
WebShield: Enabling Various Web

Defense Techniques without Client

Side Modifications

Zhichun Li, Tang Yi, Yinzhi Cao, Vaibhav Rastogi,

Yan Chen, Bin Liu, and Clint Sbisa

NEC Laboratories America, Inc.

Northwestern University

Tsinghua University

Web Has Become a Primary Target

2

Drive by Download

Cross site scripting

Cross Site Request Forgery

Cross-Origin JavaScript Capability Leaks

Desire a General Middlebox
• Existing web defense techniques need

browser/client modification

• Advocate middlebox approaches

3

Client
modification

Slow
adoption

Client-side Middlebox

heterogenous & co-exist with
other software clean installation

high maintenance overhead centralized control

user voluntary update
easy update and VM
management

Existing Web

Defense

Approaches

General Design Principles for

Middlebox

• Principles

– Principle I: general middlebox should enable

various protection mechanisms

– Principle II: avoid client-side deployment

– Principle III: containment of untrusted script

execution

– Principle IV: should not sacrifice user experience

4

Existing Middlebox Approaches

• BrowserShield

– Code rewriting: rewrite HTML and JavaScript code
with policy checking wrappers

– Only applies to known browser vulnerabilities

– Hard to be extended to support other defense
mechanisms

• SpyProxy

– Actively execute the web pages in a proxy sandbox

– Applies to both known and unknown vulnerabilities

– But only detect deterministic exploits

5

Evade Existing Approaches
function attackX() {
// exploit an unknown vulnerability,
// so BrowserShield cannot be applied

...
}
var attackcalled=false;
function loadAttack() {

var el=document.getElementById("Evil");
// use user events to bypass SpyProxy
el.addEventListener("mouseover",

checkMouse,false);
}
function checkMouse() {

if (! attackcalled) {
attackcalled=true;
window.setTimeout(attackX,0);

}
}

6

Trigger the
attack through
mouse events

Very Easy to Implement

checkMouse ���� attackX

Outline

• Our Design

• Implementation

• Evaluation

• Conclusion

7

Our Design

8

User Interface

Render Engine

DOM

HTML
Parse

r

Java-
Script

Engine

CSS
Parse

r

Client Browser

Our Design

9

User Interface

Render Engine

DOM

HTML
Parse

r

Java-
Script

Engine

CSS
Parse

r

Client Browser

Our Design

10

User Interface

Render Engine

DOM

HTML
Parse

r

Java-
Script

Engine

CSS
Parse

r

Client Browser

Our Design

11

User Interface

Render Engine

DOMDOM

HTML
Parse

r

Java-
Script

Engine

CSS
Parse

r

Our Design

12

User Interface

Render Engine

DOM
DOM

HTML
Parse

r

Java-
Script

Engine

CSS
Parse

r
JavaScript

Render Agent

DOM Encoder

Browser Controller

Proxy sandbox

Web Proxy

Sync visual effects

through encoded

DOM updates

Detection Engine

HTML Resp

Initial Page Render

13

Client

Browser
Web Proxy webweb

URI Request

Transformed

Resp

Render Agent

Shadow Browser

<!—eyJkYXRhIjp7fSwi

dHlwZSI6InN0eWxlU

2h4iOltdfQ==-->

<script id="DOM1">

__dp.apply("DOM1“)

</script>

URI Request

wrap as JS events

Dynamic HTML Interaction Support

• Latency added

– Communication delay

– DOM update delay

• DOM tree update location

– Element ID

– Location vector starting from the root of the tree

14

Client

Browser
Web Proxy

webweb

Shadow Browser

input

DOM visual
updates

Implementation

• Use Webkit to implement Shadow browser

• Current sandbox based on SELinux

• Session manager in Python

15

Outline

• Our Design

• Implementation

• Evaluation

• Conclusion

16

Evaluation
• Environment Setup

– Web Proxy: 2.5GHz Intel Xeon server

– Web Browser on Core2 2.66GHz

• Evaluation Metrics

– Compatibility

– Performance (user transparency)

• Latency

• Memory

• Communication overhead

– Drive-by-download detect demonstration

17

Evaluation

• Compatibility

– 91 out of Alexa top 100 web sites

– 19 out of Alexa top 20 web sites

– Reasons for not compatible websites

• Not supported features

• Stability of the prototype

18

Latency Overhead
• Initial page rendering

– Evaluate Alexa top 100 sites

– Render start: median +134ms, 90th percentile +1.08 sec

– Render end: median +382 ms, 90th percentile +2.46 sec

19

Chrome render start and end time

• Interactive Performance for Dynamic HTML

– Microbenchmarks

– Test on a real JavaScript game: JavaScript Game – connect 4

Latency Overhead

20

Start
Game

Move
Mouse

Drop a
Piece

Game
Over

Additional Delay 41ms 7ms 10ms 7ms

Memory and Communication Overhead
•Memory overhead

•Communication overhead

21

Usefulness Demonstration
• Drive-by-download detection

– Implement both policy-based and behavior-based

detection

• Policy-based: check the parameters of JavaScript API calls

and the parsing process

• Behavior-based: check a list of abnormal behaviors similar

to SpyProxy

– Evaluate eight vulnerabilities with Alexa top 500 web

sites.

22

Detection plug-ins False Negative False Positive

Policy Engine 0 1/500

Behavior Engine 0 0/500

Conclusion
• We design, implement and evaluate

WebShield

– A general middlebox that enables various web

defense mechanisms

– Run JavaScript inside the middlebox, and thus reduce

the attack surface

– No client modification

– Small overhead for latency, communication and

memory � remain good user experience

23

Advertisement

• Positions available for system people (OS,

Network, and Security) in NEC Research Labs

– Full-time

– Interns

Q & A

