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Web Has Become a Primary Target
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Drive by Download

Cross site scripting

Cross Site Request Forgery 

Cross-Origin JavaScript Capability Leaks



Desire a General Middlebox
• Existing web defense techniques need 

browser/client modification

• Advocate middlebox approaches
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General Design Principles for 

Middlebox

• Principles

– Principle I: general middlebox should enable 

various protection mechanisms

– Principle II: avoid client-side deployment

– Principle III: containment of untrusted script 

execution

– Principle IV: should not sacrifice user experience
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Existing Middlebox Approaches

• BrowserShield

– Code rewriting: rewrite HTML and JavaScript code 
with policy checking wrappers

– Only applies to known browser vulnerabilities

– Hard to be extended to support other defense 
mechanisms

• SpyProxy

– Actively execute the web pages in a proxy sandbox

– Applies to both known and unknown vulnerabilities

– But only detect deterministic exploits
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Evade Existing Approaches
function attackX() {
// exploit an unknown vulnerability,
// so BrowserShield cannot be applied

...
}
var attackcalled=false;
function loadAttack() {

var el=document.getElementById("Evil");
// use user events to bypass SpyProxy
el.addEventListener("mouseover",

checkMouse,false);
}
function checkMouse() {

if (! attackcalled) {
attackcalled=true;
window.setTimeout(attackX,0);

}
}
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Trigger the 
attack through 
mouse events

Very Easy to Implement

checkMouse ���� attackX



Outline

• Our Design

• Implementation

• Evaluation

• Conclusion
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Our Design
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Our Design
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HTML Resp

Initial Page Render
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Client 

Browser
Web Proxy webweb

URI Request

Transformed 

Resp

Render Agent

Shadow Browser

<!—eyJkYXRhIjp7fSwi

dHlwZSI6InN0eWxlU

2h4iOltdfQ==--> 

<script id="DOM1"> 

__dp.apply("DOM1“) 

</script>

URI Request



wrap as JS events

Dynamic HTML Interaction Support

• Latency added

– Communication delay

– DOM update delay

• DOM tree update location

– Element ID

– Location vector starting from the root of the tree
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Implementation

• Use Webkit to implement Shadow browser

• Current sandbox based on SELinux

• Session manager in Python
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Outline

• Our Design

• Implementation

• Evaluation

• Conclusion
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Evaluation
• Environment Setup

– Web Proxy:  2.5GHz Intel Xeon server

– Web Browser                               on Core2 2.66GHz

• Evaluation Metrics

– Compatibility 

– Performance (user transparency)

• Latency

• Memory

• Communication overhead

– Drive-by-download detect demonstration
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Evaluation

• Compatibility

– 91 out of Alexa top 100 web sites

– 19 out of Alexa top 20 web sites

– Reasons for not compatible websites

• Not supported features

• Stability of the prototype
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Latency Overhead
• Initial page rendering

– Evaluate Alexa top 100 sites

– Render start: median +134ms, 90th percentile +1.08 sec

– Render end: median +382 ms, 90th percentile +2.46 sec
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Chrome render start and end time



• Interactive Performance for Dynamic HTML

– Microbenchmarks

– Test on a real JavaScript game: JavaScript Game – connect 4

Latency Overhead
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Memory and Communication Overhead
•Memory overhead

•Communication overhead
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Usefulness Demonstration
• Drive-by-download detection

– Implement both policy-based and behavior-based 

detection

• Policy-based: check the parameters of JavaScript API calls 

and the parsing process

• Behavior-based: check a list of abnormal behaviors similar 

to SpyProxy

– Evaluate eight vulnerabilities with Alexa top 500 web 

sites.
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Detection plug-ins False Negative False Positive

Policy Engine 0 1/500

Behavior Engine 0 0/500



Conclusion
• We design, implement and evaluate 

WebShield

– A general middlebox that enables various web 

defense mechanisms

– Run JavaScript inside the middlebox, and thus reduce 

the attack surface

– No client modification

– Small overhead for latency, communication and 

memory � remain good user experience
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Advertisement

• Positions available for system people (OS, 

Network, and Security) in NEC Research Labs

– Full-time

– Interns
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