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Abstract—Uninstalling apps from mobile devices is among
the most common user practices on smartphones. It may sound
trivial, but the entire process involves multiple system components
coordinating to remove the data belonging to the uninstalled
app. Despite its frequency and complexity, little has been done
to understand the security risks in the app’s uninstallation
process. In this project, we have conducted the first systematic
analysis of Android’s data cleanup mechanism during the app’s
uninstallation process. Our analysis reveals that data residues
are pervasive in the system after apps are uninstalled. For each
identified data residue instance, we have formulated hypotheses
and designed experiments to see whether it can be exploited to
compromise the system security. The results are surprising: we
have found 12 instances of vulnerabilities caused by data residues.
By exploiting them, adversaries can steal user’s online-account
credentials, access other app’s private data, escalate privileges,
eavesdrop on user’s keystrokes, etc. We call these attacks the data
residue attacks.

To evaluate the real-world impact of the attacks, we have
conducted an analysis on the top 100 apps in each of the
27 categories from GooglePlay. The result shows that a large
portion of the apps can be the target of the data residue attacks.
We have further evaluated the effectiveness of popular app
markets (GooglePlay, Amazon appstore and Samsung appstore)
in preventing our attacking apps from reaching their markets.
Moreover, we have studied the data residue attacks on 10 devices
from different vendors to see how vendor customization can affect
our attacks. Google has acknowledged all our findings, and is
working with us to get the problems fixed.

I. INTRODUCTION

The popularity of Android continues, with more than one
billion accumulated device activations and 81.5% market share
as of 2014, according to the report from IDC [8]. In the
same year, GooglePlay, the official Android market, reached
1.3 million applications (apps, in short) and more than 50
billion downloads [6], [13]. However, the real app engagement
is surprisingly low. A recent study by Localytics in 2014
indicates that 20% of apps are used only once [10]. In addition,
a report from iResearch on China’s smartphone market shows
that 85% of users delete downloaded apps from their devices

within one month, and after 5 months, only 5% of apps
remain [9]. The short lifespan of apps is caused by many
reasons, such as annoying notifications, buggy UI, complex
registration processes, etc. Privacy is also a major cause. For
example, the stand-alone Facebook Messenger app requests
a scary long list of permissions, and according to a poll by
AndroidCentral, which was conducted on more than 7,700
people, nearly one third of users uninstalled the app because
of privacy concerns [4].

These reasons lead to frequent app uninstallation. An
important security question is what will happen if an app
is uninstalled, but its data are not completely cleaned from
the system. This question may not be a major concern on
the traditional computing platforms, because when an app is
uninstalled, its data still belong to the users, and the security
parameters of those data do not change. In Android, when
an app is installed, except in some special situations, a new
user is created. The app will be executed using this new user’s
privileges. When an app is uninstalled, the user will be deleted.
Any data left behind by this app now become “orphans”,
because their owner no longer exists. They may not do any
harm if they stay as “orphans”. However, if they are inherited
or possessed by another app, i.e., another user, there will be
potential security consequences if the “orphan” knows a lot
about its previous owner or still possesses some privileges
of the previous owner. We call the problem caused by these
“orphans” the data residue problem.

The Data Residue Problem The data residue vulnerability
is particularly complicated due to the fact that the residue
might take several forms. During runtime, the system may
store various types of data on behalf of apps, ranging from
app permissions, operation history, user configuration choices,
etc. These data can be files, databases, and in-memory data
structures. They may not be simply data; they can represent
privileges (such as capabilities), i.e., whoever possesses them
can gain additional power. For example, the URI placed on
Android Clipboard by an app gives recipients the capability to
access that app’s private data.

Android has made reasonable efforts to clean up the data
owned by an app during the uninstallation process. However,
given the sheer complexity of the interaction between apps
and the system, which leads to the wide scattering of app
data inside the system, it is very challenging to do a complete
job. Due to these reasons, data residues become very common
in Android. However, having data residues does not neces-
sarily lead to security problems. It remains unclear whether
Android’s existing defense mechanisms and system design are
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robust enough to mitigate the security breach caused by data
residues.

Based on the nature of data residues, we came up with
several interesting hypotheses and questions: (1) Most data in
Android are protected by user ID, so what will happen if the
user ID belonging to the uninstalled app is given to a new app?
(2) What if the system intentionally or unintentionally gives a
data residue to another app? (3) What are potential problems
if a data residue is a capability? (4) What are the conditions
that can make it possible for another app to gain the ownership
of a data residue? Intrigued by these questions and motivated
by some encouraging preliminary discoveries, we launched a
systematic study of the data residue problem in Android.

Our methodology and findings Data residue can happen
in several places, but the residue instances inside Android’s
system services have the highest risk, because developers and
users are hardly aware of their existence, and these services are
privileged. We have analyzed 122 system services in Android
Open Source Project (AOSP) codebase 5.0.1. The analysis is
difficult to be fully automated because it depends on significant
amount of domain knowledge about each specific system
service. Although data residues caused by the lack of data
removal logic are relatively easy to detect, several identified
cases are caused by flawed code logic, the detection of which
requires system-level code understanding and/or sophisticated
experiment design for exploitation. Our ultimate goal would be
developing an automatic detection system to eliminate all data
residue instances from the Android system. In this project,
however, we take the first step towards understanding the
severity of this issue. Therefore, we manually inspected the
source code of Android system services, formulated hypothet-
ical attacks, and then designed experiments to verify whether
the attacks would work or not. Upon failed attempts, we further
examined the reasons behind. This entire process took six
person months to finish.

Our investigation results indicate that the data residue
problem in Android is truly worrisome. From the 122 system
services, we have found 12 data residue instances that can
lead to attacks. The data in each instance serves different yet
security-critical purposes, empowering adversaries to subvert
Android’s built-in protections. For example, we found that
if an app uses Android’s credential management services,
such as AccountManager or Keystore, the credentials
for the user’s online accounts can become data residues
after the app is uninstalled. We designed an experiment to
show that a malicious app can “inherit” these credentials and
therefore completely take over the user’s online accounts.
Many apps use AccountManager. For example, myMail
is a popular email client app, with one million downloads.
It uses AccountManager to store the credentials for all
the email accounts it manages, including Microsoft Exchange,
Gmail, and Yahoo Mail. After this app is uninstalled, our
malicious app can take over all its credentials stored inside
AccountManager, and can successfully log into the user’s
Yahoo Mail, Gmail, and Microsoft Exchange accounts.

Our research also reveals that data residues can lead
to privilege escalation. For example, an app can leave a
maliciously crafted reference (a form of granted privilege)
on Android Clipboard to allow others to access its internal
resource. When the app is uninstalled, the reference becomes

useless, because the targeted resource is not there anymore.
However, the reference is still kept on Clipboard, and hence
becomes a data residue. When a victim app is installed, if
its protected resource matches with the reference crafted by
the uninstalled malicious app, any app on the device can
now use the data residue to access the protected resource
inside the victim app. In our experiments, we have successfully
gained the access to the user’s mailbox in Yahoo Mail, files
stored in OneDrive, and bank statements inside the official
Chase app. The credential residues from AccountManager
and URI residues from Clipboard are only two cases in our
discoveries. In this paper, we will present the details of all the
vulnerabilities and attacks discovered in our research.

To further understand the feasibility of our attacks in
the real world, we tried to upload our attack apps (without
causing real damage) to different Android markets, including
GooglePlay, Amazon and Samsung appstore. We would like to
see whether these markets have adequate defense mechanisms
to make our attacks infeasible. Our results show that most
of our attack apps, with some exceptions, can actually be
published in those stores, indicating that our data residue
attacks have real impact. Moreover, we tried all our attacks on
10 devices from different vendors running different versions
of Android. The high success rate of these attacks indicates
that the device customization made by vendors does not make
their devices more resilient against our data residue attacks.

Google Response As millions of users are at risk because of
the vulnerabilities discovered in our study, we tried our best
to keep the issue confidential. For each identified data residue
attack, we have submitted a detailed report to Google, along
with illustrative videos to demonstrate the attacks and dam-
ages. Google has acknowledged all our findings and labeled 7
of them as medium-priority vulnerabilities. In the meantime,
we are working closely with Google to fix all issues. The status
update for each vulnerability, as well as demonstration videos
and analysis results on real apps, are available at the following
anonymous website [7].

Contributions The contribution of our work is three-fold:

• We have discovered a class of vulnerability, i.e.,
data residue vulnerability, in the Android system. We
have successfully developed attacks to exploit these
vulnerabilities.

• We have conducted a systematic investigation of the
data residue vulnerability on all system services in
Android. Our methodology can be adopted by the
developers of the Android OS to improve its resilience
against the data residue attacks.

• We have also performed a thorough evaluation on the
potential damages of the data residue problem in the
real world.

Roadmap The rest of this paper is organized as follows:
Section II explains the necessary background knowledge and
then formulates the data residue problem on Android. Sec-
tion III describes the methodology used in our systematic
investigation. Section IV shows the discovered data residue
vulnerabilities and the actual attacks. Section V systematically
evaluates the damage scope from three different perspectives.
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Section VI discusses the fundamental causes and potential
defense approaches. Finally, Section VII describes the related
work and Section VIII makes conclusions.

II. PROBLEM FORMULATION

A. Background

The lifecycle of an app on Android devices can be divided
into three stages: installation, interaction and uninstallation.
This section provides a further explanation on each stage.

Installation For security reasons, Android isolates apps from
one another and from the system by assigning them a distinct
Linux User ID (UID) during the installation process. The
UID does not change for the duration of the app’s lifetime
on the device. The system maintains a list of UIDs in use,
and assigns the next available one to the newly installed app.
Device rebooting will force the system to reconstruct the UID
list, so the UIDs of the uninstalled apps will be recycled and
be possibly assigned to the newly installed apps. Android also
creates a private folder for each app in the internal storage, and
since Android 4.4, each app also gets an app-specific region on
the external storage. Android does not require any permission
for an app to access its own directories, but it does require
permissions for sensitive resources. Framework level resources
are granted via filling in the UID to permission map for this
app, while hardware related resources, like Internet, Bluetooth
and SDCard, are guarded by validating app’s Group ID (GID).
Granted permissions enables apps to conduct out-of-sandbox
communication.

Interaction Apps frequently interact with the system and
other apps during the runtime. Such interactions fulfill the
necessity of resource sharing and functional cooperation. Most
of the interactions are managed by Android’s privileged ser-
vices, which expose the low-level functions of the system
(both Android framework and kernel) to the high-level apps.
It should be noted that, even though most of the privileged
services belong to the system_server process, some are
provided by the privileged apps pre-installed in the system
partition. In this paper, unless otherwise specified, we use
system services to refer to the services of both types.

Interactions with system services come with a side effect:
the Android framework actively stores app data inside the
system in a variety of forms with or without app’s awareness.
For instance, the Clipboard service stores apps’ clip data
in memory, while the AccountManager service uses a
database to save user credentials. In these cases, the data stored
by the system services are still owned by and accessible to
the requesting app, which is fully aware of the whereabout
of the data. However, in many situations, apps’ data are
stored in system services without apps’ awareness; these are
mainly for caching and management purposes. For example,
PrintService stores the failed printing jobs in a database.
Although it does that for the benefit of apps, most apps do not
know that their private data are stored somewhere else.

The extensive interaction with the system services results
in app’s data (private or public) being scattered throughout the
system. This makes data cleanup extremely difficult when an
app is being uninstalled. These data are actually well protected
by Android’s access control system when the app is still on

the device, but after it is uninstalled, it is not well understood
what can happen to these data if they are left on the device.
As shown by our research, Android made many mistakes in
dealing with data residues.

Uninstallation Uninstallation requests, which can only
be initiated by the user of the device, are handled by the
PackageManager Service (PMS). PMS first tries to kill the
target app’s process and notifies all the parties that are still
communicating with this app via Android Binder’s “link to
death” facility. PMS then deletes all the app’s private folders,
including the one on the external storage. Files placed inside
the shared folder on the external storage will not be removed
(we do not consider these data as residues, because they are
kept by design). Finally, PMS recycles the UID belonging to
the uninstalled app, but does not reuse it until device rebooting.

Android has two main mechanisms to inform all parties in
the system about the app uninstallation. The first mechanism
is broadcast. After an app is uninstalled, PMS sends out a
broadcast notification to the entire system; any entity can
register for such a broadcast, and take actions upon receiving it.
The second mechanism is called PackageMonitor, which
monitors the status of the packages in the system. System
services can use it to trigger their reactions when an app’s
installation status is changed. Both mechanisms can be used
by system services to clean up data residue, but they are not
widely used, causing many data residues in the system.

B. The Data Residue Problem

Given the fact that apps usually have sensitive data stored
in scattered places inside the system, it is of paramount
importance to notify all corresponding entities for data cleanup
upon app uninstallation. Android strives to provide such a
guarantee by deleting app’s private folders when an app is
uninstalled, but this is only the easy part; the challenging part
is the data stored in system services.

What can go wrong Many things can go wrong in dealing
with data residues. First, as the residue removal logic is not
mandatory in the design of system services, not all system
services take the responsibility to remove data when an app
is uninstalled. For example, DownloadService is not even
aware of the app uninstallation, because it does not register
any handler to listen to the uninstallation event. Second,
some services do try to delete data residues, but fail to do
a complete job. For example, PrintService does react to
the uninstallation event, but it does not clean up the failed-
printing records made by the uninstalled app. Third, some
system services try to find a new owner for data residues,
without understanding the potential security consequences.

What makes the situation even worse is that multiple
parties can jointly create data residues, and it is unclear
who should take the responsibility to remove them during
the app uninstallation process. For example, when users need
to select a printing app to handle the printing job on the
device, they trigger the Settings app, which sends a request
to PrintService for the configuration update. In this
case, three parties are involved: user, the Settings app and
PrintService, but when the printing app is uninstalled,
nobody takes the responsibility to remove the configuration
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Fig. 1: Methodology of Data Residue Study on Android System Services

entry, which now becomes a residue. This latter residue allows
a newly installed app with the same package name to become
the device’s default printing app, without user’s approval.
Another similar residue instance comes from TextService,
which allows malicious apps to monitor user’s keystrokes.

Android’s UID-permission security architecture prevents
unauthorized access to the data saved in system services, but
no study has provided a thorough understanding on whether
such a protection is still effective after the data’s owner is
uninstalled. We would like to fill this void by performing a
systematic study to reveal the data residue instances in Android
and understand their security consequences. We exclude the
data intentionally left on devices, such as app’s backup data
and files on the shared external storage.

Assumption To conduct each attack, we assume the presence
of a malicious app installed on the victim’s Android devices.
These apps do not need special privileges. Actually, in all the
cases that we have discovered, the malicious app only needs
a subset of the target app’s permissions to perform the attack.

III. METHODOLOGY

We conducted our study in two phases: data residue harvest
and damage evaluation. Figure 1 depicts the flow of our
methodology.

Data Residue Harvest To uncover data residues, we look
at two types of services, i.e., system services and the services
in pre-installed apps, because both of them are privileged. We
collect all available system services using the dumpsys utility
provided by the Android Debug Bridge (adb). At the same
time, we collect pre-installed apps’s services by parsing their
manifest files. We only focus on the services that are declared
as exposed (private services are not accessible to other apps).

We manually analyze the source code of these services
to identify data residues. Though static analysis seems like
an alternative solution, the existing tools [3], [16], [42], [44]
mostly stay at the app level and emulate system behaviors
based on extensive domain knowledge on Android framework.
In our analysis, the focus is on system behaviors, not on apps.
Each system service behaves differently and requires its own
domain knowledge, and manual code inspection seems like
the best option to gain this knowledge. Moreover, a significant
percentage of system services are written using a mixture of
Java and C++ code, making automatic analysis even more
difficult. Similarly, dynamic analysis [27], [37] does not fit
our need either, as we have to manually identify all events
that could trigger data residue and the conditions could be a
combination of flaws from multiple system services. Given the
small number of system services that we have to study, manual
analysis turns out to be a more viable approach.

Our manual analysis is conducted based on the following
two insights. First, we have observed that system services are
meant for serving multiple apps, so the data collected from
each app are clearly organized based on the owner app. This
is also necessary for protection, so one app cannot use the
data from another app. Files, database, and well-marked data
structures (e.g. Hashmap) are used to store app-specific data.
Using this clue, we focus on these data structures and File APIs
(which also cover database accesses). Second, the awareness
of app uninstallation is another clue. If a service is unaware of
app uninstallation, any saved data naturally become residue.
We also systematically examine corner situations that may
subvert data cleanup logic, like the AccountManager case
in Section IV-A.

Damage Evaluation Having data residues does not nec-
essarily lead to security breaches, as long as the data are
well guarded and the protection is still effective even after
the owner is uninstalled. Though such a lifetime protection
is theoretically feasible, Android seems to be confused in
identifying the rightful owner of the residues. The main cause
of the confusion is the implicit assumptions that Android
made in its design. One of such assumptions made by system
services is that app’s identities are unique; so two entities with
the same identity (e.g. UID or package name) should belong
to the same app. It turns out that this assumption does not
hold when the state of the device changes. Our study attempts
to unveil these implicit assumptions and more importantly
examine their validity. We consider three operations that can
lead to device state changes: device reboot, app installation
and app uninstallation. We create scenarios to make those
assumptions false, and see how Android handles the data
residues in these conditions.

Once a data residue instance is found to be exploitable, we
conduct real-world attacks to measure all possible damages.
The design of each attack builds upon the architecture derived
from a comprehensive list of data operations. Inspired by the
read, write and execute permissions on the traditional UNIX
file system, we naturally test the accessibility, modifiability
and utilizability on each instance. One notable insight is that,
by the time of the exploit, the data owner has been uninstalled
already, thus, malware will be less interested in altering the
data content. However, it is of great importance to evaluate
whether the data residue, which was initially associated with
the uninstalled app, can be re-associated to another app.

IV. ATTACKS

We conducted our study on Android Lollipop (version
5.0.1) with a collection of 122 candidate service samples, in-
cluding 96 system services and 26 public system-app services.
The entire examination process (which took 6 person months)
includes data residue harvest and damage evaluation. Table I

4



Samples
(# Total/Candidate/Residue)

Category Service Instances Residues Exploitable

System Services
(96/96/10)

System-app Services
(161/26/2)

Credential Residue AccountManager User Credentials 3

Keystore Public/Private Keypairs 3†

Capability Residue Clipboard URI 3

ActivityManager PendingIntent 7

Settings Residue

TextService

User Selected
Components

3

DebugService 3

DreamService 3

TrustAgent 3

LocationManager 3

History Residue PrintService Print/Download 3

DownloadService Information 3†

Permission Residue PackageManager Permissions 3
† Resolved on Android Lollipop, but reproducible on KitKat and prior versions

TABLE I: Worrisome Data Residue Situation on Android System Services

summaries the study results. We are able to identify 12 data
residue instances, which account for 10% of the candidate
services. Technically, two of these 12 instances should be
considered as “re-discovered”. Apparently, Android Lollipop
tries to fix the security problems caused by the residues in
the Download service and Keystore service, and its inline
comments led us to reproduce the attacks on Android KitKat
and prior versions. Such discoveries would not be possible
without analyzing the code. Those patched vulnerabilities, on
one hand, imply Google’s awareness of particular data residue
instances. On the other hand, they demonstrate the challenges
involved in automating the detection process, as Google fails to
address all instances. Due to the lack of a full understanding
of the data residue problem, Google even repeated the data
residue vulnerability in the newly introduced system service
called TrustAgent.

Based on the intention of the data, we group all residue
instances into five categories: Credential Residue, Capability
Residue, Settings Residue, Permissions Residue, and History
Residue. For each category, we examine its accessibility, mod-
ifiability and utilizability. The examination process starts with
the residue detection, followed by hypotheses, and eventually
leads to individual experiment design. Since most of the data
residue instances identified were previously unknown, there
is no existing attack. Therefore, we designed experiments to
demonstrate the feasibility of exploits and show the potential
damage. To make attacks more realistic, as an important prin-
ciple in our experiment design, we avoid declaring suspicious
permissions in the attack apps. Actually, apps with desired
capability already exist in various app stores, as shown in
Section V, although they are not attempting any attacks simply
due to the lack of knowledge on the vulnerabilities discussed
in this paper.

In the following subsections, we will explain the technical
details of each attack and our experiment results. For the
successful attemtps, we further discuss their preconditions and
feasibility in real-world scenarios. Besides that, failed attacks
are also important pieces in our research process, as they show
how we systematically evaluate the potential damage for each
data residue instance. Despite the negative results, all failed
experiments are based on valid assumptions, and the insights

we learned from them are valuable.

A. Credential Stealing

The popularity of client-server apps on mobile platforms
brings in necessity in supporting secure authentication and
communication at the framework level. In response, Android
uses a system service called AccountManager to manage
user’s online account credentials; it uses another system service
called Keystore to store the public/private Keypairs for
secure communication. Both services store the user credentials
on behalf of apps. Although Android carefully restricts the
access to these sensitive credentials, both system services are
vulnerable to the data residue attack.

1) AccountManager: There are normally two ways for
Android apps to authenticate users’ online accounts. The first
approach requires the client app to provide its own login
activity for users to type username and password. This is
a concern if the client app and the server do not belong
to the same party. Android provides an alternative approach
using the AccountManager framework, so the client app
can be authenticated to the server without knowing the user’s
credentials.

In this framework, the actual authentication is handled by
authenticators, which are installed on the device as trusted
apps. Each authenticator defines the account type it can
support. For example, in Figure 2, App A is an authenti-
cator app that declares the account type “XYZ”. The client
app sends requests to AccountManager with the account
type it wants to authenticate with. The account type allows
AccountManager to select the corresponding authenticator.
In response, AccountManager presents a consent UI to
the user with information of the requesting app and the
authenticator. After user approval, if the corresponding account
has not been set up yet, AccountManager invokes the login
activity within the authenticator app. The user enters username
and password once per account into the authenticator, which
conducts the actual authentication logic with the remote server.
Upon a successful authentication, the authenticator usually
returns an OAuth token to AccountManager, which further
forwards the token to the requesting app.
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Fig. 2: Android’s Protection on Accounts and Keypairs

To avoid asking the user to type his/her credentials re-
peatedly, authenticators often save the user credentials in
AccountManager. For future authentication requests, au-
thenticators directly retrieve the saved user credentials from
AccountManager without launching the login activity
again. The authenticator that saves the credentials for a
particular account is considered as that account’s owner.
AccountManager only gives the credentials to their rightful
account owner, not to others. In Figure 2, although App B
declares the required permissions and even the same account
type as App A, its UID does not match with the account
owner’s UID record in AccountManager, so if B tries to
get the credentials of the account “XYZ”, AccountManager
will deny it.

A-1. Individual Authenticator - No Residue

Because sensitive user credentials are saved by
AccountManager on behalf of the authenticator, it is
important to know how the authenticator saves account
credentials and whether they will be cleaned up after the
authenticator is uninstalled. We designed our experiment
targeting a popular app called myMail, which has millions of
downloads from GooglePlay. This app provides authenticators
for a number of accounts, such as Microsoft Exchange
and Yahoo. We have observed that passwords for these
accounts are saved in plaintext inside AccountManager.
Many other apps, such as MeetMe (with 10 million
downloads), have a similar behavior. This is not a concern
since AccountManager is trusted and the credentials are
protected. Moreover, when the authenticator app is uninstalled,
the credential data are cleaned up. AccountManager does
so by checking whether the account type still has a valid
owner, and if not, the related data will be deleted. Therefore,
it seems that there is no residue problem.

A-2. Duplicated Account Type - Successful Attack

AccountManager only deletes the credential residue
if its associated account type does not have a valid owner.
The interesting question is whether two unrelated apps could
declare the same account type, and if so, whether that can
prevent AccountManager from removing user credentials.

Experiment Design We still targeted the myMail app, which
declares an account type called com.my.mail. We wrote a
malicious authenticator app, which declares the same account
type. We installed myMail first and then our malicious app.
Interestingly, at this stage, only the first installed authenticator
(myMail) is considered as the owner of that account type,
and will be in charge of future requests to that account type.

Naturally, it can directly access that account’s credentials; the
same access from our malicious authenticator app will be
denied by AccountManager’s protection mechanism.

We then uninstalled myMail. Surprisingly, Android makes
our malicious app the owner of the account type, enabling it to
retrieve the user credentials for all the email accounts set up in
myMail, essentially letting our app inherit myMail’s creden-
tial residue. This security breach is in AccountManager’s
cleanup logic, which checks whether the account type to
be cleaned up is declared by anyone else; if one is found,
AccountManager makes it the new owner of the account
type. The underlying assumption is that, those who declare the
same account type should belong to the same party (e.g. apps
with the same signature). Unfortunately, this assumption is not
guaranteed.

It should be noted that even if myMail only saves the
hash value of user credentials, it does not help much; be-
cause the attacker can simply copy the information into the
AccountManager’s database in his/her own rooted device.
As long as the app server does not associate hash value with
the device, attacker can still get control over the entire account.
Actually, myMail saves the hash of user’s Gmail account
password, but we were still able to login to that Gmail account
by replicating that hash value onto a different device.

Discussion In order for the above attack to succeed, the
malicious authenticator needs to be installed after the target
one. This constraint is greatly relaxed, as each authenticator
can declare multiple account types, empowering one malicious
app to target multiple authenticators using one codebase. Once
the precondition is met, the malicious authenticator can behave
normally until the target one is uninstalled. Actually, we have
observed significant improvements in AccountManager’s
security specification in the upcoming Android Marshmal-
low [1].

2) Keystore: Android Keystore provides and stores
strong cryptographic keys to/for apps during the runtime; it
keeps tracks of the keys’ ownership using the app’s UID, so
an app cannot get other apps’ keys. In Figure 2, a Keypair
named “ABC” is created for app A with UID 10050, thus
App B cannot access the pem file because of UID mismatch.
Unfortunately, Android fails to clean up the Keypair after an
app is uninstalled. As a result, we suspect that, if a newly
installed app has the same UID as the one uninstalled, it may
be able to get the Keypair.

Experiment Design Android Lollipop does clean up the
Keypair residue correctly, but its inline comments lead us to
believe that the cleanup was incorrectly implemented in prior
versions. To confirm that, we switched to KitKat. We first in-
stalled Microsoft Remote Desktop app on the device,
which has Microsoft Azure Active Directory Authentication
Library (ADAL) embedded [2]. ADAL provides the support for
Work Accounts to third-party Android apps. Internally, the app
relies on Android Keystore to save app specific self-signed
certificates and uses asymmetric cryptography to protect the
session key for encryption and keyed hash. The Keypair gen-
eration is triggered when users sign in to Microsoft Azure. We
then uninstalled Microsoft Remote Desktop. It turns
out that KitKat does not delete the Keypair. After rebooting
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the device, we installed our malicious app and were able to
get the same UID as the one uninstalled. As a result, our app
is able to steal the Keypair left by Microsoft Remote
Desktop. Similarly, if our malicious app is installed first and
then uninstalled, followed by the installation of Microsoft
Remote Desktop, ADAL will always use the Keypair that
the malicious app intentionally left inside Keystore.

Discussion The attack above requires the malicious app and
its target one to share the same UID after device reboots.
However, since the Keypair residue will be kept on the device
unless user resets the phone, the incubation period can be quite
long. Moreover, Android does not requrie any permissions
from the apps to use the Keystore feature, allowing apps
to easily hide their malicious intention.

B. Capability Intruding

To provide richer user experiences, it is necessary for
apps to share resources and functionalities. However, the UID-
based access control makes such sharing difficult, because an
app’s privilege is decided by its UID, which does not change.
Capability-based access control is a better choice for achieving
sharing. A capability is a token/ticket, which allows its holder
to conduct an operation on a particular object, regardless of
who the holder is, as long as it is a rightful holder. Because
a capability does not bind to any specific subject, it can be
delegated to another app, and therefore achieves the sharing
purpose. File descriptors are examples of capabilities enabling
the holder to conduct operations on files. File descriptors can
be passed from a process to its child process, or from one
process to another unrelated process using the Unix Domain
Socket.

Building upon the capability mechanisms provided by the
underlying Linux kernel, Android introduces two types of
capabilities at the framework level, one for data sharing and
the other for functionality sharing. (1) The most common way
to share data on Android is via content provider. Content
providers manage the access to a structured set of data, and
they are the standard interface that connects data in one process
with code running in another process. Underneath the imple-
mentation, the sharing is achieved using file descriptors, passed
to another process via the Unix Domain Socket. However, at
the framework level, Android abstracts out the low-level details
and presents content provider data to external apps with URI
references. Each URI reference consists of two parts: authority
and path. Authority uniquely identifies the content provider
on the device, and path points to a specific table inside the
database. Therefore, URI reference serves as the framework-
level capability. (2) Functionality sharing enables one app to
interact with another app, allowing the first app to leverage the
functionality of the second one. Android uses binder token as
the capability to enable such interactions. Direct use of binder
token is allowed but not easy inside apps, so Android provides
a framework-level abstraction called Intent, which is built on
top of binder and more convenient to use.

Just having capabilities is not sufficient for sharing; An-
droid needs a convenient way to delegate them. Instead of
using the low-level Unix Domain Socket mechanism, Android
implements three high-level delegation channels. (1) Intent
is the most common carrier for capability delegation, and

it encapsulates the capability inside its payload section. (2)
Binder token itself can also be used for delegation. (3) Another
way is Android Clipboard, which allows an app to share the
URI capability with multiple recipients.

The extensive usage of capability delegation in Android
can potentially lead to data residues, i.e., the capability held by
the recipients may remain inside the system even if its owning
app has been uninstalled. Handling these capability residues
correctly is extremely important; if not carefully handled, these
seemingly “dead” capabilities may be “revived” by malicious
apps, and used to escalate their privileges. We systematically
examined six combinations of two capability types (URI and
binder token) and three delegation channels (Intent, binder
token and Clipboard). Two combinations are invalid: Android
does not support putting binder token on Clipboard, and
sending URI reference via binder token does not actually
delegate the capability. Among the four valid combinations,
one of them is subject to the data residue attack. Even for the
failed ones, we would like to answer why they failed, because
such information is beneficial to future development.

B-1. URI on Clipboard - Successful Attack

Android provides a clipboard-based framework called Clip-
board for copying and pasting. It supports both simple and
complex data types. During the copying, simple text data are
copied directly to Clipboard; complex data must be stored in a
content provider, and its URI reference is copied to Clipboard.
Basically, by placing a URI reference on Clipboard, an app can
share its data with other apps. An interesting question is what
will happen to that URI reference after the app that owns the
data is uninstalled. As mentioned before, a capability contains
an object ID that identifies the resource associated with the
capability. In the URI case, the object ID is authority, which
is the ID for identifying content providers. Android ensures
that an app can only place a URI on Clipboard if it can access
the content provider. After the owner of the content provider
is uninstalled, obviously, the content provider is deleted as
well, so the URI capability refers to a content provider ID
that does not exist anymore. Our hypothesis is that if a newly
installed app uses the same provider ID as the one that has just
been uninstalled, the URI residue on Clipboard may be used to
access the content provider in this new app. If this hypothesis
is true, it can be used to attack newly installed apps.

It should be noted that Android does not allow two apps
to declare the same content provider ID on the same device,
so the ID is unique. However, if the one who declares an ID
is uninstalled, the newly installed app can declare that ID.
Thus, the uniqueness is maintained at any point of time, but
not throughout a duration. This fact will be the basis for our
attack experiment.

Experiment Design In our experiment design, we tar-
get the email content provider inside Yahoo Mail app,
which has more than 100 million installs from Google-
Play. The app sets its email provider as private, but with
grantUriPermissions flag set to true. This means other
apps cannot directly access the email provider, but Yahoo
Mail can create a URI capability, and pass it to the authorized
apps, allowing them to access the emails inside the provider.
Our objective is to forge a capability, so we can access the
emails in Yahoo Mail, without being authorized.
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Fig. 3: Yahoo Mailbox Intruding

Our experiment involves two malicious apps, App A and
its companion App B. App A needs to be installed before
the Yahoo Mail app is installed. In App A, we create a
content provider that has the same authority (i.e., ID) as the one
used in the Yahoo Mail app. App A then constructs a URL
capability for this content provider, and places the capability on
the Clipboard. At this moment, whoever retrieves the capability
from the Clipboard can access App A’s content provider. This
step is depicted in Figure 3 using solid lines with a sample URI
value on the Clipboard. Now, App A’s job is to keep annoying
the user, so eventually it is uninstalled by the user. However,
the capability residue is still on the Clipboard.

We then installed the Yahoo Mail app. After the in-
stallation, inside the companion app B, we retrieve the URI
from the Clipboard and resolve it. Interestingly, we are able to
successfully access the emails inside the Yahoo Mail app,
as shown in Figure 3 using dash lines. This is because the
ID for Yahoo Mail’s email provider is exactly the same as
the one used in App A, and Clipboard mistakenly associates
the capability residue with the newly installed content provider.
This is a security breach; essentially, a capability can be forged
with the help of Clipboard.

Discussion There are two preconditions for this attack to suc-
ceed. First of all, a malicious app and its companion app have
to be installed on the device before the target one. Although
this requirement seems to be relatively strong, it still has the
chance to be met in practice, as Android Clipboard is publicly
accessible with no permission requirements. Moreover, the
malicious app can also declare multiple authorities to increase
the target scope. The second precondition is that, the target
app must be installed on the device after the malicious one
is uninstalled. Its likelihood depends on the lifespan of the
residue data on Android Clipboard. As long as the installation
of the target app happens before another copy operation is
performed or the device is rebooted, this precondition can be
true. Despite all exploit efforts involved, the existence of such
capability residue endangers users’ privacy.

B-2. URI in Intent - Failed Attack

URI reference can also be passed to another app using
Intent. Therefore, it is intriguing to see whether the above
attack works for this delegation channel. We repeated the
previous experiment on the Yahoo Mail app, but this time,
the capability residue is the URI reference sent from App A to
App B. Interestingly, the attack failed. A further investigation
reveals the subtle but significant difference between these two
delegation channels. When a URI capability is sent using
Intent, the capability will be bound to the UID of the sender.
Namely, the object ID on the capability consists of a tuple: UID
and content provider ID. In the Clipboard case, capability is not

bound to UID, so it only consists of the content provider ID,
making re-association to different UIDs possible. Therefore,
to succeed in the attack using the Intent channel, the Yahoo
Mail app has to be assigned the same UID as App A. As we
mentioned before, this is possible, but it requires a system
reboot. Naturally, the URI capability, which only exists in
memory, will be naturally cleaned up when system reboots.

We further find out that Android supports persistent URI
capability, which is saved on disk, and can thus persist after
rebooting. Android does a good job cleaning up this form of
capability when its owner is uninstalled.

B-3. Binder Token in Intent - Failed Attack

Apps usually do not pass binder tokens directly via
Intent, unless the token is a PendingIntent. By giv-
ing a PendingIntent to another app, the grantee al-
lows the receiver app to perform the specified opera-
tion using the grantee’s permissions and identity. Basically,
PendingIntent serves as a capability for delegating priv-
ileges. PendingIntent is quite useful in Android’s notifi-
cation framework: apps need to provide a PendingIntent
when sending a notification to the system; upon user’s click on
the notification, Android fires an intent using the app’s identity
(not its own), avoiding potential privilege escalation.

After an app sends a PendingIntent to another app,
and it gets uninstalled, the PendingIntent will become
capability residue. It is interesting to see whether the residue
can be used for attacking newly installed apps, like what we
did in the Clipboard case. It turns out that although the residue
is still left in the system, Android disables the capability when
its owner is uninstalled. Therefore, the attack fails.

B-4. Nested Binder Tokens - Failed Attack

In Android, apps can also pass a binder token (a form of
capability) directly through the existing binder channel. Our
investigation question is whether the binder token remains
effective even if the creator has been uninstalled. We designed
an experiment with App A binding to App B’s service, and thus
establishing a binder transaction channel. After that, another
binder token created by App A is passed through the channel.
However, as we find out, as soon as App A is uninstalled,
the binder token becomes invalid. Android does a good job
in cleaning up all the binder tokens that are delegated by the
uninstalled app.

C. Settings Impersonating

As an open platform, Android offers a variety of extensible
frameworks for third-party apps to provide system-level func-
tionalities. An example is the Spelling Checker Framework,
which can collect user keystrokes and then rely on a thrid-party
app to provide spelling suggestions. As shown in Figure 4,
App ABC provides the spell checking functionality using the
internal service “xyz”.

Since multiple apps providing the same functionality can
coexist on the device, the user must explicitly choose one (i.e.,
setting the preferences) through the Settings app. Preferences
are saved in a persistent storage in the form of name-value
pair. In Figure 4, when the user chooses App ABC as the
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Fig. 4: Android’s Protection on Settings Configurations

spell checker, the preference is saved as a combination of
the functionality name “Spell Checker” and the service’s
component value “ABC/xyz”.

Android prevents third-party apps from directly accessing
security-critical settings. The protection is based on signature-
level permissions, and is performed by the permission Refer-
ence Monitor (RM) in the framework, as shown in Figure 4.
This way, the integrity of the settings is preserved. During the
runtime, the system retrieves the preference from the storage,
looks up the selected app component, and then authorizes it
for privileged operations. A natural question is that, after the
selected app is uninstalled, whether its corresponding setting
will be deleted, and if not, whether these settings residue can
be used for malicious purposes.

We systematically studied all system services that save
settings, and found five data residue instances. Due to the page
limitation, we only discuss two representative cases to show
how the attack works.

C-1. TextService

Android TextService is responsible for managing spell
checkers on the device; it delivers text inputs to the selected
app for spell suggestions. The user needs to select an app as
the system’s default spell checker, and the selection, which
includes a package name and a service name, is saved as an
entry in settings.db. TextService uses this entry to
find the selected spell-checker app during the runtime.

After the selected spell-checker app is uninstalled, however,
Android does not delete the saved entry from settings.db,
so the entry becomes a data residue. Our hypothesis is that,
a newly installed app with the same package name and
service name can be automatically selected as the default spell
checker, without user’s approval. Our experiment confirms this
hypothesis. Namely, if the user uninstalls the default spell-
checker app, a newly installed app with the same package
name and service name will be given all the keystrokes typed
by the user, including passwords, credit card numbers, etc.

C-2. TrustAgent

The TrustAgent system service, introduced in Android
5.0.0 (Lollipop), provides support for automatic screen unlock-
ing when the environment is trusted. TrustAgent relies on
an app, called trust agent, to decide whether the environment
of the device is trusted or not. For example, users can choose
the work place as a trusted environment, so once the trust

agent detects that the device is in the work place, it notifies
the TrustAgent service, which asks the system to relax
the security restriction on the device, such as temporarily
bypassing the lockscreen.

Users need to explicitly enable a trust agent us-
ing the Settings app. This user preference, consist-
ing of the trust agent’s package name and service
name, is saved in LockSetting.db maintained by
LockSettingService. When the selected trust-agent app
is uninstalled, it becomes unclear whether TrustAgent or
LockSettingService should take the responsibility to
remove the corresponding entry from LockSetting.db.
It turns out, nobody takes the responsibility, and the entry
becomes a setting residue. Our experiment shows that after the
uninstallation of the selected trust agent, any newly installed
app can automatically become the trust agent if it has an iden-
tical package name and service name as the one uninstalled.

At the current stage, only the app with system signature
can be used as a trust agent. Therefore, the above data residue
attack does no harm, because the “attacking” app needs to be
a system app, which is considered trustworthy. In the future,
if Android decides to relax the system-signature restriction on
trust agent, this setting residue problem, if not resolved, can
lead to damages.

C-3. Other Instances

Several other settings residue instances were identified in
our study as well, including debug app, mock location and
device dream. The exploiting experiments follow similar pat-
terns to TextService and TrustAgent. Since the debug
app and mock location features are mainly for app testing
purpose, we leave out the exploiting details from the paper.
In contrast, dream is a screen saver launched when a device
is being charged and is idle. Different from Desktop screen
savers, Android allows the dream screen to be interactive.
Thus, the dream setting residue becomes a perfect candidate
for conducting phishing attacks. We designed an attacking
experiment to exploit the DreamService residue through
targeting the Airbnb app (10 million installs on GooglePlay). In
its dream screen, the Airbnb app shows different attractions.
We designed a malicious app, namely Nightmare, with the
same dream component name, but faked Airbnb login screen
as the dream screen. With the same attack flow, Nightmare
is automatically enabled as the dream provider, and is thus
capable of stealing user’s Airbnb account credentials through
phishing techniques.

Discussion All attack instances mentioned above requires a
malicious app to be installed after the target one is removed.
This is very likely to happen in practice for two reasons.
Firstly, any apps can claim to provide the aforementioned
functionality without permission restrictions. Secondly, the
residue data will persist in the database and never expires.

D. History Peeking

Android provides system support for commonly used fea-
tures, such as printing and downloading. For example, an
app can send a document to the system for printing. The
Print framework considers each request as a “job”, and tracks
its status. Such history information is saved mainly for two
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reasons. First of all, apps may be interested in checking the
status of their requests. Secondly, system has to schedule
concurrent requests from multiple apps. With various history
records spreading all over the Android framework, it would
be interesting to know whether these records will be cleaned
up after their owners are uninstalled. Our study uncovered
three exploitable history residue instances. While the exploit
on print record and download history follow the same pattern
as for the Keystore in Section IV-A2, the process to steal
print content is identical to Settings impersonating attacks in
Section IV-C. Due to the page limit, we exclude the discussion
on their preconditions.

D-1. Print Record

The Android system starts a printing job upon receiving a
request from apps. The lifecycle of each printing job includes
the following states: created, queued, started, blocked, com-
pleted, failed, and cancelled. Information about the printing
jobs will be saved until they are completed or cancelled. If a
printing job is failed or not completed, information about this
job will be kept in the system, even after the app is uninstalled.
Android protects the access to the printing history using the
initiating app’s UID, so it’s the only app that can access the
information. We suspect that, if a malicious app gets the same
UID, it will be able to access the information.

Experiment Design We designed an experiment to test our
hypothesis. At the very beginning, Adobe PDF Reader app
initiates a printing request to the Google Cloud Print
app, but we intentionally cut off the network connection,
making the printing job fail. After Adobe PDF Reader is
uninstalled, we reboot the device, and install our malicious
app called MyPrint. This app will be assigned the same UID
as Adobe PDF Reader. We have observed that MyPrint
can successfully get the records of all the failed printing jobs
created by Adobe PDF Reader. Moreover, MyPrint is
also capable of cancelling or restarting the failed printing jobs.

D-2. Print Content

In the Android framework, the actual printing task is
delegated to third-party printer apps. Such a framework ac-
commodates different requirements from printer vendors, such
as Canon, HP or Samsung. The user chooses which printer
app should be used for printing a particular document. Once
a printing task is started, it is associated with the selected
printer app’s component name. We suspect that, if the printer
app is uninstalled, a newly installed app with the same printing
component name will be able to access the failed printing jobs.

Experiment Design Our experiment setup is the same as
above, except that we uninstall the Google Cloud Print
app instead. After that, the user installs another app named
CustomPrinter, which has the same printing component
name as Google Cloud Print. When the user restarts
the failed printing job, the task is actually carried out by
CustomPrinter, allowing this app to access the content
of the document.

D-3. Download History

Android keeps each app’s download history in the
Download content provider. Each entry corresponds to a

completed download request, and is mapped to the UID
of the app that initiates the download, so an app is only
allowed to access its own downloaded files. Apps can specify
the location for storing the downloaded files, or a default
directory in the system’s Downloads app will be used. Until
Lollipop, Android does not delete those downloaded files when
their owner apps are uninstalled. We suspect that, a newly
installed app with the same UID can gain the access to the
files downloaded by their previous owner. Our attack only
considers files downloaded to the default location (/data/data/-
com.android.providers.downloads/cache/); files downloaded to
shared folders are public and already accessible to other apps.

Experiment Design We designed our experiment on Android
KitKat to target the DuckDuckGo app, which is available on
GooglePlay with one million installs. It allows users to search
information online and download files. Since the download di-
rectory is not specified, all the downloaded files will be stored
inside the default location. After uninstalling DuckDuckGo,
we reboot the device, and install our malicious app, which gets
the same UID as the previously uninstalled DuckDuckGo app.
As it turns out, our malicious app can access the contents of
all the files downloaded by the DuckDuckGo app.

E. Permissions Regaining

Android normally assigns each app a unique UID during
the installation, but there are exceptions: apps declaring the
same sharedUserId value will share the same UID upon
successful certificate checks. In this case, permissions granted
to these apps are combined to form a “permission pool”, and all
apps share the same set of permissions from this pool. If an app
is updated to a new version with a different permission set (user
approval is needed), the “permission pool” will be updated
accordingly to add the newly granted permissions, but the ones
only declared by the older version (not in the updated version)
are not removed, resulting in permission residues. Moreover,
when the app is uninstalled, only the permissions declared in
the updated version are removed from the “permission pool”,
which creates a path for privilege escalation.

Experiment Design In order to verify the potential per-
mission residue attack, we designed a sample app named
ContactViewer, which declares the sharedUserId
“uid.share” and requests the READ_CONTACTS permission.
An updated version comes with the same sharedUserId
value but without requesting any permissions. As we men-
tioned above, our experiments show that the app still has the
READ_CONTACTS permission. We then installed another app
named ContactSearch with the same sharedUserId
value and signature as ContactViewer. Without request-
ing any additional permissions, it naturally inherits the
READ_CONTACTS permission granted to “uid.share”. We then
uninstalled ContactViewer. Android is supposed to remove
all the permissions granted to ContactViewer, but as it
turns out, ContactSearch can still access the contacts
database, indicating that it still holds the READ_CONTACTS
permission residue introduced by the first version of the
ContactViewer app. The permission residue can result in
over-privileged apps on the device.

Discussion To take advantage of this privilege escalation
channel, two apps with the same sharedUserId value
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Attack Instances Account Clipboard Download Dream Keystore Permission Print Spell Checker
I: Analysis on Real-world Applications

# Targets 131 92 17 24 63 55 49 16
II: Examination on Essential Attributes

Attributes account type authority UID package UID sharedUserId UID/package package
III: Measurement on Device Customization Influence†

LG Nexus 4 5.1.0 3 3 7 3 7 3 3 3

Galaxy Nexus 4.3 3 3 3 3 3 3 N/A1 3

ASUS Nexus 7 (2013) 5.1.1 3 3 7 3 7 3 3 3

Samsung Nexus S 4.1.2 3 3 3 N/A1 N/A1 3 N/A1 3

LG Nexus 5 5.0.1 3 3 7 3 7 3 3 3

Samsung Tab 10.1 4.0.4 3 3 3 N/A1 N/A1 3 N/A1 N/A2

HuaWei Y321 4.1.2 3 3 3 N/A1 N/A1 3 N/A1 N/A2

Moto X (2014) 5.0.0 3 3 7 3 7 3 3 3

Samsung Note 8.0 4.4.2 3 6 3 3 3 3 N/A1 N/A2

LG G3 5.0.0 3 3 7 3 7 3 3 N/A2

† N/A1: feature Not Available because of the low Android version; N/A2: feature Not Available because of the vendor customization.

TABLE II: Impact of Android Data Residue Vulnerability in Practice

should coexist on the device. Actually, it is quite common for
developers to submit multiple apps to the appstore. According
to [5] in 2011, the average number of apps submitted per
developer is 6.6 in the Android Market. With the recent auto-
update feature on Android, the exploit likelihood increases.

V. EVALUATION

In this section, we evaluate how the data residue attacks
may potentially affect the real world. To this end, we plan to
evaluate (1) the impact of the attack on real-world apps, (2)
the feasibility for the malicious apps to be uploaded to app
markets, such as GooglePlay, Amazon Appstore and Samsung
Appstore, and (3) how the vendor customization affects the
attack. Since the damage of the mock-location residue and the
Debug setting residue is marginal, we exclude them from our
analysis. Our evaluation results are summarized in Table II. In
the rest of this section, we report the details of our evaluation.

Analysis on Real-world Apps We perform a large-scale
analysis on 2,373 unique apps (top 100 free apps in 27
categories) collected from GooglePlay in March 2015. Our
static analysis is built upon the AndroGuard framework [3]
and consists of two steps. The first one is to detect apps
with the usage of Android system services that are vulnerable
to the data residue attacks. This can be done by matching
specific permission and component declarations from apps’
manifest files or Android APIs from decompiled source code.
For instance, the declaration of a service component listen-
ing to SpellCheckerService-typed intent action with
BIND_TEXT_SERVICE permission requirement makes this
app a spell checker. The second step is to examine whether
the triggering conditions can be applied to this particular
app. To illustrate, consider the DownloadManager service.
We flag an app as providing the download functionality if
the DownloadManager.enqueue() API is found in its
codebase. However, in order for it to be exploitable, the app
needs to save the downloaded files in the default directory. As a
result, we further excluded apps with APIs that can customize
the download directory.

The final results in Table II(I) indicate that numerous
Android apps can be affected by the data residue vulnera-
bility. As each app comes with millions of downloads, the
damage is quite significant. Among these apps, 131 apps
act as authenticators and 63 apps use Android Keystore,
so if they are uninstalled from the device, user’s creden-
tials can be stolen by adversaries. Another attack with se-
vere damages is the capability intruding attack via Android
Clipboard. This attack requires the target app to contain a
content provider with the grantUriPermissions flag
set to true. In our analysis, 92 apps satisfy this require-
ment, and can be the victim of the data residue attacks.
The data that can be leaked are quite sensitive, including
files in the cloud (OneDrive, Box, Dropbox Photos),
financial statements (Chase, Walmart, Progressive),
social information (Tango, Contacts+), etc. Moreover, the
settings impersonating attack affects 40 apps, including 16
spell checkers and 24 dream providers; the history peeking
attack affects 66 apps, including 17 apps due to the download
feature and 49 apps due to the printing feature.

Assessment on App-store Defense A closer look at all
the data residue instances reveals that, Android’s existing
protection implicitly depends on the uniqueness of several
attributes. We map out the essential attributes for successful
attacks in Table II(II). Our experiments have demonstrated the
possibility to break the uniqueness on the device. However, it
is unclear whether the uniqueness is preserved when apps are
uploaded to app markets. Because the defense of app markets
can only check the static information in the apk file, attributes
that are dynamically determined during the installation (e.g.
UID) are beyond its control. Therefore, we focus on these three
attributes: account type of authenticator, authority of content
provider, and package name of app.

Our assessment results indicate that, none of the appstores
perform uniqueness checks on account type or authority. To be
more specific, we are able to detect existing authenticators with
the same account type, and upload apps to all three appstores
with duplicated authority names. At the same time, we have
observed that individual appstore will preserve the uniqueness
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of package name. However, the target package name may exist
only in particular appstores, allowing attackers to upload apps
with the same package name to other appstores.

Measurement on Device Customization As we have
mentioned before, our study is based on the analysis of the
official Android Lollipop codebase, which, however, may be
customized extensively by various vendors to fit their needs. To
measure how the vendor customization affects the data residue
attacks, we repeated 8 attacks on 10 different devices running
different versions of Android. The test results are summarized
in Table II(III).

Not all features are available on every device. For example,
DreamService was first introduced in version 4.2.2, while
the printer support was recently added in KitKat. Moreover,
some vendors remove certain features from their devices. For
example, the spell checker feature is removed from most
Samsung devices. Because of these reasons, there are only
65 valid attack attempts. Among them, 54 (83%) attacks are
successful. For the 11 failed attempts, 10 of them are caused
by the fixes introduced in Lollipop (regarding the Download
and Keystore residues). Actually, the exploits on download
residue still have the chance to succeed on devices running
Android 5.0.0 and above, but only if the device is set up
for multiple users. As a result, we do not consider them as
successful attempts. The only case not caused by these fixes is
the Clipboard exploit on Samsung Note 8. The customization
on this device reduces the power of URI permissions, which
results in security exceptions during our attacks.

VI. DISCUSSION

Data residue in the Android system is a challenging and
unique problem to solve. To see why it is unique, let us
compare with the traditional desktop environment. First, the
data residue problem is created when a user is deleted from
a system. In the traditional environment, deleting users is not
very frequent, but in Android, each app acts as a different user,
so app uninstallation basically involves deleting an existing
user; such user-deletion occurs much more frequently than
in the traditional computing environment. Second, in mobile
systems, apps work in a much more collaborative manner than
those in the traditional systems. Namely, mobile apps depend
on other apps to fulfill some of the functionalities, such as
spell check and authentication, instead of implementing those
functionalities all by themselves. Android provides many sys-
tem services to facilitate such a collaboration, which inevitably
leads to app data (i.e. user data) being stored outside the app’s
storage space.

The high frequency of “user” deletion and the wide spread-
ing of “user” data across the system make data cleanup a
very challenging task during app uninstallation. Therefore,
data residue is more likely to occur in Android (and other
mobile systems) than in the traditional systems. It is imperative
that the design of system services should explicitly address
the data residue problem. The design should clearly specify
whether there is a potential data residue, whether app’s data
are removed when their owner apps are uninstalled, and if not,
what security consequence might occur if the data are inherited
by other apps.

Android has addressed the data residue concern in the
design of some of the system services. For instance, the recent
Android version, Lollipop, has fixed the residue problem inside
the Download and Keystore services. However, without a
systematic study on all residue instances in the system and
their fundamental causes, the solutions are ad hoc and only
work for individual cases. For example, while the above two
instances are fixed, a new data residue problem has been
created with the introduction of TrustAgent service. A
generic solution should be based on a thorough understanding
of the problem. Our research made the first attempt towards a
systematic understanding of the data residue problem in the
Android system. Clearly, significant additional efforts need
to be made to solve the problem completely. We hope that
the research community can build upon our understanding,
and develop effective solutions. In the following part of this
section, we present some of our thoughts towards this goal.

Fundamental Causes There are two conditions for data
residue to become vulnerabilities: the existence of data residue
and finding ways to exploit it. Therefore, if we can remove
any of the conditions, the problem is fixed. To avoid leaving
data residue requires better software engineering practice,
guidelines, development support, and detection tools. This is
one direction to pursue in research. Another direction is to
identify what can prevent data residue, even if they exist in the
system, from being exploited. Android has made reasonable
efforts in protecting those data in system services, because it
needs to ensure that an app can only access its own data. The
protection can be generalized as attribute-based access control,
i.e., Android associates each data entry with a corresponding
attribute, and then allows the access by the apps that possess
the attribute. This access control implicitly assumes that these
attributes are unique to individual apps; otherwise, multiple
apps can access the same data. Unfortunately, although the
attributes in this assumption seem to be unique in the system,
there is no guarantee by Android. For example, uninstallation
and device reboot can invalidate the assumptions, leading to
the re-association of some attributes to a different app. We
have already presented the essential attributes used by Android
in Table II(II). Here we further summarize their underlying
assumptions, protection effectiveness, and breaking conditions
in Table III.

Built upon Linux kernel, Android extensively utilizes the
UID at the framework level for access control and policy en-
forcement. The underlying assumption is that two apps cannot
possess the same UID at any time. This is true in individual
device cycle, i.e., Android does not reuse an app’s UID after it
is uninstalled, but the assumption does not hold across device
cycles. It is possible for a newly installed app to possess a
previous app’s UID value after device reboots. For package
names, Android ensures that apps with the same package name
cannot be installed on the same device at the same time, except
for the multi-user scenario. However, this does not prevent a
newly installed app to use the same package name as the one
that was already uninstalled. Android also uses component-
based attributes to protect app data. App usually consists
of multiple components, which are labeled with component
names. For components that provide specific functionalities,
such as authentication and structured data storage, Android
introduces customized attributes to uniquely identify each of
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Layers Attributes Assumptions Protection Effectiveness Breaking Conditions
Framework UID UID exclusion individual device cycle device rebooting
Application package package exclusion individual device state (un)installation

Component account type customized-id exclusion Invalid (un)installation
authority customized-id exclusion individual device state (un)installation

TABLE III: Security Examination of Android Attributes Used in Protecting Data Residue

them. Unfortunately, the underlying assumptions are either
invalid from the very beginning or only effective at specific
conditions.

Defense Based on the above analysis on the fundamental
causes of the data residue problem in Android, defense can
be implemented in two places: frontend and backend. The
frontend protection aims at preventing unauthorized access to
the data still left in the system after its owner app is uninstalled.
To achieve this goal, the uniqueness of all essential attributes
should be preserved across device states and cycles. Such a
property requires a record of all the attribute values from the
installed apps. When there is an attribute conflict between a
newly installed app and an uninstalled app, the user will be
presented with an alert and be asked to approve or disapprove.
The frontend protection serves as a signature-based preventive
system, and its effectiveness relies on the completeness of the
signature database. In the data residue case, each signature
refers to individual attribute associated with the data. We have
explored this idea based on all attributes uncovered in our
research, and we are able to defeat all exploits presented in this
paper. More importantly, our research urges system architects
to carefully select attributes used in restricting the access to
sensitive data.

The backend protection aims at eliminating all data residue
in system designs. As the first to bring the awareness of the
data residue problem to the public, our manual analysis on
Android system services may miss sophisticated data residue
instances. On one hand, the existing static and dynamic anal-
ysis tools on Android mostly stay at the app level and do not
fit our needs for examining the framework-level code. On the
other hand, some data residue instances can only be triggered
under certain orders of conditions, making the automatic
detection more challenging. Moreover, all data residue in-
stances uncovered in our research are based on Android AOSP
codebase. Although section V shows that vendor customization
is mostly based on Android AOSP codebase, and naturally
inherits all defects in handling app uninstallation, it remains
unclear whether the heavy customization from various vendors
at different levels [53], [58] can make the data residue problem
worse. Thus, our study intends to provide the baseline of the
data residue problem in the Android ecosystem. We expect
that a more accurate and comprehensive automatic detection
system will be explored by both the academia and the industry
in the near future.

VII. RELATED WORK

The popularity of Android has attracted lots of interests
from researchers. The main research focus falls on under-
standing the security landscape of the Android ecosystem,
uncovering vulnerabilities in Android apps and system, and

enhancing the security architecture of Android. In this section,
we review the related prior studies from these three directions
and compare them with our work.

Android Security Demystification The Android ecosystem
involves several parties, such as developers, apps, Android
system, vendors and end users. A high-level view of Android
security is presented in [29], followed by Stowaway [32],
which maps APIs to their permission requirements. Moreover,
the security implication of vendor customization is studied
in [15], [53], [58]. Previous studies also examine the third-
party ad libraries [35], [40], [45], [49], [56], user involve-
ment [33], [41] and the app installation process [18] on
Android. While the knowledge gained from the existing work
helps us conduct our study, none of them studied the security
risks of the app uninstallation process.

Android Vulnerability Exploration Another line of research
is devoted to uncovering vulnerabilities in the Android system
and apps. Luo et al. [43] demonstrate attacks on Android’s
WebView component, while Wang et al. [52] identify unau-
thorized origin crossing attacks on popular Android apps.
The prevalence of content provider vulnerabilities is studied
by Zhou et al. [59]. Previous studies [24], [36] also use
unguarded public interfaces in vulnerable Android apps to
launch attacks. Two recent studies further examine the crypto
misuse in Android apps [26], [38]. These vulnerabilities are
partially due to developers’ mis-configurations of app compo-
nents or misinterpretation of Android’s security protection. The
data residue vulnerability identified in our research, however,
arises directly from Android system services and demands a
framework-level solution.

Prior studies have also revealed several flaws in the An-
droid system. The vulnerability in Android’s upgrading process
allows a malicious app to escalate its privileges in the new
system [54]. Also, the problem of permission revocation at
the time of app uninstallation has been discussed in [31], [34],
[48], [50]. Exploits on Android Clipboard enable attackers to
gain accesses to user’s sensitive data [30], [57]. Those vulner-
abilities are linked to two specific Android system services,
the PackageManager service and Clipboard service. In
contrast, the data residue vulnerability affects a much broader
range of system services in Android.

To understand the damage scope of each attack, several
static analysis frameworks are proposed for Android, including
AndroGuard [3], CHEX [42], FlowDroid [16], Epicc [44], etc.
Most of the work is build upon WALA [14] or SOOT [12],
but makes extensive customization to model specific system
behaviors. These tools mostly stay at the app level and do
not fit our needs for examining the framework-level code.
In our work, AndroGuard is utilized to identify potential
targets on GooglePlay. Dynamic analysis is also widely used in
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understanding app’s behaviors [39], [46], [47]. Our verification
experiments rely on various triggering conditions, such as
device reboot, app installation and uninstallation, which are
difficult to fully automate using the dynamic analysis approach.
Despite all challenges involved, an automatic detection system
would be helpful in eliminating all data residue instances from
Android eventually, which itself is another research problem.

Android Security Enhancement Several architectures have
been proposed to enhance Android security. With SELinux
in the kernel as a building block, SEAndroid [51] and
FlaskDroid [20] attempt to develop flexible Mandatory Access
Control (MAC) frameworks for Android. With the MAC sup-
port, a more strict and system-wide policy can be enforced to
restrict data accesses. As for the framework level enhancement,
TaintDroid [27] applies system-wide dynamic taint tracking
and analysis to monitor the flow of sensitive information
through Android simultaneously. AppFence [37] is built upon
TaintDroid and denies all the unnecessary data request and
blocks communications that would lead to privacy leakage. To-
gether with ScanDroid [11], Aurasium [55], XMandDroid [19],
DroidChecker [21], PScount [17], WoodPecker [36] and other
proposed security frameworks [22], [23], [25], [28] for An-
droid, they strike to either protect user privacy or restrict app’s
privilege. The common technique in use is statically modeling
and dynamically monitoring app’s suspicious behaviors. The
data residue vulnerability, however, allows newly installed
app to possess the data, so the data-access operations appear
completely legitimate. The challenge here is to identify all
data creation functions and to correctly mark the data with the
associated app. Those data could come directly from apps, but
also be dynamically constructed within the system services,
making the tainting strategy complicated. We leave it as our
future work in exploring the possibility of applying MAC
policies and framework-level static/dynamic analysis to solve
the data residue problem.

VIII. CONCLUSIONS & FUTURE WORK

In this project, we made the first step towards a better un-
derstanding of the security implication in the app uninstallation
process, by systematically examining the data cleanup logic
within 122 Android system services. Our study uncovered
12 data residue instances, and 11 of them are found to
be exploitable in our testing experiments, leading to severe
damages. Our work further demonstrates the feasibility of
the data residue attacks against real apps, and the attacking
apps can be distributed through the existing app markets.
To mitigate the threat, clear guidelines should be provided
to Android framework developers regarding the data cleanup
operation during the app uninstallation process. Further efforts
are also needed to design a generic solution for preserving the
uniqueness of attributes used by Android framework to save
sensitive resources. Actually, Android has already been using
a combination of package name and developer key to uniquely
associate app data between mobile devices and wear devices.
This practice can be generalized to mitigate the data residue
risk. Several other approaches can also be applied to defeat the
data residue attacks. For example, we can use taint analysis to
carefully label and eventually remove all the data residues from
the system; we can define mandatory access control policies on
data residues to prevent unauthorized access. We will pursue

these ideas in our future work.
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