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Abstract—Social relationships present a critical foundation
for many real-world applications. However, both users and
online social network (OSN) providers are hesitant to share
social relationships with untrusted external applications due to
privacy concerns. In this work, we design LinkMirage, a system
that mediates privacy-preserving access to social relationships.
LinkMirage takes users’ social relationship graph as an input,
obfuscates the social graph topology, and provides untrusted
external applications with an obfuscated view of the social
relationship graph while preserving graph utility.

Our key contributions are (1) a novel algorithm for obfus-
cating social relationship graph while preserving graph utility,
(2) theoretical and experimental analysis of privacy and utility
using real-world social network topologies, including a large-scale
Google+ dataset with 940 million links. Our experimental results
demonstrate that LinkMirage provides up to 10x improvement in
privacy guarantees compared to the state-of-the-art approaches.
Overall, LinkMirage enables the design of real-world applications
such as recommendation systems, graph analytics, anonymous
communications, and Sybil defenses while protecting the privacy
of social relationships.

I. INTRODUCTION

Online social networks (OSNs) have revolutionized the way
our society interacts and communicates with each other. Under
the hood, OSNs can be viewed as a special graph structure
composed of individuals (or organizations) and connections
between these entities. These social relationships represent
sensitive relationships between entities, for example, trusted
friendships or important interactions in Facebook, Twitter, or
Google+, which users want to preserve the security and privacy
of.

At the same time, an increasing number of third party appli-
cations rely on users’ social relationships (these applications
can be external to the OSN). E-commerce applications can
leverage social relationships for improving sales [21], and data-
mining researchers also rely on the social relationships for
functional analysis [31], [33]. Social relationships can be used
to mitigate spam [26]. Anonymous communication systems
can improve client anonymity by leveraging users’ social
relationships [11], [28], [29]. State-of-the-art Sybil defenses

rely on social trust relationships to detect attackers [8], [43].
However, both users and the OSN providers are hesitant to

share social relationships/graphs with these applications due
to privacy concerns. For instance, a majority of users are
exercising privacy controls provided by popular OSNs such
as Facebook, Google+ and LinkedIn to limit access to their
social relationships [9]. Privacy concerns arise because external
applications that rely on users’ social relationships can either
explicitly reveal this information to an adversary, or allow
the adversary to perform inference attacks [14], [20], [24],
[30], [32], [37]. These concerns hinder the deployment of
many real-world applications. Thus, there exist fundamentally
conflicting requirements for any link obfuscation mechanism:
protecting privacy for the sensitive links in social networks and
preserving utility of the obfuscated graph for use in real-world
applications.

In this work, we design LinkMirage, a system that mediates
privacy-preserving access to social relationships. LinkMirage
takes users’ social relationship graph as an input, either via
an OSN operator or via individual user subscriptions. Next,
LinkMirage obfuscates the social graph topology to protect the
privacy of users’ social contacts (edge/link privacy, not vertex
privacy). LinkMirage then provides external applications such
as graph analytics and anonymity systems [11], [28], [29]
with an obfuscated view of the social relationship graph.
Thus, LinkMirage provides a trade-off between securing the
confidentiality of social relationships, and enabling the design
of social relationship based applications.

We present a novel obfuscation algorithm that first clusters
social graphs, and then anonymizes intra-cluster links and
inter-cluster links, respectively. We obfuscate links in a manner
that preserves the key structural properties of social graphs.
While our approach is of interest even for static social graphs,
we go a step further in this paper, and consider the evolutionary
dynamics of social graphs (node/link addition or deletion).
We design LinkMirage to be resilient to such evolutionary
dynamics, by consistently clustering social graphs across time
instances. Consistent clustering improves both the privacy and
utility of the obfuscated graphs. We show that LinkMirage
provides strong privacy properties. Even a strategic adversary
with full access to the obfuscated graph and prior information
about the original social graph is limited in its ability to
infer information about users’ social relationships. LinkMirage
provides up to 3x privacy improvement in static settings, and
up to 10x privacy improvement in dynamic settings compared
to the state-of-the-art approaches.

Overall, our work makes the following contributions.

• First, we design LinkMirage to mediate privacy-preserving
access to users’ social relationships. LinkMirage obfuscates
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links in the social graph (link privacy) and provides un-
trusted external applications with an obfuscated view of
the social graph. LinkMirage can achieve a good balance
between privacy and utility, under the context of both static
and dynamic social network topologies.

• Second, LinkMirage provides rigorous privacy guarantees to
defend against strategic adversaries with prior information
of the social graph. We perform link privacy analysis both
theoretically as well as using real-world social network
topologies. The experimental results for both a Facebook
dataset (with 870K links) and a large-scale Google+ dataset
(with 940M links) show up to 10x improvement in privacy
over the state-of-the-art research.

• Third, we experimentally demonstrate the applicability of
LinkMirage in real-world applications, such as privacy-
preserving graph analytics, anonymous communication and
Sybil defenses. LinkMirage enables the design of social
relationships based systems while simultaneously protecting
the privacy of users’ social relationships.

• Finally, we quantify a general utility metric for LinkMirage.
We analyze our utility measurement provided by LinkMi-
rage both theoretically and using real-world social graphs
(Facebook and Google+).

II. BACKGROUND
A. Motivating Applications

In this paper, we focus our research on protecting the
link privacy between labeled vertices in social networks [16],
[27], [42]. Mechanisms for graph analytics, anonymous com-
munication, and Sybil defenses can leverage users’ social
relationships for enhancing security, but end up revealing
users’ social relationships to adversaries. For example, in the
Tor network [11], the relays’ IP addresses (labels) are already
publicly known (vertex privacy in [25], [34], [45] is not
useful). Tor operators are hesitant to utilize social trusts to
set up the Tor circuit as recommended by [28], [29] since
the circuit construction protocol would reveal sensitive social
contact information about the users. Our proposed link-privacy
techniques can thus be utilized by the Tor relay operators to
enhance system security while preserving link privacy. Overall,
our work focuses on protecting users’ trust relationships while
enabling the design of such systems.

LinkMirage supports three categories of social relationship
based applications: 1) Global access to the obfuscated graph:
Applications such as social network based anonymity sys-
tems [11], [28], [29] and peer-to-peer networks [8] can utilize
LinkMirage (described in Section IV-B) to obtain a global
view of privacy-preserving social graph topologies; 2) Local
access to the obfuscated graph: an individual user can query
LinkMirage for his/her obfuscated social relationships (local
neighborhood information), to facilitate distributed applica-
tions such as SybilLimit [43]; 3) Mediated data analytics:
LinkMirage can enable privacy-preserving data analytics by
running desired functional queries (such as computing graph
modularity and pagerank score) on the obfuscated graph topol-
ogy and only returning the result of the query, since immediate
analytics operated on the original graph topology would leak
sensitive information about users’ social relationships. Existing
work [12], [13] demonstrated that the implementation of graph
analytics algorithms could leak certain information. Instead of
repeatedly adding perturbations to the output of each graph
analytics algorithm as in differential privacy [12], [13], which
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Fig. 1. LinkMirage architecture. LinkMirage first collects social link informa-
tion through our social link app or directly through the OSN providers, and
then applies an obfuscation algorithm to perturb the original social graph(s).
The obfuscated graph(s) would be utilized to answer the query of the untrusted
applications in a privacy-preserving manner. The third-party application (which
queries the social link information) is considered an adversary which aims to
obtain sensitive link information from the perturbed query results.

would be rather costly, LinkMirage can obtain the perturbed
graph just once to support multiple graph analytics. Such an
approach protects the privacy of users’ social relationships
from inference attacks using query results. There exists a
plethora of attacks against vertex anonymity based mechanisms
[20], [30], [32], [37]. Ji et al. [19] recently showed that no
single vertex anonymization technique was able to resist all
the existing attacks. Note that these attacks are not applicable
to link privacy schemes. Therefore, a sound approach to vertex
anonymity must start with improvements in our understanding
of link privacy. When used as first step in the design of vertex
privacy mechanisms, our approach can protect the privacy of
social contacts and graph links even when the vertices are de-
anonymized using state-of-the-art approaches [20], [30], [32],
[37]. Furthermore, our method can even improve the resilience
of vertex anonymity mechanisms against de-anonymization
attacks when applied to unlabelled graphs (will be shown in
Section VI-B).
B. System Architecture and Threat Model

Fig. 1 shows the overall architecture for LinkMirage. For
link privacy, we consider the third-party applications (which
can query the social link information) as adversaries, which
aim to obtain sensitive link information from the perturbed
query results. A sophisticated adversary may have access to
certain prior information such as partial link information of
the original social networks, and such prior information can
be extracted from publicly available sources, social networks
such as Facebook, or other application-related sources as stated
in [6]. The adversary may leverage Bayesian inference to infer
the probability for the existence of a link. We assume that
LinkMirage itself is trusted, in addition to the social network
providers/users who provide the input social graph.

In Section V-B, V-C, we define our Bayesian privacy metric
(called anti-inference privacy) and an information theoretic
metric (called indistinguishability) to characterize the privacy
offered by LinkMirage against adversaries with prior infor-
mation. In addition, the evolving social topologies introduce
another serious threat where sophisticated adversaries can
combine information available in multiple query results to
infer users’ social relationships. We define anti-aggregation
privacy in Section V-D, for evaluating the privacy performance
of LinkMirage against such adversaries.
C. Basic Theory

Let us denote a time series of social graphs as G0, · · · , GT .
For each temporal graph Gt = (Vt, Et), the set of vertices
is Vt and the set of edges is Et. For our theoretical analysis,
we focus on undirected graphs where all the |Et| edges are
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symmetric, i.e. (i, j) ∈ Et iff (j, i) ∈ Et. Note that our ap-
proach can be generalized to directed graphs with asymmetric
edges. Pt is the transition probability matrix of the Markov
chain on the vertices of Gt. Pt measures the probability that
we follow an edge from one vertex to another vertex, where
Pt (i, j) = 1/deg(i) (deg(i) denotes the degree of vertex i) if
(i, j) ∈ Et, otherwise Pt (i, j) = 0. A random walk starting
from vertex v, selects a neighbor of v at random according to
Pt and repeats the process.

III. SYSTEM OVERVIEW AND ROADMAP
A. LinkMirage System

Our objective for LinkMirage is to obfuscate social re-
lationships to strike a balance between privacy for users’
social relationships and the usability for large-scale real-
world applications, as will be discussed in Section IV-A. We
deploy LinkMirage as a Facebook application that implements
graph construction and obfuscation, as will be discussed in
Section IV-B.

For our perturbation mechanism of LinkMirage, we take
both the static and the temporal social network topology
into consideration, as will be discussed in Section IV-C. Our
obfuscation mechanism consists of the following conceptual
steps:
• Dynamic clustering which finds community structures in

evolving graphs by simultaneously considering consecutive
graphs. Our dynamic clustering utilizes an effective back-
tracking strategy to cluster a graph based on the clustering
result of the previous graph.

• Selective perturbation which perturbs the minimal amount
of edges in the evolving graphs according to the dynamic
clustering result, where we only perturb the changed com-
munities between consecutive graphs. In this manner, it
is possible to use a very high privacy parameter in the
perturbation process, while preserving structural properties
of the social network topologies.
We further discuss the scalability of our perturbation algo-

rithm on the real world large-scale Google+ dataset in Sec-
tion IV-D and visually show the effectiveness of our algorithm
on the real world Facebook dataset in Section IV-E.

B. Privacy Evaluation

In Section V, we rigorously analyze the privacy advantage
of our LinkMirage over the state-of-the-art approaches, by
considering three adversarial scenarios where sophisticated
adversaries can combine information available in multiple
query results to infer users’ social relationships. The privacy
advantage of our LinkMirage will be demonstrated as
• LinkMirage shows significant privacy advantages in anti-

inference privacy (will be defined in Section V-B). The
difference between the posterior probability and the prior
probability of the existence of an link is smaller for LinkMi-
rage than the state-of-the-art methods.

• LinkMirage achieves higher indistinguishability from an
information theoretic perspective (will be defined in Sec-
tion V-C) where the obfuscated graph of LinkMirage con-
tains less information of users’ social relationships than the
state-of-the-art methods.

• LinkMirage also shows significant privacy advantages in
anti-aggregation privacy (will be defined in Section V-D),

where the adversary’s estimation for users’ social relation-
ships is less accurate for LinkMirage than the existing
methods.

C. Utility Evaluation

In Section VI, we apply our perturbation algorithm to
various real world applications such as graph analytics, anony-
mous communications, and Sybil defenses. Compared to pre-
vious methods, LinkMirage results in significantly lower attack
probabilities when applied to anonymous communications and
higher resilience to de-anonymization attacks when applied
to vertex anonymity systems. LinkMirage even surprisingly
improves the Sybil detection performance when applied to the
distributed SybilLimit systems. LinkMirage also outperform
existing methods in preserving the utility for multiple graph
analytics applications, such as pagerank score and modularity.
In Section VII, we further analyze LinkMirage’s ability to
preserve general graph-theoretic characteristics.

IV. LINKMIRAGE SYSTEM
A. Design Goals

We envision that applications relying on social relationships
between users can bootstrap this information from online
social network operators such as Facebook, Google+, Twit-
ter with access to the users’ social relationships. To enable
these applications in a privacy-preserving manner, a perturbed
social graph topology (by adding noise to the original graph
topology) should be available.

Social graphs evolve over time, and the third-party appli-
cations would benefit from access to the most current version
of the graph. A baseline approach is to perturb each graph
snapshot independently. However, the sequence of perturbed
graphs provide significantly more observations to an adversary
than just a single perturbed graph. We argue that an effective
perturbation method should consider the evolution of the
original graph sequence. Therefore, we have the overall design
goals for our system as:

1) We aim to obfuscate social relationships while balancing
privacy for users’ social relationships and the usability for
real-world applications.

2) We aim to handle both the static and dynamic social
network topologies.

3) Our system should provide rigorous privacy guarantees
to defend against adversaries who have prior information
of the original graphs, and adversaries who can combine
multiple released graphs to infer more information.

4) Our method should be scalable to be applied in real-world
large-scale social graphs.

B. LinkMirage: Deployment

To improve the usability of our proposed obfusca-
tion approach (which will be described in detail in
Section IV-C), and to avoid dependance on the OSN
providers, we developed a Facebook application (available:
https://apps.facebook.com/linkmirage/) that implements graph
construction (via individual user subscriptions) and obfusca-
tion. The work flow of the LinkMirage deployment is as fol-
lows: (i) When a user visits the above URL, Facebook checks
the credentials of the user, asks whether to grant the user’s
friends permission, and then gets redirected to the application
hosting server. (ii) The application server authenticates itself,
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and then queries Facebook for the information of the user’s
friends, and returns their information such as user’s id. The
list of user’s friends can then be collected by the application
server to construct a Facebook social graph for the current
timestamp. Leveraging LinkMirage, a perturbed graph for this
timestamp would be available which preserves the link privacy
of the users’ social relationships.

Real-world systems such as Uproxy, Lantern, Kaleidoscope
[17], anonymity systems [11], [28], [29], Sybil defenses sys-
tems [8], [43] can directly benefit from our protocol through
automatically obtaining the perturbed social relationships. Fur-
thermore, our protocol can enable privacy-preserving graph
analytics for OSN providers.

C. LinkMirage: Perturbation Algorithm

Social networks evolve with time and publishing a time
series of perturbed graphs raises a serious privacy challenge:
an adversary can combine information available from multiple
perturbed graphs over time to compromise the privacy of users’
social contacts [5], [10], [38]. In LinkMirage, we take a time
series of graph topologies into consideration, to account for
the evolution of the social networks. Intuitively, the scenario
with a static graph topology is just a special situation of the
temporal graph sequence, and is thus inherently incorporated
in our model.

Consider a social graph series G0 = (V0, E0),· · · ,GT =
(VT , ET ). We want to transform the graph series to G′0 =
(V0, E

′
0),· · · ,G′T = (VT , E

′
T ), such that the vertices in G′t

remain the same as in the original graph Gt, but the edges are
perturbed to protect link privacy. Moreover, while perturbing
the current graph Gt, LinkMirage has access to the past graphs
in the time series (i.e., G0, · · · , Gt−1). Our perturbation goal is
to balance the utility of social graph topologies and the privacy
of users’ social contacts, across time.

Approach Overview: Our perturbation mechanism for
LinkMirage is illustrated in Fig. 2.

Static scenario: For a static graph Gt−1, we first cluster
it into several communities, and then perturb the links within
each community. The inter-cluster links are also perturbed to
protect their privacy.

Dynamic scenario: Let us suppose that Gt evolves from
Gt−1 by addition of new vertices (shown in blue color). To
perturb graph Gt, our intuition is to consider the similarity
between graphs Gt−1 and Gt.

First, we partition Gt−1 and Gt into subgraphs, by clustering
each graph into different communities. To avoid randomness
(guarantee consistency) in the clustering procedure and to
reduce the computation complexity, we dynamically cluster the
two graphs together instead of clustering them independently.
Noting that one green node evolves by connecting with a new
blue node, we free 1 all the nodes located within m = 2 hops of
this green node (the other two green nodes and one red node)
and merge the remaining three red nodes to a big virtual node.
Then, we cluster these new nodes, the freed nodes and the
remaining virtual node to detect communities in Gt.

Next, we compare the communities within Gt−1 and Gt,
and identify the changed and unchanged subgraphs. For the
unchanged subgraphs C1, C2, we set their perturbation at
time t to be identical to their perturbation at time t − 1,

1We free the nodes from the previously clustering hierarchy.
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Fig. 2. Our perturbation mechanism for Gt. Assume that Gt−1 has already
been dynamically obfuscated, based on dynamic clustering (step 1) and
selective perturbation (step 2). Our mechanism analyzes the evolved graph
Gt (step 3) and dynamically clusters Gt (step 4) based on the freed m hop
neighborhood (m = 2) of new links (between green and blue nodes), the
merging virtual node (the large red node in step 4), and the new nodes. By
comparing the communities in Gt−1 and Gt, we can implement selective
perturbation (step 5), i.e. perturb the changed blue community independently
and perturb the unchanged red and green communities in the same way as
G′t−1, and then perturb the inter-cluster links.

denoted by C ′1, C
′
2. For the changed subgraph C3, we perturb it

independently to obtain C ′3. We also perturb the links between
communities to protect privacy of these inter-cluster links.
Finally, we publish G′t as the combination of C ′1, C

′
2, C

′
3 and

the perturbed inter-cluster links. There are two key steps in
our algorithm: dynamic clustering and selective perturbation,
which we describe in detail as follows.

1) Dynamic Clustering: Considering that communities in
social networks change significantly over time, we need to
address the inconsistency problem by developing a dynamic
community detection method. Dynamic clustering aims to find
community structures in evolving graphs by simultaneously
considering consecutive graphs in its clustering algorithms.
There are several methods in the literature to cluster evolving
graphs [3], but we found them to be unsuitable for use
in our perturbation mechanism. One approach to dynamic
clustering involves performing community detection at each
timestamp independently, and then establishing relationships
between communities to track their evolution [3]. We found
that this approach suffers from performance issues induced by
inherent randomness in clustering algorithms, in addition to
the increased computational complexity.

Another approach is to combine multiple graphs into a
single coupled graph [3]. The coupled graph is constructed by
adding edges between the same nodes across different graphs.
Clustering can be performed on the single coupled graph. We
found that the clustering performance is very sensitive to the
weights of the added links, resulting in unstable clustering
results. Furthermore, the large dimensionality of the coupled
graph significantly increases the computational overhead.

For our perturbation mechanism, we develop an adaptive
dynamic clustering approach for clustering the graph Gt using
the clustering result for the previous graph Gt−1. This enables
our perturbation mechanism to (a) exploit the link correla-
tion/similarity in consecutive graph snapshots, and (b) reduce
computation complexity by avoiding repeated clustering for
unchanged links.

Clustering the graph Gt from the clustering result of the
previous graph Gt−1 requires a backtracking strategy. We use
the maximum-modularity method [31] for clustering, which is
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TABLE I. Temporal Statistics of the Facebook Dataset.

Time 0 1 2 3 4 5 6 7 8
# of nodes 9,586 9,719 11,649 13,848 14,210 16,344 18,974 26,220 35,048
# of edges 48,966 38,058 47,024 54,787 49,744 58,099 65,604 97,095 142,274

Average degree 5.11 3.91 4.03 3.96 3.50 3.55 3.46 3.70 4.06

hierarchical and thus easy to backtrack. Our backtrack strategy
is to first maintain a history of the merge operations that led to
the current clustering. When an evolution occurs, the algorithm
backtracks over the history of merge operations, in order to
incorporate the new additions and deletions in the graph.

More concretely, if the link between node x and node
y is changed (added or deleted), we omit all the m-hop
neighborhoods of x and y as well as x and y themselves
from the clustering result of the previous timestamp, and then
perform re-clustering. All the new nodes, the changed nodes
and their m-hop neighbors, and the remaining merged nodes
in the previous clustering result would be considered as basic
elements for clustering Gt (recall Figure 2).

For efficient implementation, we store the intermediate
results of the hierarchical clustering process in a data structure.
Upon link changes between x, y, we free the m-hop neighbor-
hood of x, y from the stored data structure.

2) Selective perturbation:
Intra-cluster Perturbation: After clustering Gt based on
Gt−1 using our dynamic clustering method, we perturb Gt
based on Gt−1 and the perturbed G′t−1. First, we compare
the communities detected in Gt−1 and Gt, and classify them
as changed or unchanged. Our unchanged classification does
not require that the communities are exactly the same, but
that the overlap among vertices/links exceeds a threshold. Our
key idea is to keep the perturbation process for links in the
unchanged communities to be identical to their perturbation
in the previous snapshot. In this manner, we can preserve
the privacy of these unchanged links to the largest extent;
it is easy to see that alternate approaches would leak more
information. For the communities which are classified as
changed, our approach is to perturb their links independently
of the perturbation in the previous timestamp. For independent
perturbations, we leverage the static perturbation method of
Mittal et al. in [27]. Their static perturbation deletes all the
edges in the original graph, and replaces each edge (v, u)
with a fake edge (v, w) selected from the k-hop random walk
starting from v. Larger perturbation parameter k corresponds
to better privacy and leads to worse utility.
Inter-cluster Perturbation: Finally, we need to interconnect

the subgraphs identified above. Suppose that |va| nodes and
|vb| nodes are connecting communities a and b respectively,
and they construct an inter-community subgraph. For each
marginal node va(i) ∈ va and vb(j) ∈ vb (here the marginal
node in community a (resp.b) refers to the node that has neigh-
bors in the other community b (resp.a)) , we randomly connect
them with probability deg(va(i)) deg(vb(j))|va|

|Eab|(|va|+|vb|) .2 Here, all the
computations for deg(·), |v·(·)|, |E·| only consider the marginal
nodes. We can combine the perturbed links corresponding to
the unchanged communities, changed communities, and inter-
community subgraphs, to compute the output of our algorithm,

2This probability is set for the preservation of degree distributions as
analyzed in Section VII.

Algorithm 1 LinkMirage, with dynamic clustering (steps
1-2) and selective perturbation (steps 3-6). The parameter
k denotes the perturbation level for each community.
Here, ch, un, in are short for changed, unchanged, inter-
community, respectively.
Input: {Gt, Gt−1, G′t−1} if t ≥ 1 or {Gt} if t = 0;
Output: G′t;

G′t, Ct =null;
if t=0;

cluster G0 to get C0;
label C0 as changed, i.e. C0−ch = C0;

endif
/*Begin Dynamic Clustering*/
1. free the nodes within m hops of the changed links;
2. re-cluster the new nodes, the freed nodes, the remai-

-ning merged virtual nodes in C(t−1) to get Ct;
/*End Dynamic Clustering*/
/*Begin Selective Perturbation*/
3. find the unchanged communities Ct−un and the chan-

-ged communities Ct−ch;
4. let G′t−un = G′(t−1)−un;
5. perturb Ct−ch for G′t−ch by the static method;
6. foreach community pair a and b;

if both of the communities belong to Ct−un
C ′t−in(a, b) = C ′(t−1)−in(a, b);

else
foreach marginal node va(i) in a and vb(j) in b

randomly add an edge (va(i), vb(j)) with pro-
-bability deg(va(i)) deg(vb(j))|va|

|Eab|(|va|+|vb|) to G′t−in(a, b);
/*End Selective Perturbation*/
return G′t = [G′t−ch, G

′
t−un, G

′
t−in];

i.e., G′t.
LinkMirage not only preserves the structural characteristics

of the original graph series, but also protects the privacy of
the users by randomizing the original links. As compared to
prior work, our method provides stronger privacy and utility
guarantees for evolving graphs. Detailed procedures are stated
in Algorithm. 1.

LinkMirage improves the state-of-the-art methods such as
[27] by incorporating the temporal graph topology. Surpris-
ingly, our approach of first isolating communities and then
selectively perturbing them provides benefits even in a static
context! This is because previous static approaches use a single
parameter to control the privacy/utility trade-off. Thus, if we
apply them to the whole graph using high privacy parameters,
it would destroy graph utility (e.g. community structures). On
the other hand, LinkMirage applies perturbations selectively to
communities; thus it is possible to use a very high privacy pa-
rameter in the perturbation process, while preserving structural
properties such as community structures.
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Fig. 3. Dynamic Facebook interaction dataset topology, for t = 3, 4, 5. On the left, we can see that LinkMirage has superior utility than the baseline approach
(Mittal et al.), especially for larger values of k (due to dynamic clustering). On the right, we show the overlapped edges (black) and the changed edges (yellow)
between consecutive graphs: t=(3, 4) and t=(4, 5). We can see that in LinkMirage, the perturbation of unchanged communities is correlated across time (selective
perturbation), minimizing information leakage and enhancing privacy.

D. Scalable Implementation

Our algorithm relies on two key graph theoretical tech-
niques: community detection (serves as a foundation for the
dynamic clustering step in LinkMirage) and random walk
(serves as a foundation for the selective perturbation step in
LinkMirage). The computational complexity for both commu-
nity detection and random walk is O(|Et|) [3], [27] where
|Et| is the number of edges in graph Gt, therefore the
overall computational complexity of our approach is O(|Et|).
Furthermore, our algorithms are parallelizable. We adopt the
GraphChi parallel framework in [22] to implement our algo-
rithm efficiently using a commodity workstation (3.6 GHz,
24GB RAM). Our parallel implementation scales to very large
social networks; for example, the running time of LinkMirage
is less than 100 seconds for the large scale Google+ dataset
(940 million links) (will be described in Section V-A) using
our commodity workstation.

E. Visual Depiction

For our experiments, we consider a real world Facebook
social network dataset [40] among New Orleans regional
network, spanning from September 2006 to January 2009.
Here, we utilize the wall post interaction data which represents
stronger trust relationships and comprises of 46,952 nodes
(users) connected by 876,993 edges. We partitioned the dataset
using three month intervals to construct a total of 9 graph
instances as shown in Table I. Fig. 3 depicts the outcome of
our perturbation algorithm on the partitioned Facebook graph
sequence with timestamp t = 3, 4, 5 (out of 9 snapshots),
for varying perturbation parameter k (perturbation parameter
for each community). For comparative analysis, we consider
a baseline approach [27] that applies static perturbation for
each timestamp independently. In the dynamic clustering step
of our experiments, we free the two-hop neighborhoods of the
changed nodes, i.e. m = 2.

The maximum-modularity clustering method yields two
communities for G3, three communities for G4, and four
communities for G5. For the perturbed graphs, we use the
same color for the vertices as in the original graph and
we can see that fine-grained structures (related to utility)
are preserved for both algorithms under small perturbation
parameter k, even though links are randomized. Even for high
values of k, LinkMirage can preserve the macro-level (such
as community-level) structural characteristics of the graph. On
the other hand, for high values of k, the static perturbation
algorithm results in the loss of structure properties, and appears

to resemble a random graph. Thus, our approach of first
isolating communities and applying perturbation at the level
of communities has benefits even in a static context.

Fig. 3 also shows the privacy benefits of our perturbation
algorithm for timestamps t = 4, 5. We can see that LinkMirage
reuses perturbed links (shown as black unchanged links) in
the unchanged communities (one unchanged community for
t = 4 and two unchanged communities for t = 5). Therefore,
LinkMirage preserves the privacy of users’ social relationships
by considering correlations among the graph sequence, and this
benefit does not come at the cost of utility. In the following
sections, we will formally quantify the privacy and utility
properties of LinkMirage.

V. PRIVACY ANALYSIS

We now address the question of understanding link pri-
vacy of LinkMirage. We propose three privacy metrics: anti-
inference privacy, indistinguishability, anti-aggregation pri-
vacy to evaluate the link privacy provided by LinkMirage.
Both theoretical analysis and experimental results with a Face-
book dataset (870K links) and a large-scale Google+ dataset
(940M links) show the benefits of LinkMirage over previous
approaches. We also illustrate the relationship between our
privacy metric and differential privacy.

A. Experimental Datasets

To illustrate how the temporal information degrades privacy,
we consider two social network datasets. The first one is a
large-scale Google+ dataset [14]. whose temporal statistics are
illustrated in Table II. To the best of our knowledge, this is the
largest temporal dataset of social networks in public domain.
The Google+ dataset is crawled from July 2011 to October
2011 which has 28,942,911 nodes and 947,776,172 edges.
The dataset only considers link additions, i.e. all the edges in
the previous graphs exist in the current graph. We partitioned
the dataset into 84 timestamps. The second one is the 9-
timestamp Facebook wall posts dataset [40] as we stated in
Section IV-E. with temporal characteristics shown in Table I. It
is worth noting that the wall-posts data experiences tremendous
churn with only 45% overlap for consecutive graphs. Since our
dynamic perturbation method relies on the correlation between
consecutive graphs, the evaluation of our dynamic method on
the Facebook wall posts data is conservative. To show the
improvement in performance of our algorithm for graphs that
evolve at a slower rate, we also consider a sampled graph
sequence extracted from the Facebook wall posts data with
80% overlap for consecutive graphs.
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TABLE II. Temporal Statistics of the Google+ Dataset.

Time Jul.29 Aug.8 Aug.18 Aug.28 Sep.7 Sep.17 Sep.27 Oct.7
# of nodes 16,165,781 17,483,936 17,850,948 19,406,327 19,954,197 24,235,387 28,035,472 28,942,911
# of edges 505,527,124 560,576,194 575,345,552 654,523,658 686,709,660 759,226,300 886,082,314 947,776,172

Average degree 31.2714 32.0624 32.2305 33.7273 34.4143 31.3272 31.6058 32.7464

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

(a) Inference Probability

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

 

 

Prior probability
k=5, Mittal et al.
k=5, LinkMirage
k=20, Mittal et al.
k=20, LinkMirage

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

(b) Inference probability

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

 

 

Prior probability
k=5, Mittal et al.
k=5, LinkMirage
k=20, Mittal et al.
k=20, LinkMirage

Fig. 4. (a),(b) represent the link probability distributions for the whole Facebook interaction dataset and the sampled Facebook interaction dataset with 80%
overlap. We can see that the posterior probability of LinkMirage is more similar to the prior probability than the baseline approach.

B. Anti-Inference Privacy

First, we consider adversaries that aim to infer link in-
formation by leveraging Bayesian inference. We define the
privacy of a link Lt (or a subgraph) in the t-th graph instance,
as the difference between the posterior probability and the
prior probability of the existence of the link (or a subgraph),
computed by the adversary using its prior information W ,
and the knowledge of the perturbed graph sequence {G′i}ti=0.
Utilizing Bayesian inference, we have

Definition 1: For link Lt in the original graph sequence
G0, · · · , Gt and the adversary’s prior information W , the anti-
inference privacy Privacyai for the perturbed graph sequence
G′0, · · · , G′t is evaluated by the similarity between the poste-
rior probability P (Lt|{G′i}ti=0,W ) and the prior probability
P (Lt|W ), where the posterior probability is

P (Lt|{G′i}ti=0,W ) =
P ({G′i}ti=0|Lt,W )× P (Lt|W )

P ({G′i}ti=0|W )
(1)

Higher similarity implies better anti-inference privacy.

The difference between the posterior probability and the prior
probability represents the information leaked by the perturba-
tion mechanism. Similar intuition has been mentioned in [23].
Therefore, the posterior probability should not differ much
from the prior probability.

In the above expression, P (Lt|W ) is the prior probability
of the link, which can be computed based on the known
structural properties of social networks, for example, by using
link prediction algorithms [24]. Note that P ({G′i}ti=0|W ) is a
normalization constant that can be analyzed by sampling tech-
niques. The key challenge is to compute P ({G′i}ti=0|Lt,W )3.

For evaluation, we consider a special case where the adver-
sary’s prior is the entire time series of original graphs except
the link Lt (which is the link we want to quantify privacy for,
and Lt = 1 denotes the existence of this link while Lt = 0
denotes the non-existence of this link). Such prior information
can be extracted from personal public information, Facebook
related information or other application-related information as

3The detailed process for computing the posterior probability can be found
in [27].
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Fig. 5. Link probability distribution for the Google+ dataset under the
adversary’s prior information extracted from the social-attribute network model
in [14].

stated in [6]. Note that this is a very strong adversarial prior,
which would lead to the worst-case analysis of link privacy.
Denoting {G̃i(Lt)}ti=0 as the prior which contains all the
information except Lt, we have the posterior probability of
link Lt under the worst case is

P (Lt|{G′i}ti=0, {G̃i(Lt)}ti=0)

=
P ({G′i}ti=0|, Lt, {G̃i(Lt)}ti=0)× P (Lt|{G̃i(Lt)}ti=0)

P ({G′i}ti=0|{G̃i(Lt)}ti=0)

where

P ({G′i}ti=0|Lt, {G̃i(Lt)}ti=0) = P (G′0|G̃0(Lt))×
P (G′1|G′0, G̃0(Lt), G̃1(Lt)) · · ·P (G′t|G′t−1, G̃t−1(Lt), G̃t(Lt))

Therefore, the objective of perturbation algorithms is to make
P (Lt|{G′i}ti=0, {G̃i(Lt)}ti=0) close to P (Lt|{G̃i(Lt)}ti=0).
Comparison with previous work: Fig. 4 shows the pos-
terior probability distribution for the whole Facebook graph
sequence and the sampled Facebook graph sequence with
80% overlapping ratio, respectively. We computed the prior
probability using the link prediction method in [24]. We can
see that the posterior probability corresponding to LinkMirage
is closer to the prior probability than that of the method of
Mittal et al. [27]. In Fig. 4(b), taking the point where the
link probability equals 0.1, the distance between the posterior
CDF and the prior CDF for the static approach is a factor of 3
larger than LinkMirage (k = 20). Larger perturbation degree
k improves privacy and leads to smaller difference with the
prior probability. Finally, by comparing Fig. 4(a) and (b), we
can see that larger overlap in the graph sequence improves the
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Fig. 6. (a),(b) represent the temporal indistinguishability for the whole Facebook interaction dataset and the sampled Facebook interaction dataset with 80%
overlap. Over time, the adversary has more information, resulting in decreased indistinguishability. We can also see that LinkMirage has higher indistinguishability
than the static method and the Hay’s method in [16], although it still suffers from some information leakage.

privacy benefits of LinkMirage. We also compare with the
work of Hay et al. in [16], which randomizes the graph with
r real links deleted and another r fake links introduced. The
probability for a real link to be preserved in the perturbed graph
is 1 − r/m, which should not be small otherwise the utility
would not be preserved. Even considering r/m = 0.5 (which
would substantially hurt utility [16]), the posterior probability
for a link using the method of Hay et al. would be 0.5,
even without prior information. In contrast, our analysis for
LinkMirage considers a worst-case prior, and shows that the
posterior probability is smaller than 0.5 for more than 50% of
the links when k = 20 in Fig. 4. Therefore, our LinkMirage
provides significantly higher privacy than the work of Hay et
al.
Adversaries with structural and contextual information:
Note that our analysis so far focuses on quantifying link-
privacy under an adversary with prior information about the
original network structure (including link prediction capabil-
ities). In addition, some adversaries may also have access to
contextual information about users in the social network, such
as user attributes, which can also be used to predict network
links (e.g., social-attribute network prediction model in [14]).
We further computed the prior probability using such social-
attribute network prediction model in [14] and showed the link
probability for the Google+ dataset in Fig. 5. The posterior
probability of our LinkMirage is closer to the prior probability
and thus LinkMirage achieves better privacy performance than
previous work.
C. Indistinguishability

Based on the posterior probability of a link under the worst
case P (Lt|{G′i}ti=0, {G̃i(Lt)}ti=0), we need to qualify the pri-
vacy metric for adversaries who aim to distinguish the posterior
probability with the prior probability. Since our goal is to
reduce the information leakage of Lt based on the perturbed
graphs {G′i}ti=0 and the prior knowledge {G̃i(Lt)}ti=0, we
consider the metric of indistinguishability to quantify privacy,
which can be evaluated by the conditional entropy of a private
message given the observed variables [7]. The objective for
an obfuscation scheme is to maximize the indistinguishability
of the unknown input I given the observables O, i.e. H(I|O)
(where H denotes entropy of a variable [7]). Here, we define
our metric for link privacy as

Definition 2: The indistinguishability for a link Lt in
the original graph Gt that the adversary can infer
from the perturbed graph G′t under the adversary’s prior
information {G̃i(Lt)}ti=0 is defined as Privacyid =

H(Lt|{G′i}ti=0, {G̃i(Lt)}ti=0).

Furthermore, we quantify the behavior of indistinguishability
over time. For our analysis, we continue to consider the worst
case prior of the adversary knowing the entire graph sequence
except the link Lt. To make the analysis tractable, we add
another condition that if the link L exists, then it exists in
all the graphs (link deletions are rare in real world social
networks). For a large-scale graph, only one link would not
affect the clustering result. Then, we have

Theorem 1: The indistinguishability decreases with time,

H(L|{G′i}ti=0, {G̃i(L)}ti=0) ≥ H(L|{G′i}t+1
i=0, {G̃i(L)}t+1

i=0)
(2)The inequality follows from the theorem conditioning reduces

entropy in [7]. Eq.2 shows that the indistinguishability would
not increase as time evolves. The reason is that over time,
multiple perturbed graphs can be used by the adversary to
infer more information about link L.

Next, we theoretically show why LinkMirage has better
privacy performance than the static method. For each graph
Gt, denote the perturbed graphs using LinkMirage and the
static method as G′t, G

′,s
t , respectively.

Theorem 2: The indistinguishability for LinkMirage is
greater than that for the static perturbation method, i.e.

H(Lt|{G′i}ti=0, {G̃i(Lt)}ti=0) ≥ H(Lt|{G′,si }
t
i=0, {G̃i(Lt)}ti=0)

(3)
Proof: In LinkMirage, the perturbation for the current

graph Gt is based on perturbation for Gt−1. Let us denote
the changed subgraph between Gt−1, Gt as Gt−ch, then

H(Lt|{G′i}ti=0, {G̃i(Lt)}ti=0)

=H(Lt|{G′i}t−2
i=0 , G

′
t−1, G

′
t −G′t−ch, G

′,s
t−ch, {G̃i(Lt)}

t
i=0)

=H(Lt|{G′i}t−1
i=0 , G

′,s
t−ch, {G̃i(Lt)}

t
i=0)

≥H(Lt|{G′i}t−1
i=0 , Gt

′,s, {G̃i(Lt)}ti=0)

≥H(Lt|{G′,si }
t
i=0, {G̃i(Lt)}ti=0)

where the first inequality also comes from the theorem condi-
tioning reduces entropy in [7]. The second inequality general-
izes the first inequality from a snapshot t to the entire sequence.
From Eq.3, we can see that LinkMirage may offer superior
indistinguishability compared to the static perturbation, and
thus provides higher privacy.

Comparison with previous work: Next, we experimentally
analyze our indistinguishability metric over time. Fig. 6 depicts
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Fig. 7. (a)(b) show the temporal anti-aggregation privacy for the Google+ dataset and the Facebook dataset, respectively. The anti-aggregation privacy decreases
as time evolves because more information is leaked with more perturbed graphs available. Leveraging selective perturbation, LinkMirage achieves much better
anti-aggregation privacy than the static baseline method.

the indistinguishability metric using the whole Facebook graph
sequence and the sampled Facebook graph sequence with 80%
overlap. We can see that the static perturbation leaks more
information over time. In contrast, the selective perturbation
achieves significantly higher indistinguishability. In Fig. 6(a),
after 9 snapshots, and using k = 5, the indistinguishability
of the static perturbation method is roughly 1/10 of the
indistinguishability of LinkMirage. This is because selective
perturbation explicitly takes the temporal evolution into con-
sideration, and stems privacy degradation via the selective
perturbation step. Comparing Fig. 6(a) and (b), LinkMirage
has more advantages for larger overlapped graph sequence.

We also compare with the work of Hay et al. in [16], For the
first timestamp, the probability for a real link to be preserved
in the anonymized graph is 1 − r/m. As time evolves, the
probability would decrease to (1− r/m)t. Combined with the
prior probability, the corresponding indistinguishability for the
method of Hay et al. is shown as the black dotted line in
Fig. 6, which converges to 0 very quickly (we also consider
r/m = 0.5 which would substantially hurt utility [16])
Compared with the work of Hay et al, LinkMirage significantly
improves privacy performance. Even when t = 1, LinkMirage
with k = 20 achieves up to 10x improvement over the
approach of Hay et al. in the indistinguishability performance.

D. Anti-aggregation Privacy

Next, we consider the adversaries who try to aggregate all
the previously published graphs to infer more information.
Recall that after community detection in our algorithm, we
anonymize the links by leveraging the k-hop random walk.
Therefore, the perturbed graph G′ is actually a sampling of
the k-hop graph Gk, where the k-hop graph Gk represents
graph where all the k-hop neighbors in the original graph
are connected. It is intuitive that a larger difference between
Gk and G′ represents better privacy. Here, we utilize the
distance between the corresponding transition probability ma-
trices ‖P kt − P ′t‖TV

4 to measure this difference. And we
extend the definition of total variance [18] from vector to
matrix by averaging total variance distance of each row in the
matrix, i.e. ‖P kt − P ′t‖TV = 1

|Vt|
∑|Vt|
v=1 ‖P kt (v)− P ′t (v)‖TV,

where P kt (v), P ′t (v) denotes the v-th row of P kt , P
′
t . We then

formally define the anti-aggregation privacy as

Definition 3: The anti-aggregation privacy for a perturbed

4We choose the total variance distance to evaluate the statistical distance
between Pkt and P ′t as in [27].

graph G′t with respect to the original graph Gt and the pertur-
bation parameter k is Privacyaa(Gt, G

′
t, k) = ‖P kt − P ′t‖TV.

The adversary’s final objective is to obtain an estimated
measurement of the original graph, e.g. the estimated transition
probability matrix P̂t which satisfies P̂ kt = P ′t . A straightfor-
ward manner to evaluate privacy is to compute the estimation
error of the transition probability matrix i.e. ‖Pt − P̂t‖TV.
We can derive the relationship between the anti-aggregation
privacy and the estimation error as (we defer the proofs to the
Appendix to improve readability.)

Theorem 3: The anti-aggregation privacy is a lower bound
of the estimation error for the adversaries, and

‖P kt − P ′t‖TV ≤ k‖Pt − P̂t‖TV (4)

We further consider the network evolution where the adversary
can combine all the perviously perturbed graphs together to
extract more k-hop information of the current graph. Under
this situation, a strategic methodology for the adversary is to
combine the perturbed graph series G′0, · · · , G′t, to construct
a new perturbed graph Ğ′t, where Ğ′t =

⋃
i=0,1··· ,tG

′
i. The

combined perturbed graph Ğ′t contains more information about
the k-hop graph Gkt than G′t. Correspondingly, the transition
probability matrix P̆ ′t of the combined perturbed graph Ğ′t
would provide more information than P ′t . That is to say, the
anti-aggregation privacy decreases with time.
Comparison with previous work: We evaluate the anti-
aggregation privacy of LinkMirage on both the Google+
dataset and the Facebook dataset. Here we perform our exper-
iments based on a conservative assumption that a link always
exists after it is introduced. The anti-aggregation privacy
decreases with time since more information about the k-hop
neighbors of the graph is leaked as shown in Fig. 7. Our
selective perturbation preserves correlation between consec-
utive graphs, therefore leaks less information and achieves
better privacy than the static baseline method. For the Google+
dataset, the anti-aggregation privacy for the method of Mittal
et al. is only 1/10 of LinkMirage after 84 timestamps.

E. Relationship with Differential Privacy

Our anti-inference privacy analysis considers the worst-
case adversarial prior to infer the existence of a link in the
graph. Next, we uncover a novel relationship between this anti-
inference privacy and differential privacy.
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Fig. 8. The worst case probability of deanonymizing users’ communications
(f = 0.1). Over time, LinkMirage provides better anonymity compared to the
static approaches.

Differential privacy is a popular theory to evaluate the
privacy of a perturbation scheme [12], [13]. The framework
of differential privacy defines local sensitivity of a query
function f on a dataset D1 as the maximal |f(D1)− f(D2)|1
for all D2 differing from D1 in at most one element df =
maxD2

‖f(D1)− f(D2‖1. Based on the theory of differential
privacy, a mechanism that adds independent Laplacian noise
with parameter df/ε to the query function f , satisfies ε-
differential privacy. The degree of added noise, which de-
termines the utility of the mechanism, depends on the local
sensitivity. To achieve a good utility as well as privacy,
the local sensitivity df should be as small as possible. The
following lemma demonstrates the effectiveness of our worst-
case Bayesian analysis by showing that the objective for good
utility-privacy balance under our worst-case Bayesian analysis
is equivalent to that under differential privacy.

Remark 1: The requirement for good utility-privacy balance
in differential privacy is equivalent to the objective of our
Bayesian analysis under the worst case. (We defer the proofs
to Appendix to improve readability.)

F. Summary for Privacy Analysis

• LinkMirage provides rigorous privacy guarantees to defend
against adversaries who have prior information about the
original graphs, and the adversaries who aim to combine
multiple released graphs to infer more information.
• LinkMirage shows significant privacy advantages in anti-

inference privacy, indistinguishability and anti-aggregation
privacy, by outperforming previous methods by a factor up
to 10.

VI. APPLICATIONS

Applications such as anonymous communication [11], [28],
[29] and vertex anonymity mechanisms [25], [34], [45] can uti-
lize LinkMirage to obtain the entire obfuscated social graphs.
Alternatively, each individual user can query LinkMirage for
his/her perturbed neighborhoods to set up distributed social re-
lationship based applications such as SybilLimit [43]. Further,
the OSN providers can also leverage LinkMirage to perturb
the original social topologies only once and support multiple
privacy-preserving graph analytics, e.g., privately compute the
pagerank/modularity of social networks.

A. Anonymous Communication [11], [28], [29]

As a concrete application, we consider the problem of
anonymous communication [11], [28], [29]. Systems for
anonymous communication aim to improve user’s privacy
by hiding the communication link between the user and the
remote destination. Nagaraja et al. and others [11], [28], [29]
have suggested that the security of anonymity systems can be
improved by leveraging users’ trusted social contacts.

We envision that our work can be a key enabler for the
design of such social network based systems, while preserving
the privacy of users’ social relationships. We restrict our
analysis to low-latency anonymity systems that leverage social
links, such as the Pisces protocol [28].

Similar to the Tor protocol, users in Pisces rely on proxy
servers and onion routing for anonymous communication.
However, the relays involved in the onion routing path are
chosen by performing a random walk on a trusted social
network topology. Recall that LinkMirage better preserves the
evolution of temporal graphs in Fig. 3. We now show that this
translates into improved anonymity over time, by performing
an analysis of the degradation of user anonymity over multiple
graph snapshots. For each graph snapshot, we consider a worst
case anonymity analysis as follows: if a user’s neighbor in the
social topology is malicious, then over multiple communica-
tion rounds (within that graph instance) its anonymity will be
compromised using state-of-the-art traffic analysis attacks [41].
Now, suppose that all of a user’s neighbors in the first graph
instance are honest. As the perturbed graph sequence evolves,
there is further potential for degradation of user anonymity
since in the subsequent instances, there is a chance of the user
connecting to a malicious neighbor. Suppose the probability
for a node to be malicious is f . Denote nt(v) as the distinct
neighbors of node v at time t. For a temporal graph sequence,
the number of the union neighbors ∪tk=0nk(v) of v increases
with time, and the probability for v to be attacked under the
worst case is P attackt (v) = 1− (1−f)|∪

t
k=0nk(v)|. Note that in

practice, the adversary’s prior information will be significantly
less than the worst-case adversary.

Fig. 8 depicts the degradation of the worst-case anonymity
with respect to the number of perturbed topologies. We can
see that the attack probability for our method is lower than the
static approach with a factor up to 2. This is because over con-
secutive graph instances, the users’ social neighborhood has
higher similarity as compared to the static approach, reducing
potential for anonymity degradation. Therefore, LinkMirage
can provide better security for anonymous communication, and
other social trust based applications.

B. Vertex Anonymity [25], [34], [45]

Previous work for vertex anonymity [25], [34], [45] would
be defeated by de-anonymization techniques [20], [30], [32],
[37]. LinkMirage can serve as a formal first step for vertex
anonymity, and even improve its defending capability against
de-anonymization attacks. We apply LinkMirage to anonymize
vertices, i.e. to publish a perturbed topology without labeling
any vertex. In [20], Ji et al. modeled the anonymization as
a sampling process where the sampling probability p denotes
the probability of an edge in the original graph Go to exist in
the anonymized graph G′. LinkMirage can also be applied for
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Fig. 9. (a) shows the false positive rate for Sybil defenses. We can see that the perturbed graphs have lower false positive rate than the original graph. Random
walk length is proportional to the number of Sybil identities that can be inserted in the system. (b) shows that the final attack edges are roughly the same for
the perturbed graphs and the original graphs.

such model, where the perturbed graph G′ is sampled from
the k-hop graph Gk (corresponding to Go).

They also derived a theoretical bound of the sampling prob-
ability p for perfect de-anonymization, and found that a weaker
bound is needed with a larger value of the sampling probability
p. Larger p implies that G′ is topologically more similar to G,
making it easier to enable a perfect de-anonymization. When
considering social network evolution, the sampling probability
p can be estimated as |E(G′0, · · · , G′t)|/|E(Gk0 , · · · , Gkt )|,
where E(G′0, · · · , G′t) are the edges of the perturbed graph
sequence, and E(Gk0 , · · · , Gkt ) are the edges of the k-hop
graph sequence. Compared with the static baseline approach,
LinkMirage selectively reuses information from previously
perturbed graphs, thus leading to smaller overall sampling
probability p, which makes it harder to perfectly de-anonymize
the graph sequence. For example, the average sampling prob-
ability p for the Google+ dataset (with k = 2) is 0.431 and
0.973 for LinkMirage and the static method respectively. For
the Facebook temporal dataset (with k = 3), the average
sampling probability p is 0.00012 and 0.00181 for LinkMirage
and the static method respectively. Therefore, LinkMirage is
more resilient against de-anonymization attacks even when
applied to vertex anonymity, with up to 10x improvement.

C. Sybil Defenses [43]

Next, we consider Sybil defenses systems which leverage
the published social topologies to detect fake accounts in the
social networks. Here, we analyze how the use of a perturbed
graph changes the Sybil detection performance of SybilLimit
[43], which is a representative Sybil defense system. Each user
can query LinkMirage for his/her perturbed friends to set up
the implementation of SybilLimit. Fig. 9(a) depicts the false
positives (honest users misclassified as Sybils) with respect to
the random walk length in the Sybillimit protocol. Fig. 9(b)
shows the final attack edges with respect to the attack edges
in the original topology. We can see that the false positive rate
is much lower for the perturbed graphs than for the original
graph, while the number of the attack edges stay roughly
the same for the original graph and the perturbed graphs.
The number of Sybil identities that an adversary can insert
is given by S = g′ · w′ (g′ is the number of attack edges
and w′ is the random walk parameter in the protocol). Since
g′ stays almost invariant and the random walk parameter w′
(for any desired false positive rate) is reduced, LinkMirage
improves Sybil resilience and provides the privacy of the social
relationships such that Sybil defense protocols continue to be
applicable (similar to static approaches whose Sybil-resilience

TABLE III. Modularity of Perturbed Graph Topologies

Google+ Original
Graph

LinkMirage
k = 2

LinkMirage
k = 5

Mittal et al.
k = 2

Mittal et al.
k = 5

Modularity 0.605 0.601 0.603 0.591 0.586
Facebook Original

Graph
LinkMirage

k = 5
LinkMirage
k = 20

Mittal et al.
k = 5

Mittal et al.
k = 20

Modularity 0.488 0.479 0.487 0.476 0.415

performance have been demonstrated in previous work).

D. Privacy-preserving Graph Analytics [31], [33]

Next, we demonstrate that LinkMirage can also benefit
the OSN providers for privacy-preserving graph analytics.
Previous work in [12], [13] have demonstrated that the im-
plementation of graph analytic algorithms would also result in
information leakage. To mitigate such privacy degradation, the
OSN providers could add perturbations (noises) to the outputs
of these graph analytics. However, if the OSN providers aim
to implement multiple graph analytics, the process for adding
perturbations to each output would be rather complicated.
Instead, the OSN providers can first obtain the perturbed graph
by leveraging LinkMirage and then set up these graph analytics
in a privacy-preserving manner.

Here, we first consider the pagerank [33] as an effective
graph metric. For the Facebook dataset, we have the average
differences between the perturbed pagerank score and the
original pagerank score as 0.0016 and 0.0018 for k = 5
and k = 20 respectively in LinkMirage. In comparison,
the average differences are 0.0019 and 0.0087 for k = 5
and k = 20 in the approach of Mittal et al. LinkMirage
preserves the pagerank score of the original graph with up
to 4x improvement over previous methods. Next, we show
the modularity [31] (computed by the timestamp t = 3 in
the Google+ dataset and the Facebook dataset, respectively)
in Table III. We can see that LinkMirage preserves both the
pagerank score and the modularity of the original graph, while
the method of Mittal et al. degrades such graph analytics
especially for larger perturbation parameter k (recall the visual
intuition of LinkMirage in Fig. 3).

E. Summary for Applications of LinkMirage

• LinkMirage preserves the privacy of users’ social contacts
while enabling the design of social relationships based
applications. Compared to previous methods, LinkMirage
results in significantly lower attack probabilities (with a
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TABLE IV. Graph Metrics of the Original and the Perturbed
Graphs for the Google+ Dataset.

Clustering Coefficient Assortativity Coefficient
Original Graph 0.2612 -0.0152

LinkMirage k = 2 0.2263 -0.0185
LinkMirage k = 5 0.1829 -0.0176

LinkMirage k = 10 0.0864 -0.0092
LinkMirage k = 20 0.0136 -0.0063

factor up to 2) when applied to anonymous communications
and higher resilience to de-anonymization attacks (with a
factor up to 10) when applied to vertex anonymity systems.

• LinkMirage even surprisingly improves the Sybil detection
performance when applied to the distributed SybilLimit
systems.

• LinkMirage preserves the utility performance for multiple
graph analytics applications, such as pagerank score and
modularity with up to 4x improvement.

VII. UTILITY ANALYSIS

Following the application analysis in Section VI, we aim
to develop a general metric to characterize the utility of
the perturbed graph topologies. Furthermore, we theoretically
analyze the lower bound on utility for LinkMirage, uncover
connections between our utility metric and structural properties
of the graph sequence, and experimentally analyze our metric
using the real-world Google+ and Facebook datasets.

A. Metrics

We aim to formally quantify the utility provided by LinkMi-
rage to encompass a broader range of applications. One
intuitive global utility metric is the degree of vertices. It is
interesting to find that the expected degree of each node in
the perturbed graph is the same as the original degree and we
defer the proof to Appendix to improve readability.

Theorem 4: The expected degree of each node after pertur-
bation by LinkMirage is the same as in the original graph:
∀v ∈ Vt,E(deg′(v)) = deg(v), where deg′(v) denotes the
degree of vertex v in G′t.

To understand the utility in a fine-grained level, we further
define our utility metric as

Definition 4: The Utility Distance (UD) of a perturbed
graph sequence G′0, · · · , G′T with respect to the original graph
sequence G0, · · · , GT , and an application parameter l is de-
fined as

UD(G0, · · ·GT , G′0, · · ·G′T , l)

=
1

T + 1

T∑
t=0

∑
v∈Vt

1

|Vt|
‖P lt (v)− (P ′t )

l(v)‖TV
(5)

Our definition for utility distance in Eq. 5 is intuitively
reasonable for a broad class of real-world applications, and
captures the behavioral differences of l-hop random walks
between the original graphs and the perturbed graphs. We
note that random walks are closely linked to the structural
properties of social networks. In fact, a lot of social network
based security applications such as Sybil defenses [43] and

anonymity systems [28] directly perform random walks in
their protocols. The parameter l is application specific; for
applications that require access to fine grained local struc-
tures, such as recommendation systems [2], the value of l
should be small. For other applications that utilize coarse and
macro structure of the social graphs, such as Sybil defense
mechanisms, l can be set to a larger value (typically around
10 in [43]). Therefore, this utility metric can quantify the
utility performance of LinkMirage for various applications in
a general manner.

Note that LinkMirage is not limited to only preserving the
community structure of the original graphs. We evaluate two
representative graph theoretic metrics clustering coefficient and
assortativity coefficient [14] as listed in Table IV. We can
see that LinkMirage well preserves such fine-grained structural
properties for smaller perturbation parameter k. Therefore, the
extent to which the utility properties are preserved depends on
the perturbation parameter k.

B. Relationships with Other Graph Structural Properties

The mixing time τε(Gt) measures the time required for
the Markov chain to converge to its stationary distribution, and
is defined as τε(Gt) = minr maxv(r

∣∣|P rt (v) − πt|TV < ε).
Based on the Perron-Frobenius theory, we denote the eigen-
values of Pt as 1 = µ1(Gt) ≥ µ2(Gt) ≥ · · ·µ|Vt|(Gt) ≥ −1.
The convergence rate of the Markov chain to πt is deter-
mined by the second largest eigenvalue modulus (SLEM) as
µ(Gt) = max

(
µ2(Gt),−µ|Vt|(Gt)

)
.

Since our utility distance is defined by using the transition
probability matrix Pt, this metric can be proved to be closely
related to structural properties of the graphs, as shown in
Theorem 5 and Theorem 6.

Theorem 5: Let us denote the utility distance between
the perturbed graph G′t and the original graph Gt by
UD(Gt, G

′
t, l), then we have τG′t (UD (Gt, G

′
t, τGt(ε))− ε) ≥

τGt(ε).

Theorem 6: Let us denote the second largest eigenvalue
modulus (SLEM) of transition probability matrix Pt of
graph Gt as µGt . We can bound the SLEM of a perturbed
graph G′t using the mixing time of the original graph, and
the utility distance between the graphs as µG′t ≥ 1 −
logn+log 1

UD(Gt,G
′
t,τGt

(ε))−ε

τGt (ε)
.

C. Upper Bound of Utility Distance
LinkMirage aims to limit the degradation of link privacy

over time. Usually, mechanisms that preserve privacy trade-
off application utility. In the following, we will theoretically
derive an upper bound on the utility distance for our algorithm.
This corresponds to a lower bound on utility that LinkMirage
is guaranteed to provide.

Theorem 7: The utility distance of LinkMirage is upper
bounded by 2l times the sum of the utility distance of each
community ε and the ratio cut δt for each Gt, i.e.

UD(G0, · · ·GT , G′0, · · ·G′T , l) ≤
1

T + 1

T∑
t=0

2l(ε+ δt) (6)

where δt denotes the number of inter-community links over
the number of vertices, and each community Ck(t) within Gt
satisfies ‖Ck(t) − C ′k(t)‖TV ≤ ε. We defer the proofs to the
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Fig. 10. (a), (b) show the utility distances using the Google+ dataset and the Facebook dataset, respectively. Larger perturbation parameter k results in larger
utility distance. Larger application parameter l decreases the distance, which shows the effectiveness of LinkMirage in preserving global community structures.

Appendix to improve readability.
Note that an upper bound on utility distance corresponds

to a lower bound on utility of our algorithm. While better
privacy usually requires adding more noise to the original
sequence to obtain the perturbed sequence, thus we can see
that LinkMirage is guaranteed to provide a minimum level of
utility performance.

In the derivation process, we do not take specific evolu-
tionary pattern such as the overlapped ratio into consideration,
therefore our theoretical upper bound is rather loose. Next,
we will show that in practice, LinkMirage achieves smaller
utility distance (higher utility) than the baseline approach of
independent static perturbations.

D. Utility Experiments Analysis
Fig. 10(a)(b) depict the utility distance for the Google+ and

the Facebook graph sequences, for varying perturbation degree
k and the application level parameter l. We can also see that
as k increases, the distance metric increases. This is natural
since additional noise increase the distance between probability
distributions computed from the original and the perturbed
graph series. As the application parameter l increases, the dis-
tance metric decreases. This illustrates that LinkMirage is more
suited for security applications that rely on macro structures,
as opposed to applications that require exact information about
one or two hop neighborhoods. Furthermore, our experimental
results in Table III also demonstrate the utility advantage of
our LinkMirage over the approach of Mittal et al. [27] in real
world applications.

VIII. RELATED WORK

Privacy with labeled vertices An important thread of research
aims to preserve link privacy between labeled vertices by
obfuscating the edges, i.e., by adding /deleting edges [16],
[27], [42]. These methods aim to randomize the structure of
the social graph, while differing in the manner of adding noise.
Hay et al. [16] perturb the graph by applying a sequence of
r edge deletions and r edge insertions. The deleted edges
are uniformly selected from the existing edges in the original
graph while the added edges are uniformly selected from the
non-existing edges. However, neither the edge deletions nor
edge insertions take any structural properties of the graph into
consideration. Ying and Wu [42] proposed a new perturbation
method for preserving spectral properties, without analyzing
its privacy performance.

Mittal et al. proposed a perturbation method in [27], which
serves as the foundation for our algorithm. Their method
deletes all edges in the original graph, and replaces each edge
with a fake edge that is sampled based on the structural prop-

erties of the graph. In particular, random walks are performed
on the original graph to sample fake edges. As compared to the
methods of Hay et al. [16] and Mittal et al. [27], LinkMirage
provides up to 3x privacy improvement for static social graphs
and up to 10x privacy improvement for dynamic social graphs.

Another line of research aims to preserve link privacy [15]
[44] by aggregating the vertices and edges into super vertices.
Therefore, the privacy of links within each super vertex is
naturally protected. However, such approaches do not permit
fine grained utilization of graph properties, making it difficult
to be applied to applications such as social network based
anonymous communication and Sybil defenses.
Privacy with unlabeled vertices While the focus of our paper
is on preserving link privacy in context of labeled vertices,
an orthogonal line of research aims to provide privacy in
the context of unlabeled vertices (vertex privacy) [4], [25],
[34]. Liu et al. [25] proposed k-anonymity to anonymize
unlabeled vertices by placing at least k vertices at an equivalent
level. Differential privacy provides a theoretical framework
for perturbing aggregate information, and Sala et al. [34]
leveraged differential privacy to privately publish social graphs
with unlabeled vertices. We note that LinkMirage can also
provide a foundation for preserving vertex privacy as stated in
Section VI-B. Shokri et al. [35] addresses the privacy-utility
trade-off by using game theory, which can be generalized
to consider the temporal effects by updating the prior after
each iteration. In [39], they take the correlation over time into
account on the utility-privacy game designed in [36].

We further consider anonymity in temporal graphs with
unlabeled vertices. The time series data should be seriously
considered, since the adversaries can combine multiple pub-
lished graph to launch enhanced attacks for inferring more
information. [5], [10], [38] explored privacy degradation in
vertex privacy schemes due to the release of multiple graph
snapshots. These observations motivate our work, even though
we focus on labeled vertices.
De-anonymization In recent years, the security community
has proposed a number of sophisticated attacks for de-
anonymizing social graphs [20], [30], [32], [37]. While most
of these attacks are not applicable to link privacy mecha-
nisms (their focus is on vertex privacy), they illustrate the
importance of considering adversaries with prior information
about the social graph5. We perform a rigorous privacy anal-
ysis of LinkMirage (Section V) by considering a worst-case
(strongest) adversary that knows the entire social graph except
one link, and show that even such an adversary is limited in

5Burattin et al [6] exploited inadvertent information leaks via Facebook’s
graph API to de-anonymize social links; Facebook’s new graph API (v2.0)
features stringent privacy controls as a countermeasure.
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its inference capability.

IX. DISCUSSION
Privacy Utility Tradeoffs: LinkMirage mediates privacy-

preserving access to users’ social relationships. In our privacy
analysis, we consider the worst-case adversary who knows
the entire social link information except one link, which
conservatively demonstrates the superiority of our algorithm
over the state-of-the-art approaches. LinkMirage benefits many
applications that depend on graph-theoretic properties of the
social graph (as opposed to the exact set of edges). This also
includes recommendation systems and E-commerce applica-
tions.

Broad Applicability: While our theoretical analysis of
LinkMirage relies on undirected links, the obfuscation al-
gorithm itself can be generally applied to directed social
networks. Furthermore, our underlying techniques have broad
applicability to domains beyond social networks, including
communication networks and web graphs.

X. CONCLUSION
LinkMirage effectively mediates privacy-preserving access

to users’ social relationships, since 1) LinkMirage pre-
serves key structural properties in the social topology while
anonymizing intra-community and inter-community links; 2)
LinkMirage provides rigorous guarantees for the anti-inference
privacy, indistinguishability and anti-aggregation privacy, in
order to defend against sophisticated threat models for both
static and temporal graph topologies; 3) LinkMirage signifi-
cantly outperforms baseline static techniques in terms of both
link privacy and utility, which have been verified both theoret-
ically and experimentally using real-world Facebook dataset
(with 870K links) and the large-scale Google+ dataset (with
940M links). LinkMirage enables the deployment of real-world
social relationship based applications such as graph analytic,
anonymity systems, and Sybil defenses while preserving the
privacy of users’ social relationships.
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APPENDIX

A. Proof of the Upper Bound of Anti-aggregation Privacy
‖Pkt − P ′t‖TV = ‖Pkt − P̂kt ‖TV ≤ 1

2|Vt|
∑|Vt|
v=1 ‖Pt(v)P

k−1
t −

P̂t(v)P
k−1
t ‖1 + 1

2|Vt|
∑|Vt|
v=1 ‖P̂t(v)P

k−1
t − P̂t(v)P̂

k−1
t ‖1 =

‖Pt − P̂t‖TV + ‖Pk−1
t − P̂k−1

t ‖TV ≤ k‖Pt − P̂t‖TV.

B. Relationships with Differential Privacy When considering
differential privacy for a time series of graph sequence {Gi}ti=0,
we have f(D) = P ({G′i}ti=0|{G̃i(Lt)}ti=0, Lt = 1), f(D′) =

P ({G′i}ti=0|{G̃i(Lt)}ti=0, Lt = 0). For a good privacy
performance, we need P ({G′i}ti=0|{G̃i(Lt)}ti=0, Lt = 1) ≈
P ({G′i}ti=0|{G̃i(Lt)}ti=0, Lt = 0). Since the probability of
{G′i}ti=0 given {G̃i(Lt)}ti=0 as P ({G′i}ti=0|{G̃i(Lt)}ti=0) =

P ({G′i}ti=0|{G̃i(Lt)}ti=0, Lt = 1)P (Lt = 1|{G̃i(Lt)}ti=0) +

P ({G′i}ti=0|{G̃i(Lt)}ti=0, Lt = 0)P (Lt = 0|{G̃i(Lt)}ti=0,
it is easy to see that if the condition for a good privacy
performance holds, we have P (Lt|{G′i}ti=0, {G̃i(Lt)}ti=0) =
P ({G′i}

t
i=0|{G̃i(Lt)}

t
i=0,Lt)×P (Lt|{G̃i(Lt)}ti=0)

P ({G′i}
t
i=0|{G̃i(Lt)}

t
i=0)

≈ P (Lt|{G̃i(Lt)}ti=0),

which is the same as in Definition 1 and means that the posterior probability
is similar to the prior probability, i.e., the adversary is bounded in the
information it can learn from the perturbed graphs.

C. Proof of Theorem 4: Expectation of Perturbed Degree According to
Theorem 3 in [27], we have E(deg′com(v)) = deg(v), where deg′com(v)
denotes the degree of v after perturbation within community. Then we
consider the random perturbation for inter-community subgraphs. Since
the probability for an edge to be chosen is deg(va(i)) deg(vb(j))|va|

|Eab|(|va|+|vb|)
,

the expected degree after inter-community perturbation satisfies
E(deg′inter(va(i))) =

∑
j

deg(va(i)) deg(vb(j))(|va|+|vb|)
|Eab|(|va|+|vb|)

= deg(va(i)). Combining with the expectations under static scenario, we
have E(deg′(v)) = deg(v).

D. Proof of the Upper Bound for the Utility Distance We first
introduce some notations and concepts. We consider two perturbation
methods in the derivation process below. The first method is our dynamic
perturbation method, which takes the graph evolution into consideration.
The second method is the intermediate method, where we only implement
dynamic clustering without selective perturbation. That is to say, we
cluster Gt, then perturb each community by the static method and each
inter-community subgraphs by randomly connecting the marginal nodes,
independently. We denote the perturbed graphs corresponding to the dynamic,
the intermediate method by G′t, G

′,i
t respectively. Similarly, we denote

the perturbed TPM for the two approaches by P ′t , P
′,i
t . To simplify the

derivation process, we partition the proof into two stages. In the first stage,
we derive the UD upper bound for the intermediate perturbation method. In
the second stage, we derive the relationship between G′,it and G′t. Results
from the two stages can be combined to find the upper bound for the utility

distance of LinkMirage. Denoting the communities as C1, C2, ·, CKt and
the inter-community subgraphs as C12, C13, · · · , we have

‖Pt − Pt′,i‖TV

=

∥∥∥∥∥∥∥∥∥∥

Pt(1,1) − P ′t(1,1) . . . Pt(1,Kt) − P
′
t(1,Kt)

Pt(2,1) − P ′t(2,1) . . . Pt(2,Kt) − P
′
t(2,Kt)

...
...

. . .
Pt(Kt,1) − P

′
t(Kt,1)

. . . Pt(Kt,Kt) − P
′
t(Kt,Kt)

∥∥∥∥∥∥∥∥∥∥
TV

=
1

|Vt|
∑Kt

k=1
|Vt(k)|‖Pt(k,k) − P ′t(k,k)‖TV

+
1

|Vt|
∑Kt

k,j=1,k 6=j
|Et(k, j)|‖Pt(k,j) − P ′t(k,j)‖TV

≤ ε+ δt

(7)

Here, δt is the ratio cut of the graph [1], and δt = |Et−in|/|Vt| =∑Kt
k,j=1,k 6=j |Et(k, j)|/|Vt|. For arbitrary matrix P and Q, we have

‖P l − Ql‖TV ≤ l‖P − Q‖TV. Combining the above results, we have
UD(Gt, G

′,i
t , l) ≤ l‖Pt − P ′,it ‖TV ≤ l (ε+ δt). Then, we generalize

the utility analysis of intermediate perturbation to our dynamic perturbation.
Assume that there are Kc

t out of Kt clusters that are considered as changed,
which would be perturbed independently, and Ku

t out of Kt clusters are
considered as unchanged, i.e., their perturbation would follow the perturbation
manner in G′t−1. To simplify derivation, we use Pt(k) instead of Pt(k,k) to
represent the TPM of the k-th community. Then, we have

UD(Gt, G
′
t, 1) = ‖Pt − P ′t‖TV

≤

∑Kc
t

k=1 ‖Pt(k) − P
′
t(k)
‖TV +

∑Ku
t

j=1 ‖Pt(j) − P
′
t(j)
‖TV

|Kt|
+ δt

≤
1

|Kt|

Kc
t∑

k=1

‖Pt(k) − P ′t(k)‖TV +

Ku
t∑

j=1

(
‖Pt(j) − P(t−1)(j)‖TV

+‖P(t−1)(j) − P ′(t−1)(j)‖TV + ‖P ′(t−1)(j) − P
′
t(j)‖TV

))
+ δt

=

∑Kt
k=1 ‖Pt(k) − P

′
t (k)‖TV

|Kt|
+
|Ku
t |ε0
|Kt|

+ δt

≤ UD(Gt, G
′,i
t , 1) + ε+ δt

(8)

where ε0 denotes the threshold to classify a community as changed
or unchanged. The last inequality comes from the fact that ε0 ≤ ε.
Then, we can prove UD(Gt, G′t, l) = ‖P lt − (P ′t )

l‖TV ≤
l‖Pt − P ′t‖TV ≤ l‖Pt − P ′,it ‖TV + l(ε + δt) = 2l (ε+ δt) and
UD(G0, · · ·GT , G′0, · · ·G′T , l) ≤

1
T+1

∑T
t=0 2l(ε+ δt).

E. Proof for Relating Utility Distance with Structural Metrics
From the definition of total variation distance, we have ‖P rv (G′t)− π‖TV +
‖P rv (Gt) − π‖TV ≥ ‖P rv (G′t) − P tv(G)‖TV . Taking the maximum over
all vertices, we have max ‖P rv (G′t) + π‖TV + max ‖P rv (Gt) − π‖TV ≥
max ‖P rv (G′t) − P tv(G)‖TV . Therefore, for t ≥ τG(ε),
max ‖P rv (G′t)−π‖TV ≥ max ‖P rv (G′t)−P tv(G)‖TV +max ‖P rv (Gt)−

π‖TV ≥
∑|Vt|
v=1 ‖P

r
v (G′t)−P

t
v(G)‖TV −π‖TV

|Vt|
−ε = UD(Gt, G′t, τG(ε))−ε.

Then, we have τG′t
(UD (Gt, G′t, τGt (ε))− ε) ≥ τGt (ε). It is

known that the second largest eigenvalue modulus is related to the

mixing time of the graph as τG′t
(ε) ≤ logn+log 1

ε
1−µG′t

. From this

relationship, we can bound the SLEM in terms of the mixing time as

1 − logn+log ( 1
ε
)

τG′t
≤ µG′t

. Replacing ε with UD(Gt, G′t, τGt (ε)) − ε,

we have 1 −
logn+log 1

UD(Gt,G
′
t,τGt

(ε))−ε

τG′t
(UD(Gt,G

′
t,τGt (ε)))−ε

≤ µG′t
. Finally, we leverage

τG′t
(UD(Gt, G′t, τGt (ε) − ε)) ≥ τGt (ε) in the above equation, to obtain

µG′t
≥ 1−

logn+log 1
UD(Gt,G

′
t,τGt

(ε))−ε

τGt (ε)
.
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