
K-Tracer: A System for Extracting Kernel Malware Behavior

Andrea Lanzi1,2 Monirul Sharif1 Wenke Lee1

1School of Computer Science, College of Computing, Georgia Institute of Technology, USA
{msharif, wenke}@cc.gatech.edu

2Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano, Italy
andrew@security.dico.unimi.it

Abstract

Kernel rootkits can provide user level-malware programs
with the additional capabilities of hiding their malicious ac-
tivities by altering the legitimate kernel behavior of an op-
erating system. While existing research has studied rootkit
hooking behavior in an effort to help develop defense and
remediation mechanisms, automated analysis of the actual
malicious goals and capabilities of rootkits has not been
adequately investigated. In this paper, we present an ap-
proach based on a combination of backward slicing and
chopping techniques that enables automatic discovery of
the system data manipulation behaviors of rootkits. We have
built a system called K-Tracer that can dynamically analyze
Windows kernel-level code and extract malicious behaviors
from rootkits, including sensitive data access, modification
and triggers. Our system overcomes several challenges of
analyzing the Windows Kernel. We have performed exper-
iments on several kernel malware samples and shown that
our system can successfully extract all malicious data ma-
nipulation behaviors from them. We also discuss the limita-
tions of our current system on newer rootkit strategies, and
provide insight into how it can be extended to handle these
emerging threats.

1 Introduction

In a system where malware programs reside in the same
environment with anti-malware software, whoever operates
at a lower-level in the system has the control and wins.
Rootkits, programs that are designed to take control of sys-
tems by running with administrative level privileges, work
as helper programs for other malware and provide addi-
tional illicit capabilities that can increase the difficulty of
detection and clean-up. User-level malware generally use
the help of kernel-level rootkits to hide processes and files,

install backdoors, and maliciously manipulate other system
level data. Kernel rootkits can easily hide activities from
user-level programs and at the same time cripple kernel-
level security programs.

Since rootkits are not used alone, discovering their ma-
licious behaviors is essential in understanding the impli-
cations of malware that utilizes them. Determining that
a rootkit has a backdoor capability that waits for network
packets on a specific port with specific contents can enable
the identification of infected hosts in a network by way of
examining the network traffic. Network perimeter defense
systems can also use this information to stop further mali-
cious activities on infected hosts. Rootkits that hide pro-
cesses with specific names can help identify the malicious
programs that are being hidden by the rootkit. In order
to conceal specific system level objects such as processes,
files, etc., rootkits usually use conditions in the code before
manipulating the data. Therefore, extracting triggers or con-
ditions used on sensitive or critical data before modification
reveals what specific malicious entities or data items the
rootkit wants to conceal. With large, complex and closed-
source kernels of operating systems such as Windows, man-
ually understanding these behaviors of rootkits is a daunting
and error-prone task. Thus, there is a dire need of an auto-
mated system for this purpose.

In order to intercept various events in the kernel, kernel-
level rootkits implant hooks to divert execution flow to its
own code. Recent research has focused on identifying the
hooking behavior of kernel-level rootkits [26, 27] in an ef-
fort to understand the mechanism in which rootkits install
their additional illicit behavior. This information can help
identify potential locations in the kernel where hooks are
placed as well as ways to remove rootkits from an infected
system. However, such systems do not discover the actual
malicious goals and capabilities of the rootkits. Moreover, a
rootkit with the same malicious goal can use different meth-
ods to hook into the kernel. Some newer techniques such as
Direct Kernel Object Modification (DKOM) and hardware

based approaches do not need to place hooks. While hook-
ing behavior can be expressed as manipulation of kernel
control-flow, the actual malicious goals of kernel rootkits
can be expressed as manipulation of system-level data.

In this paper, we present an automated system that effi-
ciently analyzes the data manipulation behaviors of rootkits.
Our observation is that rootkits modify sensitive data ac-
cessed by user-level programs via system-calls or account-
ing data structures maintained by the kernel that reflect sys-
tem state, by executing rootkit code during specific events
in the kernel. In our approach, by stimulating potential
events and performing data-flow analysis on sensitive data
through the executed code paths in the kernel that service
these events, we gather detailed information about the data
access patterns, data modifications and used triggers of the
rootkit.

We use derivatives of the dynamic slicing technique [2]
for data-flow analysis. Our use of dynamic slicing differs
from [26] in that we use a combination of backward and
forward slicing on selected execution paths of the kernel.
This combined approach is essential for identifying all pos-
sible data manipulation behaviors. The more traditional
backward slicing phase identifies all potential data sources
that can influence the sensitive data. The forward slicing
technique is required for identifying all instructions that are
influenced by the identified sources, including triggers used
in the rootkit code. More precisely, our forward slicing
technique is known as chopping [14]. Although many mal-
ware analysis techniques rely on dynamic taint propagation
technique, we chose not to use it for our analysis purposes.
Kernel-level code can read or write from anywhere in mem-
ory. Moreover, different kernel components share the same
address space. Therefore, performing dynamic taint anal-
ysis on rootkits for identifying kernel data modifications
may lead to an uncontrollable explosion of tainted code/data
throughout the kernel, which may lead to a significant num-
ber of false positives. By using dynamic data-flow analysis
on selective event-handling execution paths, our system is
much more scalable and efficient than pure dynamic taint
based approaches while reducing the false positives.

We have developed K-Tracer, an automated rootkit be-
havior analyzer for the Windows OS. It is developed us-
ing the whole system emulator, QEMU [4]. An important
functionality of K-Tracer is to gather a dynamic trace of the
execution path in the kernel that handles a specific stimu-
lated event. In order to extract a precise dynamic trace, K-
Tracer handles all Windows internal functionalities, includ-
ing asynchronous or synchronous I/O events, user-space
memory re-mapping of arguments during system calls, and
interrupt handling [24]. Our system can identify several
types of data manipulation behaviors, including access to
sensitive data, modifications, and trigger conditions applied
on the data before performing the data manipulation. We

evaluated our system on a large number of rootkits and
showed that we can extract information about the malicious
capabilities of these rootkits. We summarize our contribu-
tions below:

• We designed an approach for analyzing kernel-level
code that can extract information about the malicious
goals and capabilities from the kernel rootkits through
the stimulation of the data-flow events. Such rootkit
behaviors are not revealed by hooking behavior analy-
sis in existing research.

• We propose a new technique that is a combination of
backward slicing and chopping techniques on selective
stimulated execution paths in the kernel that identifies
all possible data sources that the malware uses to in-
fluence sensitive data, and all possible instructions that
are influenced by these sources, for example malicious
triggers.

• To the best of our knowledge, we are the first to de-
velop a dynamic kernel level analysis engine for the
Windows OS. We have tackled several design and im-
plementation challenges in order to make our system
handle a large variety of rootkit techniques. We have
performed experimental evaluation on different real-
world rootkits, showing that our system is able to au-
tomatically extract detailed information about the ma-
licious capabilities.

• We describe the limitations of our system against some
newer rootkit techniques, and discuss how our system
can be further improved to counter these new rootkit
techniques.

We present background information related to rootkit be-
havior analysis in Section 2. In Section 3, we discuss the
principles of K-Tracer’s approach. Section 4 describes the
architecture and details of K-Tracer. Experimental evalua-
tion of our tool with various rootkits are discussed in Sec-
tion 5. We provide a discussion of how our current im-
plementation can be extended to handle other sophisticated
rootkit techniques such as DKOM (Direct Kernel Object
Modification) and hardware based techniques in Section 6.
Related work is presented in Section 7. We conclude our
paper in Section 8.

2 Background

The goal of rootkits can be generally expressed as at-
tempts to manipulate information passed between user pro-
grams and the system. Usually, when user programs induce
specific events in the system, rootkits intercept these events
and perform manipulation on the sensitive data, which is the
data being generated or utilized by the event. For example,

when user programs invoke system calls to enumerate the
list of processes running on the system, rootkits can check
for specific names and filter them, so that they become hid-
den.

In order to achieve the end-goal of data manipulation,
kernel level rootkits use hooks to execute their own code in
addition to the default kernel code. Hooks can be placed
by inserting instructions in the control-path that jump to
the malicious code, or they can be modifications to control-
data, which is data used in control transfer instructions. Re-
cent work such as HookFinder [27] and HookMap [26] fo-
cus on identifying and extracting hooks placed by rootk-
its. HookFinder performs impact analysis using dynamic
tainting to identify hooks placed by a rootkit in the kernel
execution paths. HookMap uses a more elaborate method
of identifying all potential hooks in the execution path of
kernel code that is induced by the execution of a specific
security application. Although discovering the hooking be-
havior of rootkits can enable the creation of protection and
remediation tools, it does not reveal any information about
the true malicious capabilities and goals of the rootkits.

Discovering information about rootkit capabilities
through its data manipulation behavior can help defend
against rootkits as well as the user-level malware that gets
help from them, regardless of the hooking mechanisms used
by the rootkits. For example, discovering that a rootkit
hides process names that start with “ root ” , reveals in-
formation that other malware programs working with this
rootkit would have process names similar to this. If a rootkit
has a backdoor capability and listens on the network for a
particular type of message, signatures of a network perime-
ter defense system such as intrusion detection system (IDS)
can be updated to include such messages. Analyzing ker-
nel rootkits to understand the data manipulation behaviors
is a complex task, given the complexity of today’s operating
systems. Moreover, the fact that all the kernel level code can
access any data directly without requiring any well-formed
interface such as system calls, makes such analysis more
challenging than analyzing user-level malware code.

In contrast to recent work in automated kernel rootkit
analysis, the overall goal of our proposed system is to an-
alyze rootkits and extract its data manipulation behavior.
In other words, given a rootkit, our system will answer
three questions related to its malicious manipulation of sys-
tem data - (1) what data items or types of data it accesses
or modifies in the system, (2) how they are manipulated
(whether they are accessed or modified, and if modified
what the new values of the data item are), and (3) when these
data manipulations are taking place, or what the trigger con-
dition based on these data is, which the rootkit uses for ac-
tivating malicious actions. By data we mean non-control
data because control-data is handled by existing systems
that identify the hooking behavior of rootkits [26, 27].

In general, the answers to the three questions above can
express almost all data manipulation behaviors of rootkits.
The information about what sensitive data a rootkit is ma-
nipulating is the first building block of the behavior. The
method of data manipulation can be divided into two classes
- system data access and system data modification. In the
data access case, the rootkit code’s purpose is to just read
the sensitive data being utilized or generated by a particu-
lar event. Malicious goals that involve stealing data from a
system can be expressed using this behavior. An example
of such behavior is key-logging. In the data modification
case, the rootkit code writes to the sensitive data. Most of
the goals of filtering data to hide malicious activities involve
data modification. For example, if a user program is scan-
ning the filesystem using the NtQueryDirectoryFile
system call in Windows, a rootkit that hides files will mod-
ify the results of the system call. In most cases, the data
access and modification is preceded by triggers in the code
that activate these actions when a specific condition is satis-
fied. Almost all filtering activities are preceded by triggers.
As another example, backdoor capabilities may only be ac-
tivated if the network packet received by the system has a
specific value in a field or specific structure.

Dynamic tainting approach has been used in several mal-
ware analysis systems [18, 27, 28]. However, there are sev-
eral issues with applying taint propagation to analyze ker-
nel malware. First, kernel-level code has complete free-
dom in reading and writing anywhere in memory, enabling
kernel malware to intentionally propagate taint to common
data structures in memory by performing a series of write
operations that do not change the data values. Legitimate
code may access these common data structures and prop-
agate taint further. Second, because of dynamic memory
allocation and deallocation, the same memory address may
be utilized by different kernel level components. If seman-
tics of functions that manage heap memory in the kernel
are not taken into account properly, taint propagation tech-
niques may be exploited by malware to propagate taint to
data managed by legitimate kernel code.

Performing dynamic taint analysis on rootkits for iden-
tifying kernel data modifications may lead to an uncontrol-
lable explosion of tainted code/data throughout the kernel.
For full-system taint propagation based approaches, if the
malware attempts a taint explosion by modifying the kernel
data, data manipulation analysis may produce false positive
due to the propagation of the taint data to other kernel code
path execution (interrupt handler, kernel thread etc.). Our
approach is to perform analysis on specific kernel execution
paths rather than the execution of the entire kernel, and then
identify the direct actions of malicious code on the data ac-
cessed in those execution paths. Consequently, this reduces
the false positives that may arise by the taint explosion per-
formed by malware. On the other hand, the completeness

(a)
Backward slicing phase.

(b)
Chopping phase.

Figure 1. High-level overview of K-Tracer’s approach.

of the information extracted by our approach depends on
the selection of kernel execution paths.

Our approach of identifying the data manipulation be-
havior is to stimulate sensitive events and perform dynamic
data-flow analysis on the related sensitive data. A sensi-
tive event can be any software or hardware generated action
such as system calls, hardware interrupts, etc., which may
be used by rootkit for malicious purposes. The event han-
dler is the part of the kernel code that is executed when the
event occurs. The sensitive data items are the data that is
provided during the event and the result generated by the
event handler. The analysis technique we use is dynamic
slicing [2]. Prior to our work, HookMap [26] has also uti-
lized dynamic slicing in order to identify all potential hook-
ing points in a kernel path. However, our technique differs
by using a combination of backward slicing and forward
slicing (chopping) techniques in order to identify all data
accesses, data modifications and triggers of sensitive ker-
nel data in the rootkit code.

3 Overview

We now briefly provide a high-level overview
of our approach. In Figure 1, we depict the
event handling of a typical Windows system call,
NtQuerySystemInformation, that can be used
to enumerate processes executing in the system. The
resulting buffer, B, contains a list of processes executing in
the system. Since the result of the system call is the buffer
B, we consider it as the sensitive data. In the example, a

kernel rootkit has placed a hook and changed the control
flow path of the system call handling routine in order to
execute its own code. For illustration purposes, we show
several data copy operations between buffers from the
initial data structure X , which contains the process name
from the SYSTEM PROCESSES structure. The rootkit
code contains a trigger-based data modification that checks
whether the name of a process matches a specific string and
updates data structures accordingly. In this example, we
want our analysis to identify the condition as well as the
malicious actions performed in the conditional code.

In order to perform dynamic slicing, we first gather a dy-
namic trace of the event handling code, which starts from
the sysenter instruction invoking the system call to the
execution of the sysexit instruction. The trace will con-
tain the kernel code as well as the rootkit code that gets ex-
ecuted. We use a variation of the classic dynamic slicing al-
gorithm presented in [2]. We perform slicing directly on the
execution trace without building the program dependence
graph (PDG), which requires static analysis. We rely on the
dynamic data-flow characteristics of individual executed in-
structions to identify the data-dependency relations between
them. Using the semantics of each instruction, we identify
the definitions and the uses - the registers or memory loca-
tion operands that are written to and read from, respectively.
For example, in Figure 1, the instruction ‘B = Z’ defines
B and uses Z.

The first step is to perform backward slicing starting
from the sensitive data. At the high-level the algorithm out-
puts a set of instructions that influence the computation of

the specified data. The algorithm starts from the last in-
struction and works iteratively on the trace in reverse order.
A working set W is maintained that consists of the registers
and memory locations whose definitions need to be tracked.
Initially, W contains the sensitive data buffer. For each in-
struction, the algorithm checks whether the instruction de-
fines any register or memory location in the working set. If
it does, the instruction is added to the slice, and the data el-
ements used in the instruction are added to the working set
after removing the data elements that it defines. More pre-
cisely, if d1, d2, ..., dk are the definitions and s1, s2, ..., sl

are the uses in an instruction, the working set is updated to
W ′, where W ′ = W ∪ {s1, s2, ..., sl} − {d1, d2, ..., dk}, if
di ∈W for some 1 ≤ i ≤ k.

Figure 1(a) illustrates the backward slicing algorithm on
the example program. Initially, W is set to {B}. The al-
gorithm starts from the last instruction in the trace, which is
‘B = Z’. This instruction defines B. Since it is in the work-
ing set, the working set is updated to {Z} and the instruc-
tion is included in the slice. The next instruction included
in the slice is ‘Z = Y ’, which defines Z. The instructions
included in the slice at the end of the algorithm are high-
lighted in the figure. We call all the data accessed by the
backward slice as data sources. In the example, X , Y and
Z are included in the set of the data sources. Notice that the
trigger, which is a use of N in a condition, is not identified
by the backward slicing algorithm.

The next phase in our approach performs chopping anal-
ysis, applied on all data sources identified by the backward
slicing algorithm. The algorithm starts with the sources in
the working set and starts from the beginning of the trace,
working iteratively on each instruction. For each instruc-
tion, if any of the operands used in the instruction is in the
working set, the data defined by the instruction is added to
the working set, and the instruction is added to the slice.
Otherwise, the definitions are removed from the working
set. More precisely, if d1, d2, ..., dk are the definitions and
s1, s2, ..., sl are the uses of an instruction, the working set is
updated to W ′ where W ′ = W ∪{d1, d2, ..., dl}, if si ∈W
for some 1 ≤ i ≤ l. Otherwise, W ′ = W −{d1, d2, ..., dl}.
The algorithm has the same effect as taint propagation.

The chopping algorithm identifies all instructions that
are influenced by the sources. Figure 1(b) depicts the ap-
plication of the algorithm. As shown, this method identifies
all possible uses of the sources, including N . Additional
uses of N are identified, which includes the trigger condi-
tion “N == Hide Process”.

In order to identify all types of malicious data manipula-
tion, we need both slicing and chopping. Through backward
slicing analysis, it is possible to identify modifications on
sensitive data and find all the data sources from which the
modified data are derived. Since the chopping algorithm
identifies uses rather than definitions, it is not able to iden-

tify modifications to sensitive data that are generated from
the system call event. However, backward slicing alone is
not able to identify all instructions that access or use the
sensitive data. The backward slicing algorithm’s inability to
identify the malicious trigger is an example of such cases.
The chopping algorithm fills this gap. Moreover, by ap-
plying slicing before chopping, the chopping algorithm can
identify not only uses related to sensitive data of the sys-
tem call, but also the data sources from which sensitive data
modifications may be derived.

In order to extract the malicious conditional code in the
case where a malicious trigger is not exercised by our stim-
ulation process, we perform graph dominance analysis on
the statically identified code from the trigger instructions.
Both the information of the malicious conditional code and
trigger condition can be used for further analysis to discover
the purpose of malicious activities. More details about these
techniques are provided in Section 4.5.4.

4 System Design and Implementation

The principles provided in the previous section show
how our slicing approach can be used to identify instruc-
tions that manipulate system-level data. There are several
requirements for our analysis system: (R1) since the slicing
algorithm identifies all instructions that manipulate sensi-
tive data, the system must be able to differentiate between
legitimate kernel code and malicious code in order to ex-
tract malicious data manipulation behaviors; (R2) the sys-
tem needs to be able to stimulate as many events as possible
that a rootkit may utilize to perform malicious actions; (R3)
the system needs to map sensitive data specific to the stim-
ulated sensitive event; (R4) for any stimulated event, the
system needs to be able to precisely follow and trace the
execution in the kernel that handles the event, so that no
relevant instruction is missed; (R5) each instruction in the
trace should have sufficient dynamic information about the
operands for the analysis to work; (R6) the system needs to
associate type information to the data buffers that are be-
ing manipulated by the rootkit to extract high-level infor-
mation regarding its malicious activity; and (R7) the trace
must contain the conditional code of all the triggers present
in the trace.

These requirements have guided the design and imple-
mentation of K-Tracer. In this section, we first provide a
high-level overview of the different phases involved in the
analysis process, and present the architecture of K-Tracer.
We then describe in detail how the architectural components
work in each phase to accomplish the analysis goals.

Figure 2. K-Tracer system architecture overview.

Figure 3. Rootkit analysis process in K-Tracer.

4.1 Overall Architecture and Analysis Process

K-Tracer is based on a whole-system emulator
QEMU [4], which emulates an x86 computer system. For
our analyzer, we chose the QEMU emulator environment
for two main reasons. First, by using a whole-system emu-
lator we are able to perform instruction-level execution trac-
ing of any code running in the guest computer, including the
guest operating system. It is possible to trace kernel thread
execution as well as the interrupt handling code and monitor
the Memory Management Unit (MMU) address translation.
Second, the whole-emulator provides an isolation feature,
consequently our analyzer is protected against techniques
used by malware to disable the detected analyzers that run
within the same operating system environment [25]. It is
possible that malware may detect emulators to evade anal-
ysis [22]. However, our analysis approach is orthogonal
to the underlying framework, and more transparent frame-
works such as the hardware virtualization based Ether [9]
may be used instead of emulation.

The overall architecture of K-Tracer is shown in Fig-
ure 2. The entire rootkit analysis process is performed in
three main phases: initialization, tracing and offline analy-
sis, as shown in Figure 3. We provide an overview of the
phases and introduce the various components here. In the
later sections, we describe the architectural components that
perform different functionalities involved in the phases.

The main goal of the initialization phase is to build a
knowledge base of legitimate code in the kernel. For the in-
tegrity of our analysis we assume that a clean boot of the OS
can be performed and all the code belonging to the kernel,
including any loaded driver, is trusted. This is a reason-
able assumption because typically K-Tracer is run on a ma-
chine dedicated to malware/rootkit analysis rather than on
a live/productivity machine. In this phase, relevant kernel
data structures are traversed to extract the regions of code in
the kernel address space. The Trusted Code Mapper (TCM)
module, which is built into the QEMU code base, performs
this operation.

After the initialization phase, during the tracing phase,

the rootkit driver is loaded into the OS and various sensitive
events are stimulated one after another. For each stimulated
event, the system first maps out the memory locations of
the sensitive data involved in the event. Then, the system
generates traces for code executed to handle the events in
the kernel. The Stimulator Engine (SE) component is re-
sponsible for stimulating events in the guest OS. The Sensi-
tive Data Mapper (SDM) component maps the virtual mem-
ory addresses of sensitive data items in memory when the
event is stimulated. In addition, this module traverses kernel
data structures related to the stimulated event with neces-
sary type information. The Trace Extraction Engine (TEE)
module performs the instruction level tracing and outputs
an instruction trace relevant to the event. In order to de-
tect whether any tampering of trusted code has occurred, a
component called the Integrity Checker (IC) monitors mem-
ory writes performed during the rootkit execution to identify
any modification to trusted code.

The final phase is the slicing analysis of the extracted in-
struction trace on the identified sensitive data for the stimu-
lated event. The Offline Slicing Engine (OSE) is responsible
for performing this analysis. If any malicious data modifi-
cation is detected, this module outputs detailed information
about the sensitive data access, modification and triggers.

4.2 Mapping The Trusted Code Regions

In order to satisfy requirement (R1), the TCM maps the
trusted kernel code regions of the Windows OS. First, a
clean version of Windows is booted as the guest OS in
QEMU. After the boot is complete and before inserting
the kernel rootkit code, the code regions of the kernel are
mapped out. At the bottom layer of the Windows XP ker-
nel is the HAL (Hardware Abstraction Layer). Above this
layer is the Windows Kernel executive, which manages the
core functionalities of the kernel and contains handling code
of system calls. The code sections are contained in the
files HAL.DLL and NTOSKRNL.EXE, respectively. Since
the loaded base addresses of these components can change,
we do not consider statically analyzing them. Rather,
we observed that these components along with all loaded
drivers are maintained in a linked list pointed by the sym-
bol PsLoadedModuleList. By using Windows symbol
information and a kernel debugger, we look up its base ad-
dress. We then walk the list of modules and gather their in-
formation, which includes their base addresses. Since each
module is a PE executable, we parse the headers to identify
necessary code sections and stored their address ranges.

We consider any code that does not belong to the iden-
tified address regions as malicious. This method of identi-
fying malicious code can create false positives if legitimate
drivers are loaded after this initialization phase. However,
our analysis environment is controlled and we ensure from

our operating system image that no drivers are required to
be installed or loaded during the analysis of the rootkit.

4.3 Stimulating Sensitive Events

In order to satisfy requirement (R2), our approach re-
quires stimulation of sensitive events in the system whose
behaviors may be maliciously modified by the kernel rootkit
under analysis. One of the main issues of stimulating events
is achieving completeness. Missing any event that is uti-
lized by a rootkit may result in incomplete analysis. One
way to achieve completeness is to stimulate all possible
events so as to include all possible system calls or inputs to
the system. However, this is not practical because the prob-
lem is similar to exhaustive program testing of the operating
system kernel. We consider a more realistic and tractable
approach of selecting the set of kernel events that can help
manipulate data related to the high-level malicious goals of
rootkits in general. We focus on three general malicious
goals of rootkits: hiding resources, stealing information,
and enabling remote control.

According to the classification provided in [3], we ad-
dress the kernel-data attacks that fall into the control inter-
ception category, where the rootkits hijack the kernel con-
trol flow in order to perform the malicious goals. For our
analysis, we consider two main categories of events that
rootkits generally intercept control from - system calls and
external input events. User-level programs utilize the sys-
tem call interface to access sensitive system-level data, and
in this case rootkits manipulate the arguments or results of
system calls. In the case of external inputs to the system
(we consider keyboard entry and network input), hardware
interrupts are fired and handling of such events is through
interrupt handlers.

We selected different system calls for each sys-
tem resource category defined in [20]: process, to-
ken, timer, file and registry. First, for each cate-
gory we chose the ZwQuery* native API, which is
the system call used to retrieve the system information
about that type of system resource. We then selected
the system calls used for basic file and registry opera-
tions: ZwCreateFile, ZwOpenFile, ZwReadFile,
ZwDeletefile, ZwCreateKey, ZwOpenKey, and
ZwDeleteKey. Finally, we selected the system
calls related to different I/O operations. We selected
NtRequestWaitReplyPort for keyboard operations,
NtReadRequestData for network request packet oper-
ation, and NtIoDeviceIoControl for I/O device oper-
ation.

Afterward, for each selected system call we select the
parameters that represent the sensitive data and other infor-
mation such as: size in byte of the sensitive data and I/O
operation related to the stimulated system call. We store all

System Call Sensitive Data Size of Sensitive Data (byte) I/O event
NtQuerySystemInformation 2 parameters 200 -
NtRequestWaitReplyPort 2 parameters 1 Keyboard I/O
NtReadRequestData 4 parameters 1 incoming network packet I/O

Table 1. Example of stimulated events file.

such information into a stimulated events file. In Table 1
we show an example of stimulated event information con-
tained in the stimulated events file. It is worth noting that
the selection process is based on the knowledge of security
analyst and is performed manually.

In order to stimulate the different sensitive events, we
use the stimulator engine (SE) shown in Figure 2. The SE
has two counterparts - one is a user-level program residing
in the guest OS and the other resides in QEMU’s code base.
The user mode program is responsible for invoking system-
calls. The QEMU based component is used to stimulate
external inputs into the guest OS by using the user-space
drivers provided by QEMU.

The stimulation process works as follows. For each se-
lected system call event, the user-space SE component in-
vokes the appropriate system call. For stimulating an event
that requires an I/O operation, the user-space counterpart in-
vokes the QEMU counterpart to stimulate an external input
such as a keystroke or a network packet.

It is worth noting that we do not stimulate different ar-
gument values of the system calls. Our assumption is that
the rootkit does not know the value(s) prior to the control
interception. Therefore, it has to apply the triggers on the
specific argument values of the system call relevant to the
malicious goals of the rootkit.

4.4 Identifying Sensitive Data and Relevant Ker-
nel Data Structures

According to the requirement (R3), the slicing algorithm
in K-Tracer requires the address of the sensitive data on
which to perform the slicing algorithm. Therefore, for each
stimulated event, the locations of relevant sensitive data
needs to be extracted. In addition, in order to satisfy the
requirement (R6), which is identifying the type information
during the slicing algorithm, we need to propagate types
from kernel data structures accessed by the kernel-level
code. Since the backward slicing algorithm will identify
all possible sources that are accessed in the event handling
code, we need to map out relevant kernel-level data struc-
tures that may be accessed in the kernel-level code. Both
of these tasks are performed by the Sensitive Data Map-
per (SDM) module in K-Tracer, which is initiated when the
handling of the stimulated sensitive event starts. For the
example shown in Figure 3, the sysenter instruction ini-
tiates the activity of the SDM module.

4.4.1 Mapping Sensitive Data

We first describe how addresses of sensitive data related to
the events are extracted. In the case of system calls, we
mark the arguments and returned results as sensitive data.
The problem is that these sensitive data buffers may not ex-
ist at the exact moment of stimulation. Rather, their loca-
tions can be identified when the event handling code starts
in the kernel. Therefore, the addresses are extracted when
the K-Tracer determines that the code for handling the event
has started executing. In Section 4.5, which describes the
tracing method of event handling code, we discuss how K-
Tracer identifies the start of an event handler.

Since the kernel has complete control over the virtual
memory management in the guest OS, one of the challenges
in identifying virtual addresses of memory buffers is that
kernel-level code may be accessing the same memory buffer
with different virtual addresses. The Windows operating
systems (based on the NT kernel that includes Windows
2000, 2003 Server, and XP) support three different meth-
ods of passing parameters from user space to kernel space
during system calls - Buffering I/O, Direct I/O, and Nei-
ther I/O. These methods vary from system call to system
call and are managed by the I/O manager [24]. For the
case of Buffering I/O, the user space buffer is copied to a
separate kernel space buffer. The kernel-level code directly
accesses the user space address in the case of Neither I/O.
However, when the I/O manager uses Direct I/O, which is
mostly used for sending data to drivers, the addresses of the
caller’s buffer are re-mapped to separate virtual addresses
belonging to the kernel. The user-level buffers are locked
and the physical addresses information is saved into a struc-
ture called MDL and passed to the I/O driver.

In order to collect the addresses of the sensitive data for
the Buffering I/O and Neither I/O method, it is sufficient
to extract the virtual address that is passed to the kernel
(generally from the stack layout based on the traced sys-
tem call). For Direct I/O, the method we have developed is
a new mechanism that is able to detect multiple virtual ad-
dress mapping for the same buffer. First, when an instance
of the sensitive data buffer is identified, its physical address
is computed by traversing the page tables in the OS kernel.
Later, while the tracing phase continues, the SDM module
monitors all the memory operations and searches for new
virtual address accesses that have the same physical address
as the buffer. The extracted addresses of the sensitive data

are stored in files for use during the off-line analysis phase.

4.4.2 Mapping Kernel Data Structures

The goal of mapping kernel data structures related to a
stimulated event is to enable identification of type infor-
mation for a data buffer in memory that may be found as
a source during offline slicing analysis. The SDM module
maps relevant data structures in the kernel for the stimu-
lated event in the same manner that we identified the list
of kernel modules, and then stores the corresponding ad-
dresses to files for off-line analysis. For example, for
the NtQueryInformationProcess system call, the
list of all EPROCESS structures are traversed in memory.
Since we have the type information of each field in the
EPROCESS structure, we can identify and output the ad-
dress of each field from the base address and also the type
of the data. We later explain how this information is used in
the offline analysis phase.

4.5 Tracing the Kernel

One of the most important tasks of K-Tracer is to pre-
cisely trace the event handling code in the kernel as dictated
by requirement (R4). Kernel code handling of a specific
event may be scheduled out-of-order and may also be pre-
empted during execution due to other events. Moreover,
some events such as user inputs generate interrupts that do
not have any user process context to associate with it. We
identified and overcame several challenges for precisely as-
sociating code that is executing in the kernel with the stim-
ulated event.

The first challenge is managing delayed event-handling
code execution. We classify the event-handling code in the
kernel into two categories - synchronous and asynchronous.
Synchronous events are events in which an application re-
quests a service and the necessary data for the service is
always available at the time of the request. In this case,
the kernel returns immediately with the results while the
program waits. For example, system-call invocation by an
application to request the list of processes is a synchronous
event. Asynchronous events occur when the application re-
quests some data from the system that may not be imme-
diately available and waits till the data is ready while the
kernel continues with other activities. An example of such
an asynchronous event is the following. In the first part, the
user program invokes a system call requesting the I/O. The
kernel schedules the application in the waiting queue. In
the second part, when the data becomes available via an in-
terrupt, the kernel sends an IRP packet (I/O request packet)
that traverses a list of different drivers registered to service
the I/O request, enabling them to manipulate the data. Fi-
nally, the I/O Manager asks the Windows Executive to wake

up the application and service the data request. The starting
point and ending point for these two types of events vary,
and we need to consider managing both of these event types
in our system.

The second challenge is identifying the context of code
executing in the kernel, so that it can be precisely associated
with an event. The user-mode stimulator program is used
to stimulate synchronous events and the first part of asyn-
chronous events. The CR3 register is widely used to iden-
tify the user-process context for a thread running in the ker-
nel. However, since for any interrupt, the kernel ISRs (inter-
rupt service routines) execute with the same CR3 value as
the interrupted thread, relying on the CR3 value alone does
not help separate the interrupt servicing code. We have de-
veloped a method called control-flow prediction (described
in Section 4.5.1), which is used to detect and disregard in-
terrupt driven code in cases where it is not relevant to the
stimulated event. Another problem is that in the case of
asynchronous events, the entire interrupt initiated second
part can be executed in the context of any other process.
Moreover, Deferred Procedure Calls (DPC) can be used for
the second part, which also may not execute with the con-
text of the stimulator program. DPCs are Windows sup-
ported methods that execute routines in the kernel-level to
handle activities that have less priority than interrupts. Re-
lying on the process context in these cases does not work.
We describe in Section 4.5.2 our method of handling these
cases.

4.5.1 Control Flow Prediction

As stated earlier, in order to be able to discard the code ex-
ecuted by the kernel after preempting a particular execution
path that is being monitored, we develop a technique called
control-flow prediction. The idea is to predict the address
of the next instruction i + 1 from the instruction being ex-
ecuted i. This can be done by emulating sufficient seman-
tics of the current instruction, so that the updated EIP can
be computed without changing any processor state main-
tained by the emulator. For any instruction that is not a
branch instruction, we compute the next instruction address
by adding the size of the instructions to contents of the value
of the EIP register. For unconditional/conditional branch
instructions, we compute the virtual address of the target of
the branch. Then, when the next instruction takes place we
check the predicted address. If the prediction is correct, we
can continue tracing the current flow, otherwise we save the
address and stop tracing until the execution returns to it.

This check may be not sufficient in the case where an-
other execution path (e.g. interrupt handler) executes the
i + 1th instruction that belongs to the monitored execu-
tion path. In this case, the analyzer will resume tracing
from the i + 1th instruction even though it is from another

thread. In order to solve this problem, we use a technique
similar to the technique described in [10], along with the
predicted EIP we save all the return addresses in all the
frames from the call stack into a virtual stack list. Here,
S = {r1, r2,, rn−1}, where n is the number of frames
in the call stack and rn−1 corresponds to the last invoked
function. Every time that the analyzer detects a new exe-
cution path, different from the monitored path, it computes
and stores the predicted EIP and the virtual stack list. Af-
terward, in order to determine if the control is returned to
the monitored execution path, the analyzer, during a context
switch, checks the predicted EIP and the virtual stack list.
If both pieces of information match, the analyzer re-starts
tracing. Using this method we are able to select and trace
the appropriate control flow related to monitored event.

4.5.2 Handling Synchronous and Asynchronous
Events

In order to manage the different asynchronous/synchronous
flows, we define a set of event handling parameters by
which we are able to select the appropriate instructions to
trace. We describe them below:

• the starting point and the ending point of the trace:
these identify the beginning and ending points of the
tracing that will be performed on the kernel-level code.

• process context toggle: defines whether the execution
of a particular process’s context needs to be followed
using the CR3 register value.

• control-flow prediction toggle: defines whether the an-
alyzer has to follow the control-flow of the monitored
event. The technique to follow the appropriate control
flow is explained in section 4.5.1.

Tracing synchronous events is straightforward, we set
both the control-flow prediction and process context. The
tracing starts with the execution of the sysenter instruc-
tion and ends with the sysexit instruction execution. The
method of handling asynchronous events is more compli-
cated. In particular, we have two different settings for the
asynchronous events. For the first part (I/O request), when
the process requests the input, we use the same setting of
the synchronous event - we enable the process context and
control flow prediction. For the second part (I/O reply),
where the input into the system causes an interrupt, we dis-
able both the process context and control flow prediction.
Process context is not useful in this case because the CR3
value may indicate any process in the system. Moreover, we
need to disable the control flow prediction because we want
to trace the driver code associated with the bottom half of
the interrupt handling routine that belongs to another ker-
nel execution flow. The starting point for second part (I/O

reply) is specified as the interrupt handling routine related
to the event that we want to trace and the ending point is
the sysexit instruction with the context of the stimulated
process. We report all the trace setting in Table 2.

4.5.3 Trace Extraction and IR Conversion

The Trace Extractor Engine (TEE) represents the core of
our analyzer. The task of TEE is to trace the appropriate
execution flow of the selected event and translates the x86
machine code instructions into Intermediate Representation
(IR) form. It implements the control-flow prediction tech-
nique and the methods of handling synchronous and asyn-
chronous events in the kernel. This module is informed by
the SE component about the type of the event being stim-
ulated. Based on the event type, the appropriate parame-
ters for tracing is fixed. The example in Figure 3 shows
the tracing of the NtQuerySystemInformation sys-
tem call. Since it is a synchronous event, the analyzer en-
ables control-flow prediction and the process context, and
the tracing starts from sysenter and ends at sysexit.

We have developed our own intermediate representation
(IR) representation for analysis. Besides simplifying analy-
sis, we developed the IR to mainly satisfy requirement (R5).
The backward slicing technique requires offline analysis af-
ter the complete trace is gathered. Our IR form is self-
contained. Besides the opcode representation of the assem-
bly instruction, the values of the operands involved in the
instruction at the moment of its execution are also stored.
For example, for register or memory based arguments, the
contents of the register or memory location are also stored.
Self-contained IR allows us to analyze the instructions trace
offline even if the original machine instructions do not con-
tain all necessary dynamic argument information.

4.5.4 Graph Dominance Analysis

In order to satisfy the requirement (R7), which requires that
the conditional code of triggers are also extracted, we ap-
ply post-dominator analysis. By invoking this analysis at
branches, we ensure that the trace produced by our analyzer
contains all conditional code related to the triggers defined.
In order to achieve this, we added the post-dominator anal-
ysis and a disassembling routine to the TEE engine.

The analysis process works as follows. During the in-
structions trace, every time the TEE component recognizes
a branch instruction, the disassembling component extracts
code from the if statement until the end of the block is
reached. The code output from the portion of disassemble
code is converted into a control-flow graph (CFG), so that
the post-dominator algorithm [16] is applied. All the code
defined between the if statement and the post-dominator is
translated to IR form and stored along with the trace. Us-
ing this technique we can guarantee that our trace contains

Type of Event Process Context Control Flow Prediction Starting point Ending point
Synchronous yes yes sysenter sysexit
Asynchronous (I/O req.) yes yes sysenter -
Asynchronous (I/O reply) no no interrupt event sysexit

Table 2. Setting of tracing parameters.

the conditional code of every trigger defined in the dynamic
trace.

4.6 Checking Integrity of the Trusted Code

In order to ensure that the trusted code of the kernel is not
tampered with, the Integrity Checker (IC) component of K-
Tracer monitors writes to memory during the tracing phase.
The component hooks into the code in QEMU that emu-
lates the MMU and Translation look-aside buffer (TLB) to
intercept every memory operation performed on the system.
If a write operation is detected on a memory address con-
tained in the kernel code regions, it stores these addresses
and marks them as untrusted. These untrusted addresses
will be passed to the off-line slicer module that will perform
the slicing analysis.

4.7 Off-line Analysis

Finally, the offline analysis phase is implemented in the
OSE component of K-Tracer. For each stimulated event,
it takes as input the IR trace generated by TEE, the virtual
memory addresses of sensitive data, and the type informa-
tion associated to memory addresses (belonging to kernel
data structures) from the SDM module, and the trusted code
region information from the TCM module. It then performs
slicing and chopping as presented in Section 3. The compo-
nent first performs backward slicing on the IR trace using
the sensitive data buffers.

The component first starts from the bottom of the trace
and looks for instructions that define sensitive data buffers.
For each data source used in these instructions, the algo-
rithm recursively finds out instructions that defined them as
well, and so on and so forth. As a result all instructions and
data sources that influence the values of the sensitive data
are identified. At this point, type information is associated
to the data sources that belong to the kernel data structures
mapped during the event stimulation. Next, the chopping
phase starts from the beginning of the trace, and iteratively
identifies the instructions that are influenced by all the iden-
tified data sources.

We take the union of the sets of instructions identified
in slicing and chopping phases. Using information of the
trusted code ranges, we filter out all instructions that be-
long to the trusted code. It is worth noting that even if the

rootkit hides its own code in some esoteric memory loca-
tion [12, 13] (PCI card, graphics card, etc.) we are able
to detect it. The OSE outputs all definitions (data modifica-
tions) and all uses (data accesses and triggers) in the remain-
ing set of instructions with relevant type information. In
general, type inference helps identifying the data structures
and fields manipulated in these instructions by the rootkit.

5 Experimental Evaluation

In order to evaluate the effectiveness of our approach,
we used K-tracer to automatically analyze the behavior of
a dataset of Windows rootkits. We chose a representative
set that contains a mix of malicious capabilities of rootkits
found in the wild. We ensured that the selected rootkits uti-
lize a variety of hooking mechanisms in order to show that
our system is capable of identifying the actual malicious
data manipulation behavior regardless of the hooking mech-
anism. Besides system call hooking, the selected rootkits
used other techniques such as layered drivers and IRP func-
tion pointer modification to intercept inputs to the system.
We describe in Section 6 how our system can be extended
to handle rootkits that do not use any hooking mechanism.

As described earlier, K-Tracer stimulates a chosen set of
events that include a set of system calls for process han-
dling, file handling, network information, and various I/O
related system calls. In addition, keystroke entry and net-
work packets are injected into the system. For each rootkit,
our analyzer identified the event for which malicious data
manipulation was detected, the sensitive data that was be-
ing manipulated, as well as manipulation method indicating
whether it was access or modification, and triggers (which
indicates when data is manipulated). The results are shown
in Table 3.

We first evaluated our tool on the HideProcessHook-
MDL [6] rootkit. Among all the stimulated events, our
system identified data manipulation behavior for the infor-
mation returned by the NtQuerySystemInformation
system call that was called to extract the list of processes.
During analysis, the SDM module detected two virtual ad-
dresses associated to the same buffer passed from user-
space to the system call handler code (Direct I/O method)
in which process information is returned. Both of these
addresses were used by backward slicing algorithm from
the end of the trace. The algorithm identified that the
original system call handler code used the EPROCESS

Rootkit Malicious detected event Sensitive data data manip. # Trigger active passive
HideProcessHookMDL NtQuerySystemInformation buffer (2 par.) modifying 1 1 -
TCPIRPHook NtQuerySystemInformation buffer (2 par.) modyfing 1 1 -
Klog NtRequestWaitReplyPort + key event buffer (2 par.) access - - -
NTROOTKIT: filesystem NtQueryDirectoryFile buffer (6 par.) modyfing 1 1 -
NTROOTKIT: keylogger NtRequestWaitReplyPort + key event buffer (2 par.) access 1 0 1
NTROOTKIT: backdoor NtReadRequestData+ network event buffer (4 par.) access/mod 20 2 18
SysEnterHook NtWriteFile buffer (6 par.) access 1 0 1
MigBot NtIoDeviceIoControl buffer (7 par.) access 1 0 1

Table 3. Evaluation of data manipulation and trigger analysis.

Rootkit Trace IR size Sensitive data size (byte) Trace extracting time Slicing Analysis time per trace
HideProcessHookMDL 7.2 Mb 200 50s 133 min.
TCPIRPHook 9.7 Mb 150 37s 100 min.
Klog 74 Mb 1 56s 1.6 min.
NTROOTKIT: filesystem 10 Mb 20 34s 26 min.
NTROOTKIT: keylogger 65 Mb 1 80s 1.2 min.
NTROOTKIT: backdoor 109 Mb 1500 58s 625 min.
SysenterHook 1.2 Mb 4 35s 2.5 min.
MigBot 10Mb 10 45s 6 min.

Table 4. Evaluation of space and time required for analysis.

data structures of different processes in the system as the
source of data. The chopping algorithm identified a use
of this data in a trigger condition inside the rootkit code.
The type information gathered by the SDM module on
the EPROCESS structure’s fields were successfully propa-
gated during chopping to the trigger condition. The trig-
ger condition checks for a process name in the list of
processes returned in the buffer to be equal to the string
“ root ”. We manually analyzed the rootkit and found that
it hooks into the NtQuerySystemInformation by re-
placing its address in the SSDT (System Service Dispatch
Table) and hides process information for processes with the
name“ root ”. Thus, our analysis system correctly identi-
fied the only malicious behavior contained in the malware.

We next experimented on the Klog rootkit [6], which
mainly provides key-logging capability. Among all the
stimulated events by the SE component, the analyzer
was able to detect data manipulation behavior when key-
strokes where stimulated. SE component stimulated
the NtRequestWaitReplyPort system call event, re-
questing keyboard entry data (I/O request phase). During
the external key-stroke stimulation, the keyboard interrupt
was fired and our analyzer traced the execution as an asyn-
chronous event following the code path starting from in-
terrupt generation to the return of the original stimulated
system call from the user-level program (I/O reply phase).
Next, our analyzer performed backward slicing on the re-
turned buffer of the NtRequestWaitReplyPort sys-
tem call and all the sources of data. The slicing phase iden-
tified that there were no modifications involved with the

keystroke data. The keystroke was read by the malicious
code and finally used as an argument to the ZwWriteFile
kernel function, which indicated that the keystroke was
stored in a file by the rootkit. We manually analyzed the
rootkit and confirmed this behavior, and also concluded
that no other interesting data manipulation behaviors were
present in this sample. As for the hooking mechanism, this
rootkit inserted itself as a layered driver to handle the key-
board entry interrupt.

We next analyzed the TCPIRPHook [6] rootkit. While
stimulating different events, K-Tracer was able to identify
malicious behavior when network related information was
queried from the system. In this scenario, the stimulation
was done from the user space component by calling the
NtQuerySystemInformation system call with the
specific argument to query TCP or UDP ports open for a
process. After performing backward slicing on the buffer
returned by the system call, the chopping phase identified
data returned in the buffer used in a trigger condition in the
malicious code. The condition used the port number field in
the returned information. Manual analysis confirmed that
the main goal of this rootkit is to hide the network informa-
tion related to the web connections at port 80 on the host.
As a note, the rootkit hooked into the kernel by modifying
the pointer to the TCPIP.sys IRP function related to the
completion routine for incoming network packets.

We next applied K-Tracer’s analysis on NT-
ROOTKIT [1]. This rootkit is composed of several
different modules, each of which is used to perform differ-
ent malicious tasks. The data manipulation behavior output

by our system was grouped into three different classes:
keyboard sniffing, file-hiding, and placing a network
backdoor. The keyboard sniffing activity was identified in
the same manner as described earlier for the Klog rootkit
because NTROOTKIT uses the same layered driver tech-
nique for intercepting keystrokes. However, our analysis
identified a trigger condition while performing chopping.
The condition checks the scancode of an entered key to be
between 0 and 64. The file-hiding capability was identified
when the NtQueryDirectoryFile system call was
stimulated. Similar to the technique employed by the Hide-
ProcessHookMDL, NTROOTKIT modified the function
pointer to the handler of the NtQueryDirectoryFile
system call to its own code. The chopping algorithm
identified a trigger condition in the malicious code that
checks for the filename or directory name field in the
returned information that starts with the string “ root ”.
The control dependent code revealed that it updates the
links to remove such file or directory objects from the list.
The last NTROOTKIT component, which places a covert
channel network backdoor, was detected by K-Tracer while
stimulating incoming network packets. Tracing of this
event was done using the method of asynchronous events.
The backward slicing algorithm revealed triggers based
on the incoming network packet. The malware contains
conditions to check whether the incoming packet is a
TCP packet, contains the IP source address 10.0.0.166
and the total length of the payload is 255 bytes. In order
to further reveal the malicious data manipulation when
these triggers are true, we constructed a packet with the
similar information. During this phase, several triggers
were identified by K-Tracer that check for commands in
the incoming packets. The rootkit code contains a total of
15 additional triggers that work as commands, which check
for the strings “ps”, “help”, “echo”, “buffer”, “hidedir”,
“hideproc”, “sniffkeys”, etc. Our analyzer identified the
code that would execute if each of these triggers were true.

In order to cover the state-of-the-art rootkit hooking
techniques, we developed two synthetic rootkits that per-
form sysenter hooking and runtime code patching. The
sysenter hooking approach modifies the contents of a
register IA32 SYSENTER, which contains the address of
a system call handling routine. Once the register is modi-
fied, any system call can be redirected to a malicious func-
tion. The sysenter instruction is a faster method of call-
ing system calls and is used by Windows operating sys-
tems after Windows XP SP2. In our synthetic rootkit, we
intercepted calls to the NtWriteFile system call. We in-
serted a trigger inside the hooked malicious function that
inspects the buffer that is written to a file for the pattern
“password”. If the pattern is found, the rootkit stores the
entire data contained in the buffer into a file. Our ana-
lyzer was able to identify the malicious trigger when stim-

ulating file related function calls. We next analyzed our
system on the migbot rootkit. The technique used by the
migbot rootkit is runtime code patching. In particular, we
patched the NtIoDeviceIoControl function code and
redirected its execution to the malicious function defined
by the rootkit. Similar to the previous case, we inserted
a passive trigger that inspects the data passed by the user-
space application to the kernel driver to look for a password
pattern. The ability of K-Tracer to monitor memory writes
enabled the identification of the untrusted code regions that
the rootkit patched. The backward slicing algorithm was
able to successfully identify the trigger and reported the IR
form of the conditional code.

Finally, in order to measure the efficiency of our ap-
proach, we collected data on the time and data memory re-
quired to perform complete analysis of each malware sam-
ple. As shown in Table 4, the bulk of the run-time is spent
on performing the slicing and chopping analysis of differ-
ent stimulated events. The use of selective dynamic tracing
combined with off-line analysis also helped keep the usage
of memory low.

6 Discussion

In this section, we discuss the implications of two new
emerging rootkit techniques for modifying system data: Di-
rect Kernel Object Modification (DKOM) and hardware-
based techniques. Both techniques do not require hooking
into the kernel execution path that handles the sensitive data.
However, they allow the rootkit to manipulate only limited
categories of data in the kernel. We describe how our ana-
lyzer can be extended to analyze these kinds of rootkits.

6.1 DKOM: Direct Kernel Object Modification
Technique

Direct Kernel Object Modification (DKOM) DKOM is
a technique that directly changes the information from the
accounting tables in the kernel, avoiding the use of classic
hooking techniques for intercepting events that access these
accounting tables. For example, a rootkit can delete an en-
try from the EPROCESS table to hide a process from the
user-space applications without affecting the execution of
the system. However, this technique cannot be used to hide
all types of resources. For example, to hide filesystem ob-
jects the rootkit still needs to use classic hooking techniques
because the information about all files are not maintained in
memory by the kernel. Another drawback is that, by us-
ing the DKOM mechanism there is always a time-window
where detectors may be able to access the resource that is
being hidden. In general, the DKOM rootkit can modify the
accounting tables in three specific times - (1) at the driver

loading time, (2) on demand from the user-space compo-
nent, or (3) at the creation time of the “target”1 object (e.g.
create process function for the process object). For the first
two cases the object must be already present in the system.
Therefore, some detectors may already log its presence be-
fore it is manipulated later. The last one assures stealthiness
but is immediately detected by our analyzer (classic system
call hooking technique) because it monitors the creation of
target object event.

There are several challenges for using K-Tracer to an-
alyze DKOM-based rootkits. The first issue is fixing the
trace start and end point. If the rootkit changes the ta-
bles during loading time, it can be detected by changing
the starting/ending point of tracing to be the kernel func-
tion used to initialize the driver (for example in Windows,
we can intercept the DriverEntry function as a interface
function). If the tables are modified on-demand, we first
need to detect the communication between the user-space
component and the rootkit driver. Then, the communication
event needs to be used to trigger the analysis. Communica-
tion discovery can be done by monitoring system calls used
for communication between drivers and user programs (e.g.
NTDeviceIoControl).

The second issue is that we need to define the sensitive
data on which to perform the slicing analysis. In order to
collect the sensitive data, we can use the following strategy.
When we detect the event to start tracing, we can dynam-
ically walk the relevant accounting tables and collect their
addresses. These addresses can then be used during slic-
ing. We should be able to then detect all potential malicious
manipulations of data and triggers used by the rootkit that
relies on the DKOM technique.

6.2 Hardware-Based Technique

By directly accessing the hardware resources rather than
relying on the OS, newer rootkit techniques can manipulate
system state without requiring any hooking into the kernel
code. The directly accessed hardware resources include pe-
ripheral hardware, disk controllers or USB device. Our cur-
rent implementation fails to detect and analyze such rootk-
its because they do not hook any event handling code that
manipulates the resources. For example the basic keysniff
rootkit [6] monitors the keyboard’s serial port by using a
polling technique.

In order to address this problem, since we are using a
whole system emulator, we can utilize its facility to control
every hardware device notification. The idea is to consider
the hardware buffer belonging to the hardware device as the
sensitive data. In this way, every time a hardware event
occurs, (e.g. key ready into the serial buffer), we monitor

1By target object we mean the object that the rootkit wants to manipu-
late

the hardware buffer and collect the code that gets access to
the buffer. We will then be able to detect and analyze most
of the hardware rootkit code.

Another good example of a different hardware-based
rootkit is Cloaker [8]. Cloaker exploits hardware features
of the ARM architecture and implements a tiny operating-
system. This rootkit is completely self-contained. That is,
it does not use any code belonging to the OS. The hook-
ing technique used by Cloaker is to define a new memory
regions for the IDT table by flipping a bit on the ARM pro-
cessor. In order to detect and analyze the Cloaker code, we
do not need to modify our analyzer. In fact even if Cloaker
takes control of the IDT table, by tracing the normal event
code we are able to collect the instructions that belong to
the flow of the hijacked code. Even in this case we are able
to detect the rootkit code and extracts potential malicious
triggers.

7 Related Works

Several approaches have been proposed for detect-
ing [11, 23] and analyzing kernel malware. Kruegel et
al. [15] proposed a system based on the static analysis to
check the memory operation of the kernel driver at the load-
ing time. In particular, the system checks using symbolic
execution whether the driver can modify some sensitive ker-
nel memory locations. Even though this approach can de-
tect several malicious behaviors in kernel drivers with a low
false positive, a limitation is that it cannot handle many
obfuscation techniques [7, 17, 19] that can be used by the
rootkit in order to impede static analysis.

Heng Yin et al. presented HookFinder [27], a fine-
grained taint-analysis based system that is able to iden-
tify the hooking behavior of rootkits. More specifically,
HookFinder considers any change made by the malware as
tainted and recognizes the code and data locations that are
modified to alter control flow to execute the rootkit code
as hooks. Another hooking behavior identification system
was proposed by Zhi Wang et al. [26]. The system extracts
the trace of kernel instructions regarding a particular sys-
tem call event, and then searches potential places for hooks
in the instruction trace that can be used by a rootkit. After
the system identifies the hooks, it uses dynamic slicing in
order to recognize all memory locations that can be used by
the rootkit to divert the control flow. Whereas HookFinder
identifies hooks placed by a particular malware, HookMap
identifies all potential hooks in the execution path of ker-
nel code relevant to particular security applications. Even
though these approaches are capable of extracting the hook-
ing behavior of rootkits, they do not handle the behavior
of maliciously manipulating non-control data in the kernel.
An important reason why this type of analysis has become
very important is because new rootkit approaches, such as

DKOM and hardware based techniques [6], do not need to
use hooking techniques to manipulate kernel data.

Petroni et al. proposed SBCFI [21] for kernel rootkit de-
tection. SBCFI performs static analysis on the Linux kernel
source code and builds a control-flow graph of the legiti-
mate kernel-level code. Afterward, during system execu-
tion, the system checks the integrity of the control-flow at
some specific fixed intervals. This approach is able to de-
tect persistent control-flow manipulations only, and is not
able to adapt to dynamic changes to legitimate control-flows
in the kernel. Another tool, Panorama [28], proposed by
the Heng Yin et al., uses dynamic taint analysis to detect
malicious behavior that is primarily privacy-breaching. Al-
though the system can be effectively used to analyze rootk-
its that steal data from the system, it cannot be used for
analyzing other behaviors such as malicious triggers.

Several approaches have been proposed that identify
trigger based behaviors in user-level malware programs.
Bitscope [5] uses static analysis and symbolic execution
to understand behavior of malware binaries and is capable
of identifying trigger-based behavior. However, since it is
static analysis based, it can be defeated by several known
obfuscation techniques. Moser et al.’s multi-path explo-
ration [18] was the first dynamic approach for identifying
trigger-based behavior in malware. Given sufficient execu-
tion time, the technique can discover conditional code in
malware. The system uses QEMU and dynamic tainting to
identify conditions and construct path constraints that de-
pend on inputs coming from interesting system calls. Once
a conditional branch is reached, the system attempts exe-
cution on both of the branches after consistently changing
memory variables by solving the constraints. This tech-
nique works well for the user-space malware but presents
some issues when applied to discover triggers in the kernel
space. First, kernel level analysis would require saving the
entire machine snapshot for each potential branch, which
may produce overwhelmingly large overhead for saving and
restoring states. Second, the approach requires determinis-
tic behavior, and ensuring that the kernel threads are sched-
uled and interrupts are triggered deterministically requires
replaying all inputs to the system in a deterministic fash-
ion. Finally, malware can intentionally propagate taint to
many kernel data structures in an attempt to force explo-
ration of many kernel execution paths, making constraint
solving analysis and path exploration much more complex.

8 Conclusion

In this paper, we presented K-Tracer, a Windows OS ker-
nel tracer that is able to extract the malicious goals and ca-
pabilities from the kernel rootkits through data-flow anal-
ysis of kernel execution of sensitive events. We imple-
mented a new approach that is a combination of backward

and forward slicing techniques on selective stimulated ker-
nel events in order to identify the rootkit behaviors. We
have applied our system, K-Tracer, to analyze several rep-
resentative rootkit samples and have shown that our system
is able to automatically extract detailed information about
their malicious capabilities. We also discussed limitations
of our current implementation and suggested how our sys-
tem can be improved to handle new rootkit techniques.

Acknowledgments

This material is based upon work supported in part by
the National Science Foundation under Grant No. 0716570
and Grant No. 0831300, and the Department of Home-
land Security under Contract No. FA8750-08-2-0141. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation and the Department of Homeland Security.

References

[1] NTROOTKIT: Kernel backdooring.
http://www.rootkit.com/.

[2] H. Agrawal and J. R. Horgan. Dynamic Program Slicing.
In Proceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 1990.

[3] A. Baliga, P. Kamat, and L. Iftode. Lurking in the shadows:
Identifying systemic threats to kernel data. In Proceedings
of the 2007 IEEE Symposium on Security and Privacy, pages
246–251, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[4] F. Bellard. Qemu, a fast and portable dynamic translator.
In Proceedings of the Usenix Annual Technical Conference,
2005.

[5] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, S. D, and H. Yin. Bitscope: Automatically
dissecting malicious binaries. In CMU-CS-07-133, 2007.

[6] J. B. by Greg Hoglund. Rootkits: Subverting the Windows
Kernel. 2004.

[7] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proceed-
ings of the ACM Symposium on Principles of Programming
Languages (POPL98), January 1998.

[8] F. M. David, E. Chan, J. C. Carlyle, and R. H. Campbell.
Cloaker: Hardware supported rootkit concealment. In IEEE
Symposium on Security and Privacy 2008, 2008.

[9] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Mal-
ware analysis via hardware virtualization extensions. In In
Proceedings of The 15th ACM Conference on Computer and
Communications Security (CCS 2008), Alexandria, VA, Oc-
tober 2008, 2008.

[10] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly detection using call stack information.
In Proceedings of the 2003 IEEE Symposium on Security
and Privacy, page 62, Washington, DC, USA, 2003. IEEE
Computer Society.

[11] T. Garfinkel and M. Rosenblum. A virtual machine in-
trospection based architecture for intrusion detection. In
Proc. Network and Distributed Systems Security Symposium
(NDSS 2003), 2003.

[12] J. Heasman. Implementing and detecting an acpi bios
rootkit. In In Black Hat Europe, Amsterdam, March 2006.

[13] J. Heasman. Implementing and detecting a pci rootkit. In
Technical report, Next Generation Security Software Ltd,
November 2006.

[14] D. Jackson and E. J. Rollins. Chopping: A generalization of
slicing. 1994.

[15] C. Kruegel, W. Robertson, and G. Vigna. Detecting kernel-
level rootkits through binary analysis. In 20th Annual
Computer Security Applications Conference (ACSAC), IEEE
Computer Society Press. USA, December 2004, 2004.

[16] T. Lengauer and R. E. Tarjan. A fast algorithm for find-
ing dominators in a flowgraph. ACM Trans. Program. Lang.
Syst., 1(1):121–141, 1979.

[17] C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. In Proceedings of
the ACM Conference on Computer and Communications Se-
curity (CCS), 2003.

[18] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple
execution paths for malware analysis. In Proceedings of the
IEEE Symposium of Security and Privacy, 2007.

[19] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis
for malware detection. In 23rd Annual Computer Security
Applications Conference (ACSAC), IEEE Computer Society
Press. USA, December 2007, 2007.

[20] G. Nebbett. Windows NT/2000 Native API Reference.
[21] N. Petroni and M. Hicks. Automated detection of persistent

kernel control-flow attacks. In Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS),
2007.

[22] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting system
emulators. In 10th Information Security Conference (ISC),
Lecture Notes in Computer Science, Springer Verlag. Chile,
October 2007, 2007.

[23] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention
of kernel rootkits with vmm-based memory shadowing. In
Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection (RAID 2008), Boston, MA,
September 2008.

[24] M. E. Russinovich and D. A. Solomon. Microsoft Windows
Internals. 2004.

[25] P. Szor. The Art of Computer Virus Research and Defense.
Symatec Press, 2005.

[26] Z. Wang, X. Jiang, W. Cui, and X. Wang. Countering per-
sistent kernel rootkits through systematic hook discovery. In
Proceedings of the Recent Advances in Intrusion Detection
(RAID), 2008.

[27] H. Yin, Z. Liang, and D. Song. Hookfinder: Identifying
and understanding malware hooking behaviors. In Proceed-
ing of the Annual Network and Distributed System Security
Symposium (NDSS), 2008.

[28] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing system-wide information flow for
malware detection and analysis. In 14th ACM Conference
on Computer and Communications Security (CCS), ACM
Press. USA, October 2007, 2007.

