RB-Seeker: Auto-detection of Redirection Botnets February 10, 2009

Xin Hu, Matthew Knysz, Kang G. Shin {huxin, mknysz, kgshin}@eecs.umich.edu

Computer Science & Engineering, University of Michigan, Ann Arbor

Outline

- Motivation of RB-Seeker
- System Architecture
- Overview of subsystems
- Evaluation of results
- Conclusion

Motivation: the botnet problem

- Financial Incentive
 - Underground market
- Common uses of botnets:
 - Redirection/Proxy, Spam, ID theft, DDoS, phishing
- Can cause A LOT of damage
 - Can bring down entire systems or nations

Motivation: botnet appeal

- Modular and Adaptable

 Evolve to overcome defenses Modular and Adaptable

- Difficult to find/stop botmaster
- Discreet
 - Propagation, infection, and occupation

Motivation: Redirection/Proxy Botnet

- Redirect users to malicious servers
 - Additional layer of misdirection
 - Protect mothership servers
 - Evade URL based detection or IP based black list

Motivation: RB-Seeker

- Botnet is an ideal source for redirection/proxy servers
- Botnets used for multiple purposes/scams
- Previous research: detection of C&C channel

Overview: RB-Seeker

- Automatic detection of redirection/proxy botnets
- Utilizes 3 cooperating subsystems
- Behavior-based detection
- Quick identification of *aggressive* botnets (FP < 0.01%)
 - Advertise *many* IPs per query
 - Change IPs very often (short TTL)
- Accurate identification of *stealthy* botnets
 - Advertise *few* IPs per query
- Change IPs more slowly (very small TTL, closely monitored)

System Architecture

SSS: Spam Source Subsystem

- Redirection/proxy botnets are commonly used by spam/phishing campaigns
- SSS exploits this close relationship
 - ▶ Real time collection of spam emails: > 50,000 monthly

SSS: Spam Source Subsystem

- 1. Extract embedded URLs from message bodies
- 2. Probe extracted URLs to identify redirection URL links
- 3. Domains added to redirection domain database

System Architecture

NAS: NetFlow Analysis Subsystem

- Use NetFlow because:
 - Inspecting packet contents incurs too much overhead
 - Privacy concerns
- Spammers send image- or PDF-based emails
 - Evade content-based filtering
- User redirected to RBnet by clicking on malicious webpage
- Inspecting each email not always possible
 - Privacy concerns/laws

NAS: NetFlow Analysis Subsystem University

NetFlow: core router on campus

NetFlow Analysis Subsystem (NAS)

- Looks for suspicious redirection attempts
 - Without analyzing packet contents

2/10/2009

13

NAS: NetFlow Analysis Subsystem University

- Sequential Hypothesis testing on:
 - Flow size, inter-flow duration, and flow duration

NetFlow Analysis Subsystem (NAS)

Core Router

Testing
Flow size
Interflow
duration

NAS: NetFlow Analysis Subsystem University

Identifies IPs participating in redirection

 Correlation engine uses DNS logs to add domains participating in redirection to redirection domain db

NetFlow Analysis

2/10/2009

Core Router

NetFlow

Exports

NAS: NetFlow Analysis Subsystem

Redirection: obtained from SSS, servers identified as redirection

Normal:

normal web browsing over 2 days (removing redirection)

System Architecture

- Actively performs DNS queries on domains in redirection domain db
- Uses CDN Filter to remove Content Delivery Networks
 - CDNs behave similarly to redirection/proxy botnets

- IP Usage:
 - RBnets will accrue more unique IPs over time
 - RBnets will have more unique IPs per valid query
- Reverse DNS names with "bad words"
 - e.g., broadband, cable, comcast, charter, etc...
- AS count
 - Number of different ASes the IPs belong to
 - RBnets consist of home computers scattered geographically

- Applies 2-tier linear SVM on remaining domains
 - Trained: 124 valid, 18 aggressive, 10 stealth
 - 10-fold cross validation on multiple classifiers
 - knn, decision tree, naïve Bayesian, various SVMs and kernel functions

$$F(x) = \left\{ \begin{array}{l} w^T x - b > 0 \;,\;\; \text{if valid domain} \\ w^T x - b < 0 \;,\;\; \text{if RBnet domain} \end{array} \right.$$

- SVM-1:
 - detects *Aggressive RBnets* based on 2 valid queries
 - unique IPs, num ASes, DNS "bad words"

a-DADs: SVM-1 Aggressive RBnets

SVM-1 Domain Attributes

22

- SVM-2:
 - detects **Stealth RBnets** using a week of DNS queries
 - unique IPs, num ASes

a-DADs: SVM-2 Stealth RBnets

SVM-2 Domain Attributes

$$f(x) = w^{T}x - b$$

$$= 52.497 * N_{DAY_unique_IPs} - 63.109 * N_{WEEK_unique_IPs}$$

$$-10.924 * (N_{DAY_ASes} + N_{WEEK_ASes}) + 227.985$$
₂₄

Evaluation of Results

- SSS and NAS identified 91,600+ suspicious domains over 2 month period
- a-DADS CDN Filter
 - Removed 5,005 CDN domains
 - Recursion 16.8% increase in identified CDN domains (13.1% in IPs)
 - Similar technique for valid domains reduced this to 35,000+ domains to be monitored

Evaluation of Results

	RBnet Domains	RBnet IPs	Valid Queries Used
SVM-1	125	3,541	2 queries
SVM-2	156	249	1 week
RB-Seeker	281	3,790	2 queries/1 week

SVM-1: Experienced 1 FP (< 0.008%)

RBnet Domains

RBnet IPs

Aggressive RBnets:

Redirection vs. Proxy Botnets

Stealth RBnets

Unique IPs seen for Stealth RBnet domains

Evaluation of Results

- FFSN detector:
 - Detected 124 of the 125 Aggressive RBnets
 - 1 FP: same as ours (mozilla.org)
 - Missed all the Stealth RBnets

Conclusion

- Designed and implemented system for detecting redirection/proxy botnets
- Uses network detection techniques
 - multiple data sources readily available to enterprise network environments
- Behavior-based detection works despite use of C&C protocol or structure
- Capable of detecting Aggressive and Stealthy RBnets
- Automatic detection with low false positives (< 0.01%)

Questions?

Evaluation of Results

	Domains
Aggressive RBn	et 125
(both) NAS & S	SS 60
(only) N	AS 7
(only) S	SC 58
Steartn KBN6	ets 156
(both) NAS & S	SS 117
(only) S	SS 39

DDonmaissA § gerekkivle Bratets

