
IntelliDroid: A Targeted Input Generator for the
Dynamic Analysis of Android Malware

Michelle Y. Wong and David Lie
Department of Electrical and Computer Engineering

University of Toronto

Abstract—While dynamic malware analysis methods generally
provide better precision than purely static methods, they have the
key drawback that they can only detect malicious behavior if it
is executed during analysis. This requires inputs that trigger the
malicious behavior to be applied during execution. All current
methods, such as hard-coded tests, random fuzzing and concolic
testing, can provide good coverage but are inefficient because
they are unaware of the specific capabilities of the dynamic
analysis tool. In this work, we introduce IntelliDroid, a generic
Android input generator that can be configured to produce
inputs specific to a dynamic analysis tool, for the analysis of
any Android application. Furthermore, IntelliDroid is capable of
determining the precise order that the inputs must be injected,
and injects them at what we call the device-framework interface
such that system fidelity is preserved. This enables it to be paired
with full-system dynamic analysis tools such as TaintDroid. Our
experiments demonstrate that IntelliDroid requires an average
of 72 inputs and only needs to execute an average of 5% of the
application to detect malicious behavior. When evaluated on 75
instances of malicious behavior, IntelliDroid successfully identifies
the behavior, extracts path constraints, and executes the malicious
code in all but 5 cases. On average, IntelliDroid performs these
tasks in 138.4 seconds per application.

I. INTRODUCTION

Smartphone malware is and will continue to be a ma-
jor security threat. One of the most attractive features of a
smartphone is the ability to extend its functionality with third-
party applications. Unfortunately, such a feature inevitably
brings with it the threat of malicious smartphone applications,
otherwise known as smartphone malware. With a reported 1.3
billion smartphones sold in 2014 [20], this large population
of potential victims gives malware writers ample motivation
to target smartphone devices, as indicated by a recent report
by Sophos, which states that the number of new smartphone
malware samples detected has doubled from 1000 per day in
2013 to 2000 per day in 2014 [38].

To combat the spread of malware, many application mar-
kets, such as Google Play and the Apple App Store, spend
considerable resources trying to detect and remove malware.

In addition to manual analysis by humans, these markets
also employ automated techniques, such as static analysis, to
identify applications that are likely to be malicious. However,
static analysis techniques are inherently imprecise as they can
only operate on an abstraction of the program [21]. As a result,
such markets also employ dynamic analysis, which gathers
information by executing the application. Unfortunately, while
dynamic analysis is precise, it can only detect malicious
behavior if the code that implements that behavior is executed
during the analysis.

There are several common strategies that can be employed
to trigger the malicious behavior that the dynamic analysis is
trying to detect. The simplest, but least effective, is to have a
predefined script of common inputs that will be executed on
the application under analysis. This not only has a very low
chance of triggering the malicious behavior, but can be easily
evaded by a knowledgeable adversary. A more sophisticated
approach is random fuzzing [31], [46], which applies randomly
generated inputs on the application in an effort to trigger
as many behaviors as possible. However, random fuzzing is
inefficient, as it may generate many inputs that trigger the same
code and behavior in the application. To address this, a recent
and more effective technique is concolic testing [26], [2],
which uses symbolically derived path constraints to exercise
different paths in the application for each generated input.

However, none of these methods are ideal for triggering
malicious behavior in applications because they are blind to
distinguishing between code that performs the behavior that the
dynamic analysis is trying to detect and code that does not.
Thus, while concolic testing can efficiently achieve high code
coverage, it will still waste many compute cycles by having
the dynamic analysis analyze irrelevant parts of the application.
Instead, we propose targeted analysis, which uses information
about the dynamic tool in combination with static analysis of
the application to generate a reasonably small set of inputs
that will trigger the malicious behavior to be detected by the
dynamic analysis. We implement and evaluate the concept of
targeted analysis for detecting Android malware in a prototype
we call IntelliDroid.

Naturally, it would be very difficult for a static analysis tool
to generate only the exact inputs that are needed to trigger ma-
licious activity in an application, as this would imply that the
static analysis tool is as precise as the dynamic tool at detecting
malicious behavior. Instead, we need a reasonably accurate
over-approximation of the behaviors that will be analyzed by
the dynamic tool. IntelliDroid can then generate a small set
of inputs that will trigger all of the code matching the over-

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23118

approximation and allow the dynamic analysis to decide if it is
actually malicious or not. For this approximation, IntelliDroid
uses a list of “targeted” Android APIs that is specific to the
dynamic analysis tool. This design decision is motivated by
the observation that most malicious behaviors, such as sending
and intercepting SMS messages, leaking private information
or making malicious network requests, require the use of
APIs [49]1. In addition, malware may obfuscate malicious
activity using reflection or dynamic class loading. IntelliDroid
can trigger the reflection and class loading APIs so that the
dynamic tool can observe the resolution of the reflected calls
or the behavior of the dynamically loaded classes.

It is crucial that IntelliDroid can generate inputs that trigger
all targeted APIs. Most tools that combine static and dynamic
techniques use the dynamic analysis to prune false positives
generated by the static analysis [28], [24]; thus, if the dynamic
phase is unable to execute a particular path, it only increases
the number of false positives. However, if IntelliDroid fails to
trigger a malicious behavior, this will result a false negative,
with more serious security consequences.

IntelliDroid introduces two new input generation and in-
jection techniques that enable it to trigger code paths on
which previous Android input generation techniques would
fail [28], [24], [45], [48], [37], [9]. First, Android applications
do not have a single entry-point, but are instead composed of
a collection of event handlers. It can be insufficient to call just
the event handler that contains a particular API invocation.
Instead, the event handlers need to be triggered in a particular
order, and in some cases a “chain” of several handlers needs
to be triggered with specific inputs. IntelliDroid iteratively
detects such event-chains and computes the appropriate inputs
to inject, as well as the order in which to inject them.

Second, while previous work injects inputs at the ap-
plication boundary [28], [40], [45], [35], this low-fidelity
injection can lead to false application behavior because the
application state is inconsistent with the Android system state.
For example, to hide the presence of SMS messages from
the user, an Android malware program could register an event
handler for an incoming SMS, and then access and search the
SMS content provider to delete the received message. Simply
injecting the SMS notification at the application boundary
will result in inconsistent behavior because the application
expects the message to be in the SMS content provider
database, but the Android framework itself has received no
such message. IntelliDroid maintains environment consistency
after input injection by injecting inputs at the lower-level
device-framework interface, allowing all state in the Android
framework to be automatically changed consistently. This
high-fidelity input injection means that IntelliDroid can be
integrated with essentially any dynamic analysis tool, including
full system analysis tools such as TaintDroid [19].

In summary, we make three main contributions in this paper:

1) We present the design and implementation of IntelliDroid,
an input generator that takes into account the malicious
behavior a dynamic analysis tool is trying to detect.
IntelliDroid uses targeted APIs as an over-approximation

1Our own analysis shows this is true of more recent malware as well as the
older malware in the cited study.

for these malicious behaviors and generates inputs that
trigger all instances of those APIs in an application. We
describe two novel techniques that enable IntelliDroid to
trigger targeted APIs with injected inputs: detecting event-
chains and device-framework interface input injection.

2) We show that the targeted API abstraction makes Intelli-
Droid easy to use with a dynamic analysis tool by
integrating it with the TaintDroid dynamic analysis tool.
When run on a corpus of malware, we show that Intelli-
Droid using TaintDroid can trigger and detect all privacy
leaks. We also show that IntelliDroid’s event-chain detec-
tion and device-framework interface input injection enable
it to effectively generate inputs that trigger 70/75 targeted
APIs in a corpus of malware.

3) We show that IntelliDroid is cheap and fast, requiring only
138.4 seconds of analysis time on average to successfully
generate inputs to trigger targeted APIs on a corpus of
malicious and benign applications. We also show that
IntelliDroid is able to avoid running approximately 95%
of an application during dynamic analysis while still
detecting all malicious behaviors.

We begin by giving relevant background on Android and
static analysis in Section II. We then describe the design of
IntelliDroid in Section III. Details about the implementation
are in Section IV. Evaluation showing the effectiveness and
performance of IntelliDroid are presented in Section V. Sec-
tion VI goes over the limitations, while related works are
discussed in Section VII. Finally, we conclude in Section VIII.

II. BACKGROUND

Though documentation about the Android programming
environment and system are widely available2, a perhaps less
well-documented aspect of Android is the implementation
of the Android framework, which forms the middle layer
between third-party applications and Android’s custom Linux
kernel. The Android framework consists of system services
that communicate with the device’s hardware components,
as well as classes that implement application programming
interface (API) methods that third-party applications invoke.
When an application is launched, execution begins in the
Android framework, which loads the application components
and manages their lifecycles. Applications on the Android
platform are event-driven and implement specific methods,
which we call entry-points, that are invoked by the framework
when events, such as location events from the GPS sensor
or SMS events from the cellular chip, occur. Some application
entry-points must be registered with the framework, which will
then invoke them when the associated external event occurs.

Together with the APIs that applications can invoke, these
entry-point methods form the framework-application interface
that divides the Android framework from code that originates
from third-party applications. At the other end is the interface
between the framework and the underlying devices from which
external events are generated, which we call the device-
framework interface. When a device sensor receives new data,
it notifies the framework so that the event data can be processed

2Please see http://developer.android.com/index.html

2

http://developer.android.com/index.html

Static

Dynamic

App bytecode

App manifest

Extract event
handlers

Find call
paths

List of targeted
behaviors

Extract path
constraints

If dependency on
another event handler,

add to event-chain

Find call path to
dependent code in
supporting handler

Output targeted
call paths and

constraints

Obtain run-time values
for constraintsApp APK Solve constraints to

generate input values
Assemble input objects

and inject event

Fig. 1. IntelliDroid System Diagram

and disseminated to applications by calling the corresponding
entry-points in the framework-application interface.

In addition to invoking application event handlers, system
services within the framework also store information about
the event as it is processed. This allows applications to refer
to the event and obtain extra information at a later time. Some
services, such as SMS, store all past event information in a
content provider to be queried and modified by applications
with sufficient permissions. Other services, such as location,
store only the last event received. In both cases, the handler
invocation in the application and the event information stored
in the framework must be kept consistent for correct execution.

III. DESIGN

IntelliDroid generates inputs for a dynamic analysis tool
that monitors the execution of an Android application. Given
a set of targeted APIs that represent the analysis performed
by the dynamic tool, IntelliDroid will find instances of these
targeted APIs in the application and generate inputs to trigger
them. These inputs can be injected into an actual Android
system, allowing IntelliDroid to be integrated with any dy-
namic analysis tool, including those that monitor application
execution from an instrumented OS [19], or from a virtual
machine emulator [39]. To accomplish this task, IntelliDroid
takes the following steps:

1) Identify invocations of targeted APIs. For each invocation,
identify the event handlers where execution begins in
the application code and find target call paths from the
handlers that lead to the targeted API.

2) For each call path, extract path constraints that control
whether the targeted API is invoked or not.

3) In cases where the constraints depend on execution paths
in other event handlers, extract the necessary constraints
and the order of the event-chain that is required to invoke
the targeted API.

4) Using an off-the-shelf constraint solver, solve the path
constraints to determine the necessary input values that
will lead to invocation of the targeted API. Some inputs
may depend on external values, such as responses to
network requests, so IntelliDroid dynamically extracts the
concrete values for these external dependencies during
execution.

5) Apply the computed input values in the appropriate order
to the device-framework interface. This will consistently

execute the appropriate paths required for the targeted API
to execute. IntelliDroid contains a modified Android OS
that can inject inputs at the device-framework boundary.

The flow between these tasks in the IntelliDroid system
is shown in Figure 1, which also differentiates between the
static and dynamic components. Our current prototype uses
the WALA [41] framework for static analysis and Z3 [17] as
the constraint solver.

In addition to the above, IntelliDroid has the capability
to both monitor and control interaction between the applica-
tion and external components. For example, some malware
instances will contact an external server to get a list of SMS
numbers to intercept or send messages to. In these cases,
it might be appropriate to monitor these interactions so that
IntelliDroid can generate inputs matching these requirements.
In other instances, we may need to simulate a message from a
remote server to trigger a targeted API, in which case it might
be appropriate to control that interaction.

A. Specifying Targeted APIs

Because we want IntelliDroid to be applicable to as wide a
range of dynamic analysis tools as possible, we need to select
a suitable abstraction that over-approximates the types of be-
havior that various dynamic analysis tools are trying to detect.
As stated previously, an initial justification of our choice to
use Android APIs for this abstraction is that most malicious
behaviors require an application to invoke an Android API. As
further justification, we perform a survey of recent Android
malware dynamic analysis techniques that have been proposed
in the literature. From our results in Table I, we show that
dynamic analysis tools that detect Android malware can be
separated into three categories depending on their operation:
(1) by analyzing invocations to certain API methods; (2) by
analyzing invocations to system calls; and (3) by analyzing
low-level side effects of the application, such as CPU load
or battery usage. We find that specifying behaviors as API
methods allows IntelliDroid to cover most of the current
dynamic tools. We elaborate on our reasoning below.

1) Analyzing API Methods: The vast majority of dynamic
analysis tools analyze API method invocations and the target
methods for IntelliDroid can be determined by analyzing the
specific API methods used to configure the tool. For instance,
TaintDroid [19] performs taint tracking by adding taint tags in
locations where sensitive information is obtained by the appli-
cation (i.e., sources) and reading taint tags in locations where

3

TABLE I. EXISTING ANDROID DYNAMIC ANALYSIS TOOLS

Dynamic Tool Goal Features for Analysis

AASandbox [10] Monitor behavior via track-
ing of system calls

System calls

Andromaly [36] Malware detection via sys-
tem resource usage

Low-level device fea-
tures (e.g. battery us-
age, CPU load)

CopperDroid [39] Monitor behavior via sys-
tem call tracking

System calls

Crowdroid [12] Monitor behavior via track-
ing of system calls

System calls

DroidBox [18] Sandbox to monitor exter-
nal accesses

Sink API methods

DroidRanger [50] Detect malware using pre-
specified behavioral foot-
prints and heuristics

Sequence of API
method invocations
and parameters

DroidScope [39] Plugins for API track-
ing, instruction tracing, and
taint tracking

API methods;
source/sink API
methods

RiskRanker [39] Detect malware using
known vulnerability
signatures

Sequence of API
method invocations

TaintDroid [19] Detect privacy leakage Source/sink API meth-
ods

VetDroid [47] Malware detection via per-
mission use behavior

Permission requests
(can be mapped to
API methods)

information leaves the application (i.e., sinks). By referring to
the documentation or searching through the source code, these
methods can be found and used as target methods. Sandboxing
tools such as DroidBox [18] track locations where data leaves
the application and target methods can be determined by
finding the instrumented API methods. Other tools such as
DroidScope [44] allow the user to trace specific API method
invocations; these API methods would serve as target methods.

Some dynamic tools, such as VetDroid [47], detect malware
by dynamically analyzing an application’s permission usage.
Although the tool does not trace API methods, the mapping
between permission use and API methods has been well-
studied and can be obtained from PScout [5] or Stowaway [22].
IntelliDroid can therefore be configured with target methods
that map to the permissions of interest. Since the majority of
dynamic analysis tools analyze API calls, using API calls as
our abstraction would enables IntelliDroid to generate inputs
for most of the dynamic analysis tools.

2) Analyzing System Calls: The next most common method
used by dynamic analysis tools is to analyze system calls. In
this case, the user must determine a mapping between the
system call method and API methods that use the system
call. Such tools include CopperDroid [39], AASandbox [10]
and Crowdroid [12]. If only specific system calls are traced
(e.g. file access), the user can use Android’s documentation
to find API methods that use the system call’s functionality
and generate the mapping manually. In general, however, it
can be difficult to map every system call to API methods in
this manner; therefore, the user may need to perform a one-
time static analysis of the Android framework. A backward
traversal of the framework’s call graph from the invocations
of system calls to public API methods should provide the
necessary mapping, which can then be used to obtain the target
methods. As a result, we believe IntelliDroid would be able to

generate inputs for dynamic analysis tools that analyze system
calls, albeit with more effort required on the part of the user.

3) Analyzing Low-Level Events: A few tools focus on
analyzing low-level events on the device. Andromaly [36] is
one such dynamic tool that tries to infer malicious activity
by detecting anomalies in CPU load and battery usage during
the application’s execution. The ability to attach IntelliDroid
to such analysis tools depends on how the features are being
traced. If the tool merely detects single instances of usage, it
may be possible to use IntelliDroid to trigger API methods that
correspond to those resources, such as those that invoke the
camera or GPS. However, IntelliDroid is not an appropriate
input generator for analysis tools that profile anomalies in
resource usage over time, as the IntelliDroid does not seek to
mimic realistic usage. In such cases, it would be more effective
to use a tool that aims to replicate normal use or have a user
manually execute the application.

While the specification of the targeted APIs for a dynamic
analysis is manual, it is not overly onerous. We demonstrate
this by extracting the APIs and having IntelliDroid generate
inputs for TaintDroid, for which we further discuss the asso-
ciated effort and effectiveness in Section V.

Although the IntelliDroid currently uses Android APIs
to represent behaviors that the dynamic analysis targets, the
design allows other forms of targets to be specified. In general,
if the user can determine a point in the code to which execution
is desired, this information can be given to IntelliDroid, which
will extract the call paths and path constraints to the specified
code location. This location can be as simple as a method
invocation, or can be derived from some other analysis. For
instance, to direct execution for a dynamic tool that focuses
on native code usage, IntelliDroid can be configured to extract
paths and constraints for invocations to native methods.

B. Identifying Paths to Targeted APIs

For a given application and set of targeted APIs, Intelli-
Droid first performs static analysis to identify the invocations
of targeted APIs and the paths leading to them. Because
Android is event-driven, an application may contain several
entry-point methods where the Android framework can transfer
execution to the application. These methods are normally event
handlers that receive various system events, such as callbacks
to control a component’s lifecycle, process sensor inputs, or
respond to UI events. Using an entry-point discovery mecha-
nism similar to FlowDroid’s [4], the application’s components
are read from its manifest and their lifecycle methods are
extracted. A partial call graph created from these entry-points
is used to search for instantiations of Android callback listeners
and to add overridden listener methods to the list of entry-
points. A new partial call graph is generated and the process
is repeated iteratively until no more entry-points are found.

The call graphs are generated using the event handler
entry-points as starting points for the code traversal. However,
Android mechanisms such as Intents and asynchronous calls
can cause execution to flow between methods in an application
even when there is no explicit function call. For instance,
Android allows execution to be transferred between different
components of an application using the Intent interface, so
the points at which Android intents are sent and received are

4

1 class SmsReceiver extends BroadcastReceiver {
2 String sNum;
3
4 void onReceive(Context c, Intent i) {
5 if (i.getAction()=="SMS_RECEIVED") {
6 handleSms(i);
7 } else if (i.getAction()=="BOOT_COMPLETED"){
8 this.sNum = "99765";
9 }

10 }
11 void handleSms(Intent i) {
12 Bundle b = i.getExtras();
13 Object[] pdus = (Object[])b.get("pdus");
14
15 for (int x = 0; x < pdus.length; x++) {
16 SmsMessage msg =

SmsMessage.createFromPdu(pdus[x]);
17 String addr = msg.getOriginatingAddress();
18 String body = msg.getMessageBody();
19 // Constraint depends on local function
20 if (needsReply(addr, body)) {
21 SmsManager sm = SmsManager.getDefault();
22 sm.sendTextMessage(addr, null, "YES", null,

null);
23 }
24 // Constraint depends on heap variable
25 if (addr.equals(this.sNum)) {
26 abortBroadcast();
27 }
28 }
29 }
30 boolean needsReply(String addr, String body) {
31 if ((addr.startsWith("10658") &&
32 body.contains("RESPOND")) ||
33 (addr.startsWith("10086") &&
34 body.contains("REPLY"))) {
35 return true;
36 }
37 return false;
38 }
39 }

Listing 1. Code Example

identified and the execution flow between them are represented
by additional edges in the call graph. Details regarding other
Android-specific call edges can be found in Section IV-A.

A traversal for each event handler is then performed
to identify the event handlers that may lead to a targeted
API invocation. For each targeted API, a target call path is
extracted, which contains the sequence of method invocations
from the event handler entry-point to the invocation of the
targeted API.

To illustrate the design of IntelliDroid, we use the
code provided in Listing 1 as an example through-
out this section. This code is derived from several ma-
licious applications, and is representative of malware
that intercepts and automatically responds to SMS mes-
sages received from a malicious party using the An-
droid APIs BroadcastReceiver.abortBroadcast
and SmsManager.sendTextMessage, respectively. We
will assume that the malware will be analyzed with a dynamic
analysis tool that is capable of detecting malicious SMS
usage and thus, we specify all SMS-related Android APIs
(including sendTextMessage and abortBroadcast) as
targeted APIs to IntelliDroid. IntelliDroid will begin analyz-
ing the example by identifying SmsReceiver.onReceive
at line 4 as an event handler entry-point and the calls to
sendTextMessage and abortBroadcast at lines 22 and
26 as targeted APIs. IntelliDroid then identifies the target call
paths from the event handler to each of the targeted APIs,

which are the paths through the method invocations on lines
4→11→22 and 4→11→26.

C. Extracting Call Path Constraints

To actually trigger a target call path, the appropriate inputs
must be injected into the application. For each method in
the target call path, the invocation of the next method in
the path may be control-dependent on conditional branches
in the method body. To extract these control dependencies,
a forward control- and data-flow analysis is performed on
the control flow graph (CFG) of each method. The control-
flow analysis determines whether a conditional branch affects
execution of the next method’s invocation, and if so, it extracts
constraints based on the variables used in the predicate of the
branch statement. IntelliDroid also extracts symbolic data-flow
information about variables to identify other variables they
may depend on, or that may depend on it. Similar to traditional
data-flow analyses, loop support is implemented by performing
the analysis iteratively until the constraint and data-flow output
converges.

The forward control-flow and data-flow analysis is obtained
by propagating variable information along the method’s CFG,
both locally within each basic block and across different basic
blocks. Constraints are generated by translating the operator
and variables used by each instruction encountered. If multiple
CFG paths are found to lead to the next method invocation, the
analysis combines the extracted constraints of each path with a
logical OR (∨), indicating that as long as one path is satisfied,
the targeted API is executable. The extracted constraints for
each path method are combined using full context-sensitivity,
which is achievable since the call site of each method along
the path is known.

As an example, consider the execution path in Listing 1
ending in the abortBroadcast invocation at line 26. The
target call path generated by IntelliDroid includes an invoca-
tion of handleSms in the onReceive method, which is
dependent on the intent action string; therefore, the constraint
(i.getAction() = "SMS_RECEIVED") would be ex-
tracted. IntelliDroid’s context-sensitive inter-procedural analy-
sis would indicate that when handleSms is called, the invo-
cation parameter originated from the event handler’s input pa-
rameter (Intent i). Analysis through handleSms shows
that the execution of the target API invocation is dependent
on the length of the PDU array and the originating address
of the SMS message received. The conditional statement in
line 20 is on the execution path, but since the targeted API can
be reached regardless of the branch outcome, it has no effect
— when processing the control flow, the constraints extracted
from both sides of this branch would be combined with the
OR operator.

In some cases, the variables extracted for the constraints are
return values from other method invocations. Although these
methods are not part of the target call path, their return values
affect the execution of the path and the constraints they impose
must be extracted. An example of such an auxiliary method is
needsReply in Listing 1. To handle such cases, IntelliDroid
extracts constraints for the return values and the paths leading
to the return sites within the auxiliary method. These auxiliary
constraints are combined with the main path constraints with a

5

logical AND (∧) to enforce a specific return value and return
path through the auxiliary method.

For some situations, IntelliDroid also inserts library con-
straints manually extracted from Android API calls to pure
functions — i.e., functions whose result depends only on
their arguments, with no side-effects. For example, addr.
equals() on line 25 is an invocation to a pure function
and IntelliDroid will convert this to the constraint (addr
= this.sNum). In some cases, the API method invoked
would generate constraints that are too large or complex for
the constraint solver; this is the case for createFromPdu on
line 16, which performs bytewise operations on the bytecode
of the SMS message. In these cases, rather than rely on the
constraint solver, we provide IntelliDroid with a manually
implemented function that inverts createFromPdu, thus
allowing IntelliDroid to generate an appropriate input. This is
conceptually equivalent to “stitching”, which is used to solve
constraints that contain similarly complex functions, such as
SHA1 and MD5, in BitFuzz [13]. Android API methods that
are not pure functions must be handled dynamically at run-
time by either monitoring or controlling them, as described
below in Section III-E.

D. Extracting Event-Chains

At this point, the extracted constraints consist of a boolean
expression of concrete values and variables. Ideally, all of the
constraint variables should be dependent on the event handler’s
input parameters. In such a case, solving the constraints for
these variables and injecting the solved values will execute the
desired target call path. However, there may be cases where
the path constraints depend on heap variables that cannot be
set to the correct values using only the arguments to the entry-
point method of the target path. In this case, IntelliDroid must
find a definition for these variables that can be executed to set
the heap variable to the required value.

An example of this is shown in Listing 1 for the
SmsReceiver.sNum heap variable, in the call path to
abortBroadcast. This variable is used in a constraint
imposed by the conditional branch in line 25, but is defined
in another invocation of onReceive where the intent action
string is BOOT_COMPLETED. To complete the constraints and
execute the target path, two actions must be completed: (i)
IntelliDroid must find any additional constraints on the heap
variable and add them to the current path constraints; and
(ii) IntelliDroid must ensure that the value extracted for the
target constraints is actually stored in the heap variable prior
to executing the target path. Thus, when the constraints contain
a heap dependence, IntelliDroid searches for statements where
the heap variable is defined and records the event handlers
containing the definitions. The path from the event handler
to the store instruction becomes a supporting call path and
IntelliDroid extracts supporting constraints for this path in the
same manner used for the target path. Later, when solving
the constraints, a concrete value will be assigned to the heap
variable and used to solve the target path constraint.

For sNum in Listing 1, the supporting call path would begin
at onReceive and the supporting constraints would include
(i.getAction() = BOOT_COMPLETED). The main tar-
get path constraints would be appended with the extra con-

straint (sNum = 99765), which is extracted from the sup-
porting path and ensures that the SMS originating address is
properly constrained. The supporting path and the main target
path form an event-chain that results in the activation of the
targeted API. In the run-time component of IntelliDroid, this
event-chain will result in multiple input injections. In cases of
multiple heap variable dependencies, the process is performed
iteratively, as shown by the topmost backedge in Figure 1.
This forms a event-chain ordered by the data-flow dependency
between the variables.

Event-chains are also needed when event handlers are
registered with the Android framework. In the Android system,
some event handlers are known to the system (e.g. lifecycle
handlers), some are declared in the application’s manifest, and
some are registered dynamically within the execution path
of a previous event handler. For those that are registered
dynamically, the registration process may require parameters
specifying how and when the event handler is to be called. For
instance, registering location callbacks requires that the appli-
cation specify the frequency and minimum distance between
consecutive callback invocations. These values are added to the
constraints to ensure that the injected event abides by these
parameters in the same way the Android framework would
in normal execution. The supporting call path leading to the
event handler registration is added to the event-chain due to the
control-flow dependency between it and the target call path.

E. Run-Time Constraints

For the simple case where all constraint variables are
input-dependent or can be concretized, the constraints can
be solved statically and the run-time system merely has to
inject the input values. However, there may be cases where the
values of the non-input-dependent constraint variables cannot
be determined statically. This may occur for heap variables
where the alias analysis is imprecise or for values obtained
from Android API methods that cannot be modeled statically.
A purely static constraint extraction approach would either
be unable to extract all the path constraints or would need a
considerably more precise and expensive static analysis to do
so. However, IntelliDroid’s hybrid static-dynamic design side-
steps this dilemma by obtaining the values during run-time
by performing the constraint solving step immediately prior to
event injection. That is, although the constraints are extracted
during static analysis, they are solved at run-time so that any
statically unresolved variables can be resolved prior to being
passed to the constraint solver.

This delayed solving gives the user a choice of how to
use IntelliDroid to handle interactions between the Android
application and its environment. Variables whose values de-
pend on these interactions can either be monitored, indicating
that the interaction is allowed to proceed without modification
and IntelliDroid merely eavesdrops on the interaction, or
controlled, where the IntelliDroid intercepts and replaces these
interactions with values it determines will exercise interesting
paths. Variables that depend on input from a possibly malicious
external component can be either monitored to understand
the interaction of the malware with the external component,
or controlled to understand what potential capabilities the
malware may give to an adversary in control of the external
component. On the other hand, variables that are derived from

6

the Android framework and OS, which are trusted, would
generally be controlled to take a value that, together with the
other constrained variables, satisfies the target path constraints
and enables the target API to be executed.

For monitored variables, the external input is often derived
from a control server that sends commands to the application.
In some cases, the application may request data from the server
and use this data to perform malicious activities. A common
example of this presented in [49] involves applications that
download a list of premium SMS numbers from the network
and intercept messages to/from these numbers such that the
user is unaware of the premium fees. Although the server
input cannot be determined statically, network monitoring can
extract the values returned and add these values to the target
path constraints. Constraints that occur on the server side are
not captured by IntelliDroid, although it is possible to set up a
fake server that sends the necessary replies to the application
when it makes network requests. However, because the fake
replies can affect the malicious activity that IntelliDroid aims
to analyze, these external variables are instead monitored to
determine the real values that the application expects and how
it behaves when given these values.

For controlled variables, they are unresolved due to their
dependence on the device state. For instance, malicious behav-
ior may only manifest during a certain time or date, and this
is reflected by constraints that contain the system time/date as
variables. These variables can be resolved by setting the device
state (e.g. setting the time) prior to injecting the main event.
The actual value used is determined by the statically extracted
constraints that depend on the external variable. For instance,
if a constraint is extracted stating that a particular target API
invocation is only triggered only when the system time is set to
“1:00”, the device time will be set to this value before injecting
the inputs to trigger the target API. This is essentially another
form of event-chain extraction, where supporting events must
be injected prior to executing the main target call path.

F. Input Injection to Trigger Call Path

Once the constraints are generated and all run-time values
obtained, IntelliDroid can trigger the desired target call path
by obtaining the input parameters that fulfill the constraints.
As previously discussed, the task of solving the constraints is
placed in the dynamic component of IntelliDroid; thus, the
input parameters are solved for and generated immediately
prior to executing the target call path.

The dynamic component of IntelliDroid consists of a
client program running on a computer attached to the dev-
ice. Communication between this program and the dev-
ice is facilitated by a newly constructed Android service
(IntelliDroidService) that serves as a gateway for the
tool. As motivated earlier, IntelliDroid must inject inputs at
the device-framework interface, rather than the application
event handler, to ensure that state in the Android framework is
consistent with application state. When the static component
specifies inputs for the execution of the targeted API, the
gateway service is responsible for injecting that input into the
device-framework interface of the Android OS on which the
application is running. To do this, IntelliDroidService
must perform two tasks. First, it must identify a suitable

injection point. Second, it must format the input values for
injection into the Android OS.

To identify a suitable injection point, IntelliDroid must
identify a method at the device-framework interface that:
(1) is called when the corresponding external event occurs;
and (2) directly calls the desired application handler when it
is invoked. Further, such input injection points must have a
one-to-one relationship with the event handler of interest, so
that inputs thus injected will only result in the invocation of
the desired application event handler and no other handlers.
For instance, SMS events are received by the framework via a
socket, which is monitored by a long-running process. When
an SMS message arrives on the socket, a device-framework
interface is invoked by the process, which eventually calls
PhoneBase.sendMessage, the desired device-framework
interface handler.

To find suitable injection points, we perform static analysis
of the Android framework, using a backward call graph traver-
sal starting from the event handlers of interest to find candidate
injection points. Alternatively, since these injection points are
often located in Android service classes and these service
classes are well-known, IntelliDroid can be given a list of
classes where injection should occur and it will automatically
generate paths between methods within these classes and the
event handlers to be triggered. Because invoking such injection
methods will often require interprocess communication, Intelli-
Droid preferentially selects RPC methods as input injection
points as they present a cleaner interface.

To properly format inputs values for injection, the input
constraints for the application event handler (extracted by
the static phase of IntelliDroid) must be transformed into
constraints at the input injection point and then solved. As
a result, constraints imposed on the injection path between
the injection method and the application event handler are
extracted using the same analysis that IntelliDroid performs
on applications. In some cases, injection paths may have
dependencies on other paths in the framework, requiring a
chain of device-framework events to be injected to properly
invoke the application event handler.

Since the Android framework is the same for every appli-
cation, IntelliDroid extracts the injection points and injection
path constraints for supported application event handlers once
and stores them in a library for use at run-time. At run-
time, injection path constraints are combined with target call
path constraints in the application using a logical AND. In
addition, IntelliDroid appends extra constraints specifying how
the injection method parameters are related to the event handler
parameters. Finally, the inputs may need to be formatted by
initializing the fields of a specific input object (for instance, a
Location object for a location event) to the desired value.
While the constraint solver can automatically generate the
appropriate values for the fields, the code to populate them
in the object is manually implemented.

IV. IMPLEMENTATION DETAILS

A. Static Analysis

For versatility, IntelliDroid performs its analysis on com-
piled Android applications and does not require source code.

7

Because they are packaged in APK files and stored as Dex
bytecode, the applications must be unpacked and converted to
Java bytecode prior to analysis, using tools such as Dare [33]
and APKParser [3]. The converted files are then passed to
IntelliDroid’s static component, which uses the WALA static
analysis libraries [41]. WALA provides support for basic static
analysis, such as call graph generation, data flow analysis, alias
analysis, and an intermediate representation based on SSA.

To perform the actual analysis on the code, IntelliDroid
creates a call graph using 0-1 context sensitivity with a type-
based heap model; this call graph is used to search for the
targeted APIs. However, the Android platform provides facili-
ties, such as Intents, Threads, Executors, IPCs, RPCs
and AsyncTask to allow applications to transfer execution
between event handlers without an explicit method invocation.
When generating the call graph within WALA, these Android-
specific edges are automatically added such that the call
graph can give an accurate representation of how execution
flows between methods in the application. The call edges are
conservatively patched based on the documented behavior of
the invoked method and on the parameters or constant values
used in the invocation. While a less precise call graph is used
when searching for the target methods, more precision is added
when analyzing individual target call paths to resolve method
invocations with full context and perform pointer analysis for
heap dependencies.

There are certain cases where framework API method
invocations must be treated differently. For instance, when
the constraint extraction encounters API methods that obtain
information from external sources (such as the network or a
file), it must note whether the returned values can be controlled
or monitored. This distinction is currently made on a per-
method case and is determined by whether the source of the
data is controlled by the third-party application developer.
Any data originating from an external source other than the
device, Android framework, or Android OS is considered
potentially malicious and the value is monitored. Other frame-
work methods may also be modeled due to the limitations of
the constraint solver. For instance, string methods are modeled
internally as well as trigonometric operations, since the con-
straint solver does not support such functionality. In general,
processing the invocation of a framework method depends on
whether it introduces externally-obtained data and whether the
constraint solver supports the operations performed.

The constraints generated by IntelliDroid are placed into
an app-specific file. When the static phase has completed, this
file will contain all target call paths found in the application,
along with information detailing how the dynamic component
can trigger them. For a given application, only one execution
of the static component is needed, since this file will contain
all of the information that the dynamic component requires.

B. Dynamic Analysis

The dynamic component of IntelliDroid consists of a client
program running on a computer, connected to a device or
emulator with a custom version of Android. The dynamic
client program is implemented using Python and acts as the
controller that determines the target call path to execute. It also
interfaces with the constraint solver used to generate the path

inputs: the Z3 constraint solver [17] with the Python API (Z3-
py). Communication between this program and the device is
facilitated via sockets, using the device port-forwarding feature
of the Android Debug Bridge (ADB) 3. The other endpoint
of the socket is located in the gateway Android service,
IntelliDroidService. The IntelliDroidService
class is implemented as a long-running system service that is
instantiated upon device boot. On receipt of messages from the
client program, this service can obtain information about event
handlers, assemble an input object using values that the client
program sends, and trigger an event with the input object.

In certain cases, run-time values for constraints in the injec-
tion path are needed. For instance, the onLocationChange
event handler is called only when there is a minimum distance
from the last location sent to the application. The constraint
modeling this relationship would require the value of the last
location that the event handler received, as well as the mini-
mum distance parameter stored in the framework. IntelliDroid
extracts these values during run-time, by instrumenting the
system services handling these events to send event handler
information when requested by IntelliDroidService.
Although such run-time extraction is not strictly necessary, it
can provide an advantage over static extraction in cases where
the event handler registration parameters are not explicit within
the application code.

Because IntelliDroid is currently using the Python API for
the Z3 solver [17], the Z3 string library is not available. There-
fore, string functions such as equals(), contains(), or
startsWith() must be modeled and string variable types
are handled by the dynamic component as a special case. Due
to the heuristics used when modeling such functions, there
can be cases where complex string manipulation may not be
represented precisely by the extracted constraints.

V. EVALUATION

Our IntelliDroid prototype is implemented for the Android
4.3 operating system (Ice Cream Sandwich) and evaluated on
an Intel i7-2600 (Sandy Bridge) CPU at 3.40 GHz with 16GB
of memory. In the evaluation, we aim to answer the following
questions:

• How effective is targeting API calls derived from a real
dynamic analysis tool, and can this technique trigger all
of the malicious behavior that the dynamic analysis tool
can detect?
We integrate IntelliDroid with TaintDroid [19], a dynamic
taint-tracking tool and we demonstrate that the combina-
tion is able to detect all sensitive data leaks in a corpus
of privacy infringing malware.

• Given a targeted API, how effective is IntelliDroid at
generating the inputs to trigger it?
We test IntelliDroid on a wider range of targeted APIs and
malware, and evaluate whether it can generate inputs to
trigger all malicious behavior. We also discuss the effec-
tiveness of the different techniques used by IntelliDroid,
such as event chains and run-time data gathering.

3http://developer.android.com/tools/help/adb.html

8

http://developer.android.com/tools/help/adb.html

TABLE II. TAINTDROID TARGETED APIS

API Type Number of APIs

Read phone data 4
Read database 13
Read location 7
Read UI data 1
Read account data 1
Read media data 13
Write data to HTTP 8
Write data to SMS 4
Write data to file 11

Total 62

• What performance benefits can IntelliDroid’s targeting
potentially provide for a dynamic analysis tool? What are
the run-time costs of the static and dynamic components?

We measure the time IntelliDroid takes to generate and in-
ject inputs, the number of inputs required, and the amount
of code that IntelliDroid is able to avoid executing.

A. Targeted Execution with IntelliDroid-Targeted TaintDroid

To demonstrate how IntelliDroid can be used in practice,
we integrated IntelliDroid with TaintDroid [19], a dynamic
taint-tracking system, to produce a combined system we call
Intelli-TaintDroid. Integration with TaintDroid is straightfor-
ward and requires the merging of IntelliDroid’s input injection
component with TaintDroid’s code base, which can be done
with an automated patch. To derive the set of targeted APIs
from TaintDroid, we analyze TaintDroid’s documentation and
source code to identify the instrumented methods that add and
check taint tags. In cases where taint is assigned or checked
in an internal framework method, we traced the call path back
to an API method. Table II summarizes the number and types
of APIs targeted. We found that specifying the targeted APIs
for TaintDroid was fairly easy and took the first author on the
order of 2-3 hours to produce the full set of targeted APIs.

We perform three experiments with Intelli-TaintDroid.
First, we evaluate against a malware set for which we know
the ground truth of all malicious behaviors. In this way we
can evaluate the accuracy of Intelli-TaintDroid. Second, we
compare against FlowDroid, a purely static analysis tool that
also detects privacy leakage. Finally, we compare against
TaintDroid driven by Monkey, a generic non-targeted fuzzer.

To perform a ground-truth evaluation of Intelli-TaintDroid,
we need malware for which all known privacy leaking behav-
iors are known. To this end, we use 14 documented malware
families from the Android Malware Genome dataset [49] that
are known to leak sensitive information and supplement this
with several recent samples from the Contagio project [34],
which we manually analyzed to find all privacy leaking behav-
iors. Table III summarizes all of the behaviors that the malware
is known to exhibit. The Intelli-TaintDroid combination is
able to detect all of these behaviors with no false positives.
IntelliDroid generates the appropriate inputs that trigger the
privacy leakages and TaintDroid’s dynamic tracking promptly
reports it. In some cases, tainted data may flow through the
heap and this would require executing intermediate paths that
do not directly invoke the targeted API methods. IntelliDroid’s

TABLE III. PRIVACY LEAKING MALWARE

Malware Leakage Paths Sensitive Data

SMS → SMS SMS, IMEI
SMS → HTTP SMS, IMEI

Lifecycle → HTTP IMEI
Backflash

Boot → HTTP IMEI
SMS → HTTP phone number
SMS → File phone numberBgserv

SMS → HTTP phone number
Cajino Intent → HTTP SMS, IMEI, contacts, files
CoinPirate SMS → HTTP SMS
Crusewin SMS → HTTP SMS
Endofday SMS → File phone number
GamblerSMS SMS → SMS SMS
GGTracker SMS → HTTP SMS, phone number
GoldDream SMS → SMS SMS
GPSSMSSpy Location → SMS location

NickyBot
SMS → SMS IMEI

Lifecycle → HTTP IMEI
SMS → HTTP SMS, IMSI
SMS → File SMSHeHe

Lifecycle → HTTP IMEI, IMSI
NickySpy Boot → SMS IMEI

SMS → SMS SMS
Pjapps

Lifecycle → HTTP IMEI
SMSReplicator SMS → SMS SMS
Spitmo SMS → SMS SMS
Zitmo SMS → HTTP SMS

event-chain mechanism detects these flows and invokes the
necessary intermediate events to complete the flow from taint
source to taint sink.

We further compare Intelli-TaintDroid against Flow-
Droid [4], a purely static taint-tracking tool, on the same set
of malware. Since FlowDroid uses a more sophisticated static
analysis than IntelliDroid, we expect that it might be more
complete than IntelliDroid. However, out of the 26 privacy
leaks, FlowDroid is unable to precisely detect the leakage in
7 cases because it stops when the sensitive information is sent
to an Intent. Since Intelli-TaintDroid executes the full system,
it is able to detect that data sent to these intents is eventually
leaked via SMS or HTTP. We also note that Intelli-TaintDroid
has no false positives, though it does report extra leaks that
FlowDroid does not, since TaintDroid also monitors system
services while FlowDroid only analyzes the application. We
manually confirmed these extra flows to be true privacy leaks.

To fully compare against FlowDroid, we also tested Intelli-
TaintDroid with the DroidBench test suite used in FlowDroid’s
own evaluation. Although DroidBench was meant to evaluate
static analysis tools, this comparison shows the advantages of
dynamic analysis when attached to a targeted execution tool
such as IntelliDroid. Intelli-TaintDroid is able to detect all
privacy leaks without any of the false positives of FlowDroid,
due to the increased precision of dynamic taint-tracking.

Finally, we compare our Intelli-TaintDroid implementation
against TaintDroid on its own being driven by Monkey4. While
Monkey is a simplistic tool, we found that we were unable

4http://developer.android.com/tools/help/monkey.html

9

http://developer.android.com/tools/help/monkey.html

TABLE IV. NUMBER OF INJECTED INPUTS REQUIRED BY
INTELLIDROID TO TRIGGER MALICIOUS BEHAVIOR

Malware Injections Required

Backflash 41
Bgserv 91
Cajino 167
CoinPirate 85
Crusewin 2
Endofday 44
GamblerSMS 5
GGTracker 9
GoldDream 43
GPSSMSSpy 19
HeHe 430
NickyBot 104
NickySpy 107
Pjapps 64
SMSReplicator 7
Spitmo 5
Zitmo 3

Average 72

to integrate more sophisticated open-source tools with Taint-
Droid. We had attempted to compare with DynoDroid [31]
(only available on Android 2.3), but we were unable to inte-
grate it with TaintDroid successfully. We were also similarly
unsuccessful with integrating the Android concolic testing
system ACTEve [2] with TaintDroid.

We ran Monkey on each application for one hour, sending
over 60K injections per application. Since Monkey is only ca-
pable of sending UI events and select system events, Monkey-
TaintDroid missed 21 out of 26 cases of privacy leaks in our
malware dataset, where the leaks require non-UI events such
as location or SMS. Monkey was also unable to trigger leaks in
cases such as GPSSPSSpy, where specific input strings must be
injected to trigger the privacy leak. In comparison, Table IV
shows the number of input injections that Intelli-TaintDroid
required to detect all malicious behavior in each application.
We can see that overall, IntelliDroid needs between 2 and 430
inputs (with an average of 72) to trigger all malicious behavior
in any one of our malware samples. While we speculate that
DynoDroid would likely have been able to detect more leaks
because it can inject non-UI events, we do not believe that
it would be able to guess the correct input strings needed
to trigger the privacy leak either. ACTEve, being a concolic
testing tool that performs static analysis, would likely be able
to determine the correct inputs, but as a coverage tool, it seeks
to execute each path only once and thus may miss malicious
behaviors since it does not know the order in which to inject
inputs. In contrast, IntelliDroid injects each input once and
determines from static analysis the correct order to inject them.

B. Generating Inputs to Trigger Targeted APIs

The previous section shows that IntelliDroid is effective
in practice when integrated with a real dynamic analysis
system. However, TaintDroid itself is only capable of detecting
privacy leaks. We now seek to understand the limits of what
types of inputs IntelliDroid can generate when tasked with
triggering a larger variety of behaviors. To do this, we use
27 malware families from the Android Malware Genome [49]
and Contagio datasets [34], and use a set of targeted APIs that

would have been derived from a hypothetical tool that would
be capable of detecting all known malicious behavior, given
IntelliDroid’s ability to trigger it. The malware in our dataset
performs malicious actions that are typical of many types
of malware, including SMS manipulation and monetization,
receiving command and control messages via the network and
SMS messages, sending stolen data over the network, and
other malicious network requests. They also obfuscate their
actions using techniques such as reflection and dynamic class
loading, which are common among Java-based malware. In
some cases, a malware sample can exhibit several malicious
behaviors, giving the dataset a total of 75 malicious behaviors
that IntelliDroid must trigger.

For each behavior, we describe both the targeted APIs that
IntelliDroid targets (i.e., the static configuration), as well as
how we confirm that IntelliDroid is able to successfully trigger
the targeted API.

1 Premium SMS: Trigger paths to SmsManager.
sendTextMessage. Confirmed by checking that
sendTextMessage is called with a premium number.

2 Blocking SMS: Trigger paths to
BroadcastReceiver.abortBroadcast from
within an onReceive event handler. Confirmed
by checking that BroadcastReceiver.
abortBroadcast is invoked

3 Deleting SMS: Trigger paths to ContentProvider.
delete where the URI is content://sms. Con-
firmed when a deletion occurs on the SMS content
provider, where the deleted message was injected by
IntelliDroid.

4 Leaking information via SMS: Trigger paths with calls
to sendTextMessage. Confirmed by inspecting the
content of messages sent by sendTextMessage.

5 Network access: Trigger paths to HTTP API methods.
Confirmed by recording and inspecting the device’s net-
work traffic.

6 Reflection and dynamic class loading: Trigger paths
to reflection and dynamic class loading API methods
(e.g. DexClassLoader.loadClass). Confirmed by
checking that the API methods are invoked.

In some cases, the malware constraints depend on values
obtained from network requests to a remote control server.
To resolve these constraints, IntelliDroid will monitor these
network requests to extract the necessary values and solve
the constraints to generate inputs that will match these re-
quests. However, for the CoinPirate, Crusewin, and Pjapps
malware, the third-party servers were no longer available and
the network data values could not be extracted. To test these
samples, we implemented an HTTP proxy server that imitates
the original control server and responds to application requests
with appropriately formatted replies.

Using the malicious dataset and the specification of tar-
geted APIs, we measure the number of instances where Intelli-
Droid successfully generates inputs that trigger the targeted
API. Many of the malware samples have multiple malicious
invocations of the APIs, in which case they are tested once
for each invocation. Table V provides detailed information

10

TABLE V. EFFECTIVENESS BY MALWARE FAMILY

Rows indicate the malware family and columns indicate the type of input(s)
injected. Numbers indicate the type(s) of malicious activity triggered/missed.

Event → SMS Intent Loc UI Life

AnserverBot 2 5 6 5 6 6

Backflash 1 2 4 5 5 5

Bgserv 2 4 1 1 5 6

Cajino 1 5 5

CoinPirate 1 2 5 5

Crusewin 1 3 5 5

DogWars 1

Endofday 1 3 4

Fakemart 2 3 1

FakeNetflix 5

FakePlayer 1

GamblerSMS 4

GGTracker 1 2 5 5

GoldDream 4 5

GPSSMSSpy 4 4

HeHe 1 2 5 5

Jifake 6 → 1

HippoSMS 1 2

KMin 2 3

NickyBot 3 4 5

NickySpy 4

Pjapps 2 4 5

RogueSPPush 1 2 3 5

SMSReplicator 1 4

Spitmo 2 4

Zitmo 5

Zsone 1 2 1

* Malicious behavior triggered * Missed behavior

about the targeted APIs found and triggered in each malware
family. The specific targeted API (and their corresponding
numbers) are described above and the table is organized with
respect to the event handler that triggers the API. In the
case of the Jifake malware, IntelliDroid extracted a path to
a reflected method call and when dynamically executing this
path, the reflected call triggered a malicious behavior that
leaked sensitive information via SMS. Since the malicious
behavior was triggered, a dynamic analysis tool would detect it
in theory, even though IntelliDroid only generated inputs that
triggered the path to the reflected call.

IntelliDroid was successful in triggering the targeted API
in 70 out of the 75 instances. We found that IntelliDroid’s
ability to extract event-chains, perform device-framework input
injection, and solve constraints at run-time were significant in
achieving targeted execution, which we discuss below.

Event Chains: The event-chains generated by IntelliDroid
were instrumental in 6 cases of malicious behavior and ensured
that all constraints imposed by the application were satisfied.
For example, in the Endofday and Zsone malware, the ma-
licious behavior was activated only when the injected event
occurs on a certain date or only after the application has been
running for certain amount of time. In these cases, simply
injecting a single event would not have satisfied the multi-
event constraints that these applications impose. The event-
chain for these paths includes a separate event to change the

device’s system time, which is triggered prior to the injection
of the input that finally triggers the targeted API. In a different
case, the GPSSMSSpy malware watches for a control SMS
message that contains a certain string (“how are you?”). Once
received, it saves the originating address of the message and
begins listening for location updates. For each location update,
it sends the location information to the saved SMS address,
thereby leaking sensitive data to a third-party. IntelliDroid’s
event-chain generation component successfully recognizes this
data-flow dependency through the third-party address saved
on the heap and accessed in the location event handler, thus
ensuring that the SMS is injected prior to the location event.

Device-Framework Injection: Injection at the device-
framework interface was necessary in 9 cases of malicious
activity. For these cases, the malware would not have behaved
realistically if IntelliDroid had not implemented consistent
framework behavior by injecting inputs into the framework
rather than at the application boundary. For example, the
GamblerSMS malware receives new SMS notifications by
registering a custom ContentObserver object to listen for
SMS database changes. Merely injecting new SMS events at
the framework-application boundary would not have triggered
the malicious behavior, since the injected event would not have
been entered into the framework’s SMS database. The Coin-
Pirate and HippoSMS malware also use a similar technique
to receive new SMS notifications while avoiding traditional
telephony APIs, which are commonly detected. For these
applications (and any others that use ContentObserver for
other databases), it is essential that the events are injected at
the device-framework interface so that they are entered into the
appropriate database. In addition, 5 cases were found where
SMS entries are deleted from the database when the application
detects that a new SMS message was received. Often, these
deletions require a query into the database to obtain a handle
(e.g. URI) on the message. If the SMS event was not entered
into in the database, the query would have failed and the
deletion would not have been executed. If this occurred while
screening the applications for malware, it would have caused
the screening tool to miss potential malicious activity.

Run-time Constraint Data: Run-time data was required
for the extracted constraints of 22 malicious call paths. This
data included controlled variables such as the device time
or location, and monitored variables derived from third-party
server replies to network requests. For instance, the Coin-
Pirate, Crusewin, and Pjapps malware contained malicious
call paths relying on values obtained from a third-party server.
For the malicious activity to occur, the network reply values
are compared against those from the injected event and thus,
the extracted constraints depend on the run-time variables.
In other cases, values are obtained from the application’s
SharedPreferences file or from the device state. Be-
cause IntelliDroid employs a hybrid system and performs the
constraint solving in the dynamic component, the statically
extracted constraints could be augmented with the run-time
data prior to generating the input values. Without the run-time
variables, the constraints would not have been as precise and
the malicious call path would not have executed fully.

Of the five malicious behaviors that IntelliDroid could
not trigger, three of them occur for AnserverBot, which has
path constraints that contain hash functions. The solving of

11

constraints containing hash functions is beyond the capabilities
of the Z3 constraint solver that IntelliDroid uses. Similarly,
Backflash contained constraints that require Base64 decoding
and string/array manipulation, which IntelliDroid currently
does not fully handle. The remaining case occurred in Gold-
Dream and was the result of data flow through files. While
IntelliDroid currently does not support flow through files,
it would be possible to extend it to recognize file system
dependencies in the same manner as heap dependencies.

C. Performance

We measured two quantitative performance aspects of
IntelliDroid. The first is the reduction in analysis time Intelli-
Droid imparts by saving a dynamic analysis tool from having
to exercise irrelevant portions of the application. For this, we
measure the percentage of the application that IntelliDroid
actually dynamically executes to allow TaintDroid to detect
all privacy leaks. The second is the time IntelliDroid takes
to generate and inject inputs, which has two distinct phases:
(1) static extraction and analysis of path constraints; and (2)
dynamic generation of inputs based on run-time state and
constraint solving. We do not include the time to actually
run the dynamic analysis as this is more of a function of the
dynamic tool than of IntelliDroid.

Our previously described experiments with Intelli-
TaintDroid give a glimpse of the reduction in analysis time
that IntelliDroid can provide. While Monkey injected over
60K inputs, it was only able to trigger 7 of the 26 malicious
behaviors that IntelliDroid could trigger with an average of 72
inputs. However, Monkey is a fairly simplistic tool and it was
not possible to integrate more complex tools with TaintDroid.
Thus, we measure the average percentage of application code
that Intelli-TaintDroid must exercise and compare against the
amount of code that an input generator based on random
fuzzing or concolic testing might need to execute to achieve
the same detection results. By measuring the total number of
call graph nodes and edges in each application and comparing
with the number that IntelliDroid actually executes, we find
that IntelliDroid need only execute less than 5% of the code
on average in the applications we tested. On the other hand,
both random fuzzing and concolic testing, which inject inputs
without being aware of the goals of the dynamic analysis,
might have to statistically execute 50% or more of the ap-
plication before it has a better than 50% probability of trigger
all the relevant behavior in an application. This conservatively
suggests that IntelliDroid might cut execution time by as much
as 90% against state-of-the-art input generation methods, and
this estimate does not take into account that the number of
paths (and thus inputs) is actually exponentially related to the
size of the code. In addition, fuzzing and concolic testing do
not actively determine the correct order in which inputs must
be injected so they may have to try several permutations to
achieve full coverage.

IntelliDroid’s static analysis time and the number of inputs
it must inject is heavily dependent on the number of target
APIs specified. Thus, to simulate a worst-case scenario with a
very comprehensive dynamic analysis engine, we use an even
larger set of targeted APIs than in our previous experiments
by deriving them from the set of potentially malicious APIs
identified by the FlowDroid static analysis tool [4]. The fact

(a) Static Analysis (b) Constraint Solving

Fig. 2. IntelliDroid Timing Distribution

that FlowDroid uses static analysis is not relevant – we use
this set mainly because it is a large collection of Android
APIs that have been identified as potentially malicious. We
note that this set of targeted APIs is a superset of both the
targeted APIs used by TaintDroid and the targeted APIs used
by the hypothetical malware detection tool in our experiments,
containing a total of 228 API methods. The extra methods in
the FlowDroid set include more conservative sources and sinks,
such as those where data is sent via an intent or printed in a
log message. These generic API methods are commonly used
by both malicious and benign applications.

We measure the time IntelliDroid takes to find invocations
of the targeted APIs and extract the constraints required
for input generation using a combination of two datasets:
1260 malware samples from the Android Malware Genome
project [49] and 1066 benign applications from the Android
Observatory [8]. The Android Observatory dataset was ob-
tained by filtering for applications that declare the permissions
necessary for the set of targeted APIs used in this experiment.
The static component, running with a time limit of 60 minutes
(enforced for timeliness of results), took an average of 138.4
seconds per application and 88.1% completed analysis within
the time limit, with the distribution shown in Figure 2a. The
bigger set of targeted APIs and the larger applications in the
benign dataset used in this experiment resulted in an average
of 1760 inputs generated for each benign application. Despite
this large number, the extracted paths still comprise less than
5% of the code in each application on average.

The analysis time of IntelliDroid is dominated by WALA’s
call graph extraction and the search for targeted API invo-
cations, which must be performed on the entire application
and accounts for roughly 50% of the static analysis time. We
found that the applications that required longer analysis times
often used advertisement libraries. The extra code included
with these libraries resulted in larger call graphs and thus,
more time was spent searching for targeted APIs.

Unlike the static component, the dynamic generation of
input values must be extremely quick since it is performed for
every injected input, of which there could be several thousand
per application. Because the constraint solver component of
IntelliDroid is completed during run-time, it is especially
important that it runs efficiently. We measure the total time
taken by the Z3 solve the constraints for all target paths in
our dataset to be an average of 4.22 milliseconds, with the
distribution show in Figure 2b. As a result, we expect the main
run-time cost to be that of the dynamic analysis tool itself.

12

VI. LIMITATIONS

A. Call-Graph Generation

Since IntelliDroid aims to generate inputs to event handlers
that will trigger all targeted APIs, the tool needs an accurate
call graph to be extracted. Missing edges in the call graph may
cause IntelliDroid to incorrectly believe that a targeted API
is not reachable and thus cannot be triggered by any inputs.
This is particularly challenging for Android because there are
many implicit paths that applications can take via intents,
callbacks and other Android-specific facilities. This challenge
is not limited to IntelliDroid, but is common to all tools that
perform any sort of static analysis on Android applications.
We currently model all Android-specific call edges that we
are aware of with the exception of exceptions, although we
can report exception handlers that invoke a targeted API as a
case we cannot handle and flag it as suspicious. We did not
encounter any such cases in our experiments.

Another limitation of our prototype, documented in Sec-
tion V, is that IntelliDroid currently only detects inter-event
data dependencies if they occur through heap variables. Thus,
IntelliDroid failed to generate inputs for data flow through a
file. It would be straightforward to extend dependency tracking
through files, as well as other Android facilities such as content
providers, in the same manner.

B. Generating Constraints

Most technical limitations are the result of limitations of the
constraint solver used. In some cases, the extracted constraints
contain theories that are undecidable with current solvers, such
as trigonometric functions to compute location changes. In
other cases, the extracted constraints are too complex for the
constraint solver, such as the functions that convert the SMS
PDU bytecode format [1] used by the hardware for the SMS
message format. IntelliDroid mitigates such shortcomings by
extracting the necessary information at run-time and solving
for inputs dynamically, but this currently still requires manual
instrumentation of the Android framework. Fortunately, this in-
strumentation need only be done once for each Android version
(or even several versions, since system service interfaces rarely
change) and once done, the results can be re-used without
modification for all applications that are analyzed.

Another inherent limitation of inputs generated through
constraint solving is that they are not necessarily realistic and
thus might not happen in practice. For example, IntelliDroid
can manipulate time and other inputs in such a way that it
injects a sequence of inputs that is not physically possible,
resulting in the detection of malicious behavior that cannot
happen in reality. We see no reason why IntelliDroid cannot
be enhanced to account for the constraints of the physical
world when generating inputs. The main challenge would be
enumerating what all the relevant physical constraints are.

C. Malware Obfuscation

More recent malware may try to obfuscate their behavior
by using reflection and encryption. While IntelliDroid has
been implemented with support for constant reflection targets
during call graph generation, in general, IntelliDroid can
only compute inputs that will trigger the reflection. It cannot

determine path constraints after the reflected call because the
statically extracted call graph is incomplete at that point. A
possible solution that we are currently exploring is to feed
dynamic information back to the static component to resolve
such issues and build a more complete call graph. In particular,
IntelliDroid’s targeted execution can be used to ensure that
these statically unresolved method invocations are executed
during run-time to obtain the dynamically resolved target.

A similar and related limitation is that IntelliDroid is unable
to compute inputs that are processed by complex functions
(e.g. encryption or hashing) in a path constraint. This is
because constraint solvers are generally unable to determine
the inputs to such functions, which are necessary to produce
an output that would satisfy the path constraint. Again, in some
cases, a system that uses dynamic feedback as described in the
case of reflection might allow IntelliDroid to produce inputs in
these situations, and we are currently exploring this approach.

Similar to obfuscation through reflection, malware develop-
ers may hide malicious behavior in packed applications or na-
tive code, which IntelliDroid does not support. IntelliDroid can
be used to direct execution to locations in the code where these
are used (e.g. DexClassLoader, JNI invocations); however,
once again, any constraints that occur after these invocations
will not be extracted by the static component. While not ideal,
the ability to direct execution to these questionable parts of the
application is still valuable and can help an attached dynamic
tool analyze these portions more effectively.

D. Knowledgeable Attacker

Given the above limitations, a suitably knowledgeable
attacker has two main avenues for defeating IntelliDroid. First,
she can exploit the technical difficulty of extracting a complete
call graph for Android applications by placing the malicious
code in a section of code that appears to be disconnected from
the rest of the call graph (i.e., dead code). Since IntelliDroid
cannot determine a path to the code, it cannot generate inputs.
The mitigations for this is to have more precise modeling of
Android call edges, as well as conservative over-approximation
of call edges. The former requires more engineering effort,
while the latter may result in IntelliDroid injecting inputs for
paths that are not actually possible to execute.

Second, the attacker can process inputs in malicious code
with complex functions such as encryption and cryptographic
hashing that will defeat the current generation of constraint
solvers (and likely many future ones as well). In such cases,
however, IntelliDroid will experience many constraint solver
time-outs, which in itself is anomalous as none arose during
our experiments. While not necessarily indicative of malicious
behavior, they are infrequent enough to certainly warrant more
attention and possibly manual analysis.

VII. RELATED WORK

Static analysis of Android applications has been widely
used to detect malicious behavior or vulnerabilities [22], [25],
[23], [29], [4], [16], [30]. IntelliDroid’s static analysis is
comparable to the techniques used in previous work, though
in some cases it reduces precision for better scalability and
analysis speed.

13

IntelliDroid is designed to complement dynamic analysis
tools to allow them to quickly identify and analyze paths that
are likely to contain malicious behavior. There are a variety
of dynamic analysis tools that IntelliDroid could be used with,
such as TaintDroid [19], CopperDroid [39], DroidScope [44],
VetDroid [47] or RiskRanker [27]. Similarly, IntelliDroid can
also be used to aid reverse-engineering or manual analysis
using sandboxing analysis tools such as DroidBox [18].

While IntelliDroid’s extraction of path constraints is tech-
nically a form of symbolic execution, it is performed on a
static abstraction of the program rather than on a concrete
execution trace. As a result, it should generally provide faster
performance than concolic test generation systems such as
Dart [26], EXE [15] and KLEE [14], which use concrete
symbolic execution. In addition, IntelliDroid’s main focus is
on generating inputs to trigger a specific path rather than
obtaining code coverage, making its goals fundamentally dif-
ferent from these systems, as well as more recent Android-
focused concolic testing work, such as DynoDroid [31] and
the ACTEve algorithm [2]. The work in [32] targets ma-
licious code by exploring paths that branch on interesting
input, although the input dependency tracking and constraint
extraction is performed dynamically. Purely static constraint
extraction and solving has been used in tools like Saturn for
verification [43] and hybrid static/dynamic symbolic execution
is used in MergePoint [7]. IntelliDroid is also similar to
AEG [6], APEG [11], and DyTa [24] which generate malicious
inputs to exercise vulnerabilities in program binaries. However,
these systems do not target Android applications and thus, do
not have to handle consistent input injection or event-chains.

The work most closely related to IntelliDroid are hy-
brid static/dynamic analyses such as AppAudit [42], Con-
tentScope [28], AppIntent [45], SmartDroid [48], Smv-
Hunter [37] and Brahmastra [9]. The main difference between
IntelliDroid and these systems is the level of fidelity of the
injected inputs. IntelliDroid can inject inputs into an actual
Android system, enabling integration with full system dynamic
analysis tools such as TaintDroid [19]. To do this, it must detect
event-chains and perform device-framework input injection.
In contrast, systems like AppAudit and ContentScope rely
mainly on the static analysis to find vulnerabilities, and only
use dynamic analysis to confirm the feasibility of the paths.
Moreover, ContentScope focuses solely on content providers.
In contrast, IntelliDroid’s goal is to detect malware so it must
support and analyze a wider range of behavior. AppIntent
also uses static analysis to identify relevant sections of code
to execute. However, while IntelliDroid targets specific paths
and statically generates concrete inputs, AppIntent requires an
exhaustive dynamic symbolic execution to fully explore all
behaviors, similar to that used in concolic testing. In addition,
AppIntent, SmartDroid, Brahmastra, and Smv-Hunter only
handle UI events.

VIII. CONCLUSION

IntelliDroid is a targeted input generator that specifically
exercise code paths in an application that are relevant to a
dynamic analysis tool. This paper contributes several novel
ideas that enable IntelliDroid to achieve this goal, such as the
use of targeted APIs as an abstraction for dynamic analysis
techniques, event-chain detection and input generation, and

device-framework injection. Using our prototype, we find that
the static analysis component can identify and generate inputs
to trigger the targeted behavior in less than 138.4 seconds
on average. The generated inputs are able to trigger 70 out
of 75 malicious behaviors in a set of malware, while saving
the dynamic analysis from having to execute 95% of the
application code. When integrated with TaintDroid [19] and
compared against FlowDroid [4], we find that IntelliDroid-
targeted TaintDroid is able to offer better precision. A compar-
ison with Monkey shows that IntelliDroid’s targeted execution
triggers malicious paths more precisely than a standard off-
the-shelf input fuzzer.

ACKNOWLEDGMENT

We would like to thank Zhen Huang, Mariana D’Angelo,
Dhaval Miyani, Wei Huang, Beom Heyn Kim, Sukwon Oh,
and Afshar Ganjali for their suggestions and feedback. We
also thank the anonymous reviewers for their constructive
comments. The research in this paper was supported by an
NSERC CGS-M scholarship, a Bell Graduate scholarship, an
NSERC Discovery grant, an ORF-RE grant, and a Tier 2
Canada Research Chair.

REFERENCES

[1] 3GPP, “Technical realization of Short Message Service (SMS),” 3rd
Generation Partnership Project (3GPP), TS 23.040, Sep. 2014.

[2] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.
ACM, 2012, p. 59.

[3] “Apkparser,” http://code.google.com/p/xml-apk-parser/, accessed:
September 2014.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, 2014,
p. 29.

[5] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
the Android permission specification,” in Proceedings of the 19th ACM
Conference on Computer and Communications Security (CCS), Oct.
2012.

[6] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG:
Automatic exploit generation.” in Proceedings of the 18th Symposium
on Network and Distributed System Security (NDSS), 2011, pp. 59–66.

[7] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in Proceedings of the 36th In-
ternational Conference on Software Engineering. ACM, 2014, pp.
1083–1094.

[8] D. Barrera, J. Clark, D. McCarney, and P. C. Van Oorschot, “Under-
standing and improving app installation security mechanisms through
empirical analysis of android,” in Proceedings of the second ACM
workshop on Security and privacy in smartphones and mobile devices.
ACM, 2012, pp. 81–92.

[9] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall, “Brahmastra: Driving apps to test the
security of third-party components,” in Proceedings of the 23rd USENIX
conference on Security Symposium. USENIX Association, 2014, pp.
1021–1036.

[10] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak,
“An android application sandbox system for suspicious software de-
tection,” in Malicious and unwanted software (MALWARE), 2010 5th
international conference on. IEEE, 2010, pp. 55–62.

14

http://code.google.com/p/xml-apk-parser/

[11] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” in
Proceedings of the 2008 IEEE Symposium on Security and Privacy,
2008, pp. 143–157.

[12] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for android,” in Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile
devices. ACM, 2011, pp. 15–26.

[13] J. Caballero, P. Poosankam, S. McCamant, D. Song et al., “Input
generation via decomposition and re-stitching: Finding bugs in mal-
ware,” in Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 2010, pp. 413–425.

[14] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs.”
in Proceedings of the 8th Symposium on Operating Systems Design and
Implementation (OSDI), 2008, pp. 209–224.

[15] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: automatically generating inputs of death,” ACM Transactions on
Information and System Security (TISSEC), vol. 12, no. 2, p. 10, 2008.

[16] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services.
ACM, 2011, pp. 239–252.

[17] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340.

[18] A. Desnos and P. Lantz, “DroidBox: An android application sandbox
for dynamic analysis,” 2014, https://code.google.com/p/droidbox/, Last
Accessed Oct, 2014.

[19] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
Symposium on Operating Systems Design and Implementation (OSDI),
Oct. 2010, pp. 1–6.

[20] Ericsson Mobility, “Interim update: Ericsson mobility
report,” Feb. 2015, http://www.ericsson.com/res/docs/2015/
ericsson-mobility-report-feb-2015-interim.pdf.

[21] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in
WODA 2003: ICSE Workshop on Dynamic Analysis, 2003, pp. 24–27.

[22] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS), Oct. 2011, pp. 627–
638.

[23] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated
security certification of android applications,” Manuscript, Univ. of
Maryland, http://www. cs. umd. edu/˜ avik/projects/scandroidascaa,
2009.

[24] X. Ge, K. Taneja, T. Xie, and N. Tillmann, “Dyta: dynamic symbolic
execution guided with static verification results,” in Proceedings of the
33rd International Conference on Software Engineering (ICSE), 2011,
pp. 992–994.

[25] C. Gibler, J. Crussell, J. Erickson, and H. Chen, AndroidLeaks: auto-
matically detecting potential privacy leaks in Android applications on
a large scale. Springer, 2012.

[26] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’05.
New York, NY, USA: ACM, 2005, pp. 213–223.

[27] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker: scal-
able and accurate zero-day android malware detection,” in Proceedings
of the 10th international conference on Mobile systems, applications,
and services. ACM, 2012, pp. 281–294.

[28] Y. Z. X. Jiang, “Detecting passive content leaks and pollution in android
applications,” in Proceedings of the 20th Network and Distributed
System Security Symposium (NDSS), 2013.

[29] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center, “Scandal: Static analyzer
for detecting privacy leaks in android applications,” MoST, 2012.

[30] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings of

the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 229–240.

[31] A. MacHiry, R. Tahiliani, and M. Naik, “Dynodroid: An input gener-
ation system for android apps,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering. ACM, 2013, pp.
224–234.

[32] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution
paths for malware analysis,” in Security and Privacy, 2007. SP’07. IEEE
Symposium on. IEEE, 2007, pp. 231–245.

[33] D. Octeau, S. Jha, and P. McDaniel, “Retargeting android applications to
java bytecode,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. ACM, 2012,
p. 6.

[34] M. Parkour, “Contagio mobile,” 2015, http://contagiominidump.
blogspot.ca/, Last Accessed Aug, 2015.

[35] “Robotium,” 2014, https://code.google.com/p/robotium/.
[36] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “andro-

maly: a behavioral malware detection framework for android devices,”
Journal of Intelligent Information Systems, vol. 38, no. 1, pp. 161–190,
2012.

[37] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps,” in Proceedings of the 19th Network
and Distributed System Security Symposium, 2014.

[38] V. Svajcer, “Sophos mobile security threat report,”
2014, http://www.sophos.com/en-us/medialibrary/PDFs/other/
sophos-mobile-security-threat-report.pdf.

[39] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:
Automatic reconstruction of android malware behaviors,” in Proc. of
the Symposium on Network and Distributed System Security (NDSS),
2015.

[40] “Testing fundamentals,” 2014, http://developer.android.com/tools/
testing/testing android.html, Last Accessed Oct, 2014.

[41] “Watson libraries for analysis,” http://wala.sourceforge.net, accessed:
September 2014.

[42] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective real-time android
application auditing,” in Proceedings of the 2015 IEEE Symposium on
Security and Privacy, ser. SP ’15. IEEE Computer Society, 2015.

[43] Y. Xie and A. Aiken, “Saturn: A scalable framework for error detec-
tion using boolean satisfiability,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 29, no. 3, p. 16, 2007.

[44] L.-K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis.” in
Proceedings of the 21th USENIX Security Symposium, 2012, pp. 569–
584.

[45] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“AppIntent: Analyzing sensitive data transmission in android for privacy
leakage detection,” in Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), 2013, pp. 1043–1054.

[46] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the
android apps with intent-filter tag,” in Proceedings of International
Conference on Advances in Mobile Computing & Multimedia. ACM,
2013, p. 68.

[47] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang, “Vetting undesirable behaviors in android apps with permission
use analysis,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 2013, pp. 611–622.

[48] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: An automatic system for revealing ui-based trigger conditions in
android applications,” in Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices. ACM, 2012,
pp. 93–104.

[49] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on Security
and Privacy. IEEE, 2012, pp. 95–109.

[50] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets.” in NDSS, 2012.

15

https://code.google.com/p/droidbox/
http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-feb-2015-interim.pdf
http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-feb-2015-interim.pdf
http://contagiominidump.blogspot.ca/
http://contagiominidump.blogspot.ca/
https://code.google.com/p/robotium/
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-mobile-security-threat-report.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-mobile-security-threat-report.pdf
http://developer.android.com/tools/testing/testing_android.html
http://developer.android.com/tools/testing/testing_android.html
http://wala.sourceforge.net

	Introduction
	Background
	Design
	Specifying Targeted APIs
	Analyzing API Methods
	Analyzing System Calls
	Analyzing Low-Level Events

	Identifying Paths to Targeted APIs
	Extracting Call Path Constraints
	Extracting Event-Chains
	Run-Time Constraints
	Input Injection to Trigger Call Path

	Implementation Details
	Static Analysis
	Dynamic Analysis

	Evaluation
	Targeted Execution with IntelliDroid-Targeted TaintDroid
	Generating Inputs to Trigger Targeted APIs
	Performance

	Limitations
	Call-Graph Generation
	Generating Constraints
	Malware Obfuscation
	Knowledgeable Attacker

	Related Work
	Conclusion
	References

