
such as Unix or MS-DOS, is that we implement the
least-privilege principle by automatically intersecting
the sets of permissions granted to protection domains
that are involved in a call sequence. This way, a pro-
gramming error in system or application software is

9 of 10



less likely to be exploitable as a security hole. Dur-
ing the course of JDK1.2 implementation, from time
to time, some (non-security) feature would no longer
work due to the more restricted security model that
has been put in place. Such events have pushed the
developers to take a closer look at their code to make
sure that necessary security checks are invoked and
that the privilege primitive is used only scarcely and
only under the appropriate circumstances.

Another character of Java is that its protection
mechanisms are language-based, within a single ad-
dress space. This feature is a major distinction from
more traditional operating systems, but is very much
related to recent works on software-based protection
and safe kernel extensions (e.g., [2, 1, 11]), where var-
ious research teams have lately aimed for some of the
same goals with di�erent programming techniques.

7 Conclusion

This paper describes in detail the design and imple-
mentation of the concept of protection domains, which
is an important foundation of the new security archi-
tecture delivered in the upcoming JavaTM Development
Kit (JDK1.2.) from JavaSoft, Sun Microsystems.

Our contribution is to adapt well-established con-
cepts from years of computer security research to a
design and implementation that suits particularly well
for the Java environment. Our engineering e�ort has
clearly demonstrated the exibility and evolveability
of Java and has proven that policy-based, easily con-
�gurable, �ne-grained access control can be achieved
e�ciently on the Java platform.

Acknowledgments

Members of the JavaSoft community, including
Josh Bloch, Sheng Liang, Marianne Mueller, Hemma
Prafullchandra, Nakul Saraiya, and Bill Shannon, pro-
vided valuable assistance in design reviews and imple-
mentation.

References

[1] B. N. Bershad, S. Savage, P. Pardyak, E. G.
Sirer, M. Fiuchynski, D. Becker, S. Eggers, and
C. Chambers. Extensibility, Safety, and Perfor-
mance in the SPIN Operating System. In Pro-

ceedings of the 15th ACM Symposium on Operat-

ing Systems Principles, pages 251{266, Colorado,

December 1995. Published as ACM Operating
System Review 29(5):251{266, 1995.

[2] J.S. Chase, H.M. Levy, M.J. Feeley, and E.D.
Lazowska. Sharing and Protection in a Single-
Address-Space Operating System. ACM Trans-

actions on Computer Systems, 12(4):271{307,
November 1994.

[3] L. Gong. Java Security: Present and Near Future.
IEEE Micro, 17(3):14{19, May/June 1997.

[4] L. Gong, M. Mueller, H. Prafullchandra, and
R. Schemers. Going Beyond the Sandbox: An
Overview of the New Security Architecture in the
JavaTM Development Kit 1.2. In Proceedings of

the USENIX Symposium on Internet Technolo-

gies and Systems, pages 103{112, Monterey, Cal-
ifornia, December 1997.

[5] J. Gosling, Bill Joy, and Guy Steele. The Java

Language Speci�cation. Addison-Wesley, Menlo
Park, California, August 1996.

[6] A.K. Jones. Protection in Programmed Systems.
Ph.D. dissertation, Carnegie-Mellon University,
Pittsburgh, PA 15213, June 1973.

[7] T. Lindholm and F. Yellin. The Java Virtual Ma-

chine Speci�cation. Addison-Wesley, Menlo Park,
California, 1997.

[8] J.H. Saltzer. Protection and the Control of Infor-
mation Sharing in Multics. Communications of

the ACM, 17(7):388{402, July 1974.

[9] J.H. Saltzer and M.D. Schroeder. The Protection
of Information in Computer Systems. Proceedings
of the IEEE, 63(9):1278{1308, September 1975.

[10] M.D. Schroeder. Cooperation of Mutually Suspi-

cious Subsystems in a Computer Utility. Ph.D.
dissertation, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, September 1972.

[11] M. I. Seltzer, Y. Endo, C. Small, and K. A.
Smith. Dealing with Disaster: Surviving Mis-
behaved Kernel Extensions. In Proceedings of

the 2nd USENIX Symposium on Operating Sys-

tems Design and Implementation, pages 213{227,
Seattle, Washington, October 1996. Published as
ACM Operating Systems Review, 30, special win-
ter issue, 1996.

[12] W.A. Wulf, R. Levin, and S.P. Harbison. HY-

DRA/C.mmp { An Experimental Computer Sys-

tem. McGraw-Hill, 1981.

10 of 10


