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Abstract

Leakage of private information from web applications—

even when the traffic is encrypted—is a major security

threat to many applications that use HTTP for data deliv-

ery. This paper considers the problem of inferring from en-

crypted HTTP traffic the web sites or web pages visited by

a user. Existing browser-side approaches to this problem

cannot defend against more advanced attacks, and server-

side approaches usually require modifications to web enti-

ties, such as browsers, servers, or web objects. In this paper,

we propose a novel browser-side system, namely HTTPOS,

to prevent information leaks and offer much better scalabil-

ity and flexibility. HTTPOS provides a comprehensive and

configurable suite of traffic transformation techniques for

a browser to defeat traffic analysis without requiring any

server-side modifications. Extensive evaluation of HTTPOS

on live web traffic shows that it can successfully prevent the

state-of-the-art attacks from inferring private information

from encrypted HTTP flows.

1 Introduction

Leakage of private information from web applications

is a major security threat to many applications that use

HTTP for data delivery. Cloud computing and other similar

service-oriented platforms will only exacerbate this prob-

lem, because these services are usually delivered through

web browsers. Moreover, it is well known that data encryp-

tion alone is insufficient for preventing information leaks.

For instance, traffic-analysis attacks can identify the web

sites visited by a user from encrypted traffic [7, 22, 23, 26]

and anonymized NetFlows records [14]. Chen et al. have

further showed that sensitive personal information, such as

medical records and financial data, could also be inferred

through traffic analysis [13]. Besides, a user’s browser

could be fingerprinted [39], and her browsing patterns could
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be profiled from traffic features [29]. A common approach

to preventing leaks is to obfuscate the encrypted traffic by

changing the statistical features of the traffic, such as the

packet size and packet timing information [13, 23, 35, 38].

Existing methods for defending against information

leaks, however, suffer from quite a few problems. A major

problem is that, as server-side solutions, they require modi-

fications of web entities, such as browsers, servers, and even

web objects [13, 38]. Modifying the web entities is not fea-

sible in many circumstances and cannot easily satisfy differ-

ent applications’ requirements on information leak preven-

tion. A second fundamental problem with these methods

is that they are still vulnerable to some advanced traffic-

analysis attacks. For example, although Sun et al. [35] pro-

posed twelve approaches to defeat their traffic-analysis at-

tack based on web object size, new attacks based on the

tuple of packet size and direction [26] could still identify

the web sites visited by a user. Finally, the efficacy of these

methods has not been validated thoroughly based on actual

implementations and live HTTP traffic. An exception is the

work from Chen et al. [13] that is implemented as an IIS

extension and a Firefox add-on.

In this paper we explore a browser-side approach to pre-

vent information leaks from encrypted web traffic. Com-

pared with the server-side approach, the browser-side ap-

proach has the scalability advantage, because only the traf-

fic between the browser and the visited servers needs to be

obfuscated. Moreover, it is possible for users to choose

which encrypted flows to be obfuscated in order to con-

serve resources and to reduce impacts on performance, but

this flexibility advantage is very difficult to obtain from a

server-side approach. However, designing a browser-side

method is very challenging, because the server’s behavior

cannot be directly modified to evade traffic analysis. That

is, we cannot apply the previously proposed methods that

assume the capability of modifying the server’s behavior to

the browser-side approach.

We show in this paper that it is possible to devise a

browser-side method to defeat traffic analysis by presenting

HTTPOS (which stands for HTTP or HTTPS with Obfus-



cation), our proposed browser-side method. In addition to

the advantages discussed above, HTTPOS has several other

important advantages, such as supporting a wider scope of

application scenarios than the previous approaches (see the

threat model in Section 2). HTTPOS is a user-level pro-

gram and does not need to modify any web entity. It obfus-

cates encrypted web traffic by modifying four fundamen-

tal network flow features on the TCP and the HTTP layers,

namely, packet size, timing of packets, web object size, and

flow size. These features, as shown in the evaluation, are

sufficient for diffusing and confusing the existing traffic-

analysis attacks. To modify the traffic from web servers,

HTTPOS exploits a number of basic features in TCP (e.g.,

Maximal Segment Size (MSS) negotiation and advertising

window) and HTTP (e.g., HTTP Range and HTTP Pipelin-

ing).

We have implemented HTTPOS and conducted exten-

sive experiments on live HTTP traffic to evaluate its per-

formance in terms of evading traffic-analysis attacks and

impacts on the performance of network flows. The re-

sults show that HTTPOS can effectively prevent the state-

of-the-art attacks from inferring private information from

encrypted HTTP flows. As will be shown in Section 5.2,

without HTTPOS an attacker can achieve high accuracy

of inferring the web sites visited by a user. For example,

some attacks can achieve 94% accuracy on inferring the

100 web sites we tested by selecting the one with the high-

est confidence based on their classification algorithm. With

HTTPOS all attacks’ accuracy drops to zero for at least 98

web sites. Even if an attacker chooses the top five web sites

as her inference, the accuracy for at least 94 web sites re-

mains zero for all attacks. Moreover, some traffic-analysis

attack can easily infer a user’s input to the Google search

box. But when HTTPOS is applied, the output of such at-

tack is reduced to a random guess.

Section 2 first presents the threat model, and Section 3

describes our strategies for evading traffic-analysis attacks

and methods for manipulating network flow features. After

that, we introduce HTTPOS’s design and implementation

in Section 4, followed by extensive experiment results in

Section 5. We finally introduce the related work in Section

6 before concluding this paper in Section 7.

2 Threat models

Unlike previous works, we consider in this paper both

(1) the problem of inferring the web sites visited by users

and (2) the problem of inferring the web pages browsed

by users. The three attack scenarios illustrated in Fig-

ures 1(a)-1(c) concern problem (1), whereas the one in Fig-

ure 1(d) concerns problem (2). We summarize the threat

models for the four scenarios in Table 1 based on the attack

goals, visibility of the packet information to the attacker,

and HTTPOS’s location. There are five entities in the threat

models: a victim user (i.e., client in Figure 1), an attacker,

an encrypted tunnel, HTTPOS, and remote web sites/pages.

The threat models for scenarios (a)-(c) were adopted in pre-

vious works, including Sun et al. [35], Liberatore et al. [26]

and Wright et al. [38], and the threat model for scenario (d)

was adopted by Chen et al. [13].

In scenarios (a)-(c), a client visits a web site through an

encrypted tunnel at different layers, for example, wireless

channel with WEP/WPA [21], IPSec-based IP tunnel [37],

and SSH-based TCP tunnel [6], and the attacker attempts to

find out that web site. In scenario (d), a client visits different

web pages at a certain web site. This attack model assumes

that the attacker knows the web site, and she attempts to

discover the web pages visited by the client. Note that an

updated web page due to the client’s interactions with the

web site is considered as a new web page from an attacker’s

viewpoint. For example, some web sites (e.g., Google) may

return auto-suggested words upon receiving a user input.

These dynamically updated web pages are regarded as dif-

ferent web pages.

In all four scenarios, the attacker eavesdrops the en-

crypted tunnel to obtain the encrypted packets sent between

the victim and web servers, but she cannot decrypt these

packets. To infer the visited web sites/pages from these

encrypted packets, the attacker first profiles the character-

istics of the traffic between the victim and each candidate

web site/page. The traffic profiling depends on the traffic

analysis methods [7, 13, 22, 23, 26]. She can easily build

such profiles by visiting those web sites/pages via the en-

crypted tunnels herself. Equipped with the set of traffic pro-

files, the attacker then performs the inference by classifying

the captured traffic trace into the traffic profiles prepared

beforehand. From the viewpoint of pattern classification,

the traffic profiling step is known as conducting supervised

learning to train a classifier, whose feature set is the traffic

profile, and the class label is the web site/page. Moreover,

the inference step corresponds to labeling a traffic trace ac-

cording to the trained classifier [18].

HTTPOS obfuscates the encrypted traffic by exploiting

the protocol features in TCP and HTTP. Since the TCP con-

nection (and therefore the HTTP connection) is end-to-end

in scenarios (a), (b), and (d), HTTPOS can be deployed at

the browsers. On the other hand, the browser’s TCP connec-

tion is terminated at the tunnel entry in scenario (c). There-

fore, when HTTPOS is deployed at the browsers for TCP

tunnels, only the HTTP methods can be used for traffic ob-

fuscation. Furthermore, HTTPOS can be deployed at the

tunnel entry in scenarios (b) and (c). Since we implement

HTTPOS as an HTTP proxy (which will be discussed in

Section 4), the same HTTPOS can be placed at the browser

or the tunnel entry for both scenarios. However, placing

HTTPOS at the TCP tunnel’s entry maximizes HTTPOS’s
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Figure 1: The four attack scenarios considered in this paper.

Table 1: Threat models for the four attack scenarios.

Wireless (e.g., WEP/WPA) IP tunnel (e.g., IPSec) TCP tunnel (e.g., SSH) HTTPS (SSL/TLS)

Attacker’s goal Identify web site Identify web site Identify web site Identify web page

Visibility of HTTP header No No No No

Visibility of TCP header No No Yes Yes

Visibility of Destination IP No No No Yes

HTTPOS’s location Client Client/tunnel entry Client/tunnel entry Client

obfuscation power, because, as mentioned earlier, HTTPOS

at the browser cannot use TCP’s protocol features to obfus-

cate encrypted traffic.

3 Defending against traffic-analysis attacks

In Section 3.1, we first elaborate on the classification al-

gorithms used in the state-of-the-art traffic-analysis attacks.

Then we propose strategies with formal analysis to deceive

those classification algorithms in Section 3.2. In particu-

lar, we identify four basic features that can affect the infor-

mation used by those traffic-analysis attacks: packet size,

timing of packets, web object size, and flow size. We then

propose methods in Section 3.3 to manipulate these features

to evade these traffic-analysis attacks.

3.1 The stateoftheart attacks

We consider the five traffic-analysis attacks on encrypted

HTTP flows [7, 13, 26, 35] in Table 2. We name them by

concatenating the first letters of the authors’ names. Sun

et al. proposed the SSWRPQ attack, which is the first at-

tack that can identify web sites through the number and size

of web objects [35]. Later on, Bissias et al. proposed us-

ing the inter-arrival time between packets and packet size

to profile a web site in their BLJL attack [7]. Liberatore et

al. exploited the tuple (flow direction, packet size) for traffic

analysis and proposed two classification algorithms: Jac-

card coefficient (JC) and naive Bayesian classifier (NBC)

that are referred to as LL-JC attack and LL-NBC attack,

respectively [26]. Most recently, Chen et al. employed a

sequence of (flow direction, packet size) to infer the web

pages visited by a victim in their CWWZ attack [13].

The SSWRPQ attack employs the number and size of web

objects as features. Since all HTTP traffic is encrypted, an

attacker cannot obtain the exact values of such features. As

suggested in [24, 35], the amount of bytes from the server

between two consecutive requests from the client is used to

approximate the sizes of web objects. After obtaining the

number of web objects and their sizes, the attack uses the

Jaccard coefficient to quantify the similarity between a new

trace and an existing profile.

The BLJL attack employs both inter-arrival time (IAT) be-



Table 2: Traffic-analysis attacks studied in this paper.

Attacks Features Classification algorithms

SSWRPQ [35] The number and size of web objects Jaccard coefficient

BLJL [7] Inter-arrival time between packets and packet size Cross correlation

LL-JC [26] Tuples of (flow direction, packet size) Jaccard coefficient

LL-NBC [26] Tuples of (flow direction, packet size) Naive Bayesian classifier

CWWZ [13] Sequence of tuple (flow direction, packet size) Sequence comparison

tween packets and packet size to profile a web site and uses

cross-correlation to measure the similarity between a new

trace and an existing profile. To compare a new trace’s fea-

tures to an existing profile, the BLJL attack computes the

cross correlation of its IAT sequences and packet size se-

quences by:

R =
∑

n
i=1[(τi− τ̄)(si− s̄)]

√

∑
n
i=1(τi− τ̄)

√

∑
n
i=1(si− s̄)

, (1)

where τ and s denote the new trace’s IAT values and packet

sizes, respectively, whereas τ̄ and s̄ are the respective mean

values of an existing profile’s IAT and packet size.

The LL-JC attack employs tuples of (flow direction,

packet size) as features. Let D = {d1,d2, . . .} be a set of

tuples in a trace. The JC is defined as

S(Dnew,Di) =
|Dnew

⋂

Di|
|Dnew

⋃

Di|
, (2)

where Dnew and Di denote the set of tuples in a new trace

and that in the profile of the ith web site, respectively. The

normalized S (i.e., S) is used to determine to which class a

given trace belongs:

S(Dnew,Di) =
S(Dnew,Di)

∑ j∈U S(Dnew,D j)
, (3)

where U is the set of all existing profiles.

The LL-NBC attack only considers the existence of cer-

tain tuples without examining the number of tuples in a

flow. This attack employs the Kernel Density Estimation

(KDE) to estimate the probability density function of each

tuple (i.e., considering the value of each feature) and then

employs a naive Bayesian classifier to reach a decision. We

use V to denote the features used in an LL-NBC attack.

The relationship between V and D is that for a given fea-

ture in V , its value is equal to zero if the corresponding tuple

is not in D and KDE is not used. After using KDE, although

such features may have values larger than zero, their values

may be very small, depending on the parameters used in

the kernel function and the location of tuples that are in D.

NBC classifies Vnew into a class Vi if and only if

P(Vnew|Vi)P(Vi)> P(Vnew|V j)P(V j), ∀ j 6= i. (4)

Based on the assumption that all attributes are independent,

P(Vnew|Vi) =
n

∏
k=1

P(dk|Vi), (5)

where dk denotes a feature in Vi.

The CWWZ attack, unlike the LL-JC and LL-NBC attacks

that only inspect individual packets, considers a sequence of

packets [13] to infer user inputs to a web page. A sequence

of directional packet sizes is referred to as a flow vector, de-

noted by C = {ct ,ct+1, . . . ,ct+n−1}, where ct+n−1 represents

the directional packet size observed at time t + n− 1, and n

is the sequence length. Let k be the number of all avail-

able characters and kt be the number of possible character

sequences at time t, and these possible characters consti-

tute an ambiguity set. After observing ct , the attacker may

know that only kt/αt possible inputs from the ambiguity

set can produce ct , where αt ∈ [1,kt) is defined as a reduc-

tion factor. In the next observation, the ambiguity set’s size

kt+1 is reduced from k · kt to k · (kt/αt). After receiving

{ct ,ct+1, . . . ,ct+n−1}, the size of ambiguity set is reduced

from kn to kn

Πn
i=1(αt+i−1)

, where Πn
i=1(αt+i−1) is referred to as

reduction power. A victim’s input can be easily recovered

if an attack has large reduction power.

3.2 Two defense strategies

We propose two general strategies to deceive an attack’s

classification algorithm. The first one is inducing the clas-

sification algorithm to make a random guess by introducing

features that have not been involved in training the algo-

rithm. The second strategy is to confuse the classification

algorithm to misclassify a trace.

3.2.1 The diffusion strategy

The SSWRPQ, LL-JC, and LL-NBC attacks implicitly as-

sume that packet sizes (or web object sizes) observed in the

training data set will appear in the testing data set (i.e., a

new trace to be classified). If all packet sizes or web object

sizes in a new trace never appear in the training data set,

these algorithms will be forced to make a random guess.

Lemma 1 details how to evade algorithms based on the Jac-

card coefficient and the naive Bayesian classifier.



Lemma 1. If a flow comprises a set of tuples, denoted as

Dnew, which never exist in any training set, then the LL-

JC and LL-NBC attacks cannot classify this flow correctly.

Similarly, if a web object size of a flow never appears in

any training set, then the SSWRPQ attack cannot identify

the class of this flow.

Proof. In the LL-JC attack, S(Dnew,Di) = 0, because Dnew

does not appear in any training set. Similarly, if the sizes

of web objects does not exist in any training set, the SS-

WRPQ’s Jaccard coefficient becomes zero. In the LL-NBC

attack, if Dnew is totally new to the classification algorithm,

P(Vnew|Vi) = 0 (∀i, i ∈U). Although using KDE may al-

low P(Vnew|Vi)> 0 due to the kernel function, we can select

Dnew whose tuples are not close to any tuples in the training

set, so that P(Vnew|Vi)→ 0.

Defense mechanisms based on Lemma 1 are feasible in

practice, because the packet size is dominated by a rela-

tively small number of values [34]. In other words, we can

easily find packet sizes that never appear in any training set.

Figure 2 plots the CDF of the number of unique packet sizes

in a flow from two data sets. The UMass data set contains

packet header traces collected four times a day from Febru-

ary 2006 to April 2006, and the size of compressed pcap

files is around 2.6GB [26]. This data set is used for test-

ing the LL-JC and the LL-NBC attacks [26]. The WIDE

traces, on the other hand, contain all traffic going through

the samplepoint-F of the WIDE backbone networks from

30 March 2009 to 2 April 2009, and the size of the pcap

traces is around 433GB [10]. Since the WIDE data set con-

tains various kinds of traffic, we extract HTTP flows that

have at least five packets. We regard the packets sent to a

web server as request packets, and those sent from a web

server as response packets. Both figures show that in the

majority of flows the number of unique packet sizes is less

than 100. Moreover, the request packets usually have fewer

number of unique packet sizes than the response packets.

For the CWWZ attack, if a flow vector does not occur

in any training set, the attacker cannot exclude any possible

input and has to consider all the ambiguity set in the next

flow vector. Therefore, the reduction power is fixed to one,

and the final decision is the same as a random guess. For

the BLJL attack, since it uses a cross-correlation based al-

gorithm, it makes an implicit assumption that the number of

packets (i.e., n) should be the same in the training data set

and the testing data set. If this assumption does not hold,

R could not be computed. Thus, it is possible to defeat this

attack by changing the number of packets.

3.2.2 The confusion strategy

To confuse an attack’s classification algorithm, we could

manipulate a flow to make its features similar to another

flow’s features. For instance, Lemma 2 first presents an ap-

proach to confuse the LL-JC, LL-NBC, and SSWRPQ at-

tacks.

Lemma 2. Let Di and D j be the respective sets of tuples in

the profiles of sites i and j, and Vi and V j be the respective

feature sets of sites i and j used by the LL-NBC attack. If the

tuples for a flow of site i become (D j−Di) (i.e., the tuples

that are in D j but not in Di) after changing the packet sizes

in the flow, the LL-JC and the LL-NBC attacks will regard

the transformed flow as a flow of site j. Similarly, after

changing the sizes of web objects in a flow of site i to the

one in the profile of site j, the SSWRPQ attack will regard

the transformed flow as a flow of site j.

Proof. Let Dnew be the tuples in the transformed flow. Since

S(Dnew,D j)> S(Dnew,Di) = 0, the LL-JC attack regards the

transformed flow as a flow of site j rather than a flow of

site i. Let V new be the feature set in the transformed flow.

According to the relationship between D and V , we know

that P(V new|V j)> P(V new|Vi) = 0 (or P(V new|Vi)→ 0 if the

KDE is used). Thus the LL-NBC attack will consider the

transformed flow as a flow of site j. Similarly, if the trans-

formed flow’s web object size only exists in site j’s profile,

the SSWRPQ attack will find that the transformed flow is

more similar to flows of site j than flows of site i.

For the CWWZ attack, if we introduce other flow vec-

tors (e.g., by entering some useless inputs) in addition to

the flow vectors induced by the real inputs, the attacker has

to consider all inputs that may result in these flow vectors

for the following two reasons. First, the attacker could not

differentiate between flow vectors caused by useless inputs

and those induced by real inputs. Second, the attacker could

not know the start and the end of real inputs. As a result, the

reduction power can be reduced.

Lemma 3 presents a sufficient condition to induce the

BLJL attack to reach an incorrect decision.

Lemma 3. By letting all packets in a flow have the same

size sc and their IATs have the same value τc, R in Eq. (1)

is then determined by sc and τc, instead of the transformed

flow’s original feature.

Proof. If τi = τc and si = sc, then R =
√

(τc− τ̄)(sc− s̄).
By adjusting sc and τc, we can therefore make a flow simi-

lar to any other flows. As a result, the BLJL attack cannot

identify the original flow.

3.3 Manipulating the features

To defeat the traffic-analysis attacks listed in Table 2 and

possibly new traffic-analysis attacks, we manipulate four

fundamental network flow features, including packet size,

web object size, flow size, and timing of packets. Under
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Figure 2: The distributions of unique packet sizes in two HTTP data sets.

our threat models, these features can be measured from an

encrypted HTTP flow and exploited to differentiate network

flows by an attacker. We describe our basic approaches for

manipulating these features in HTTPOS below. Since the

flow size is determined by the web object size, we discuss

the flow size together with the web object size.

3.3.1 Packet size

HTTPOS alters the size of outgoing packets on the HTTP

and TCP layers. On the HTTP layer, HTTPOS increases

the packet size by adding additional bytes to the HTTP

header, for example, adding additional fields, appending

characters to the Referer field, or using specific media

types to replace the asterisk in the Accept field. On the

TCP layer, HTTPOS decreases the packet size by splitting

a TCP packet into several smaller TCP packets. If an at-

tacker could not observe the TCP header (i.e., scenarios (a)

and (b)), HTTPOS increases the packet size by extending

the TCP option fields (e.g., by adding the TCP No Opera-

tion option that is usually used to pad the option list). How-

ever, it is more challenging to control the size of incoming

packets from a web server, because it is usually determined

by the server application and the server’s TCP/IP stack.

HTTPOS exploits the HTTP Range option, TCP maximum

segment size (MSS) negotiation, and TCP advertising win-

dow to manipulate the packet size.

HTTP Range HTTP/1.1 provides a Range option to fetch

portion of a web object to avoid downloading the same con-

tent already received by a client [20]. RFC 2616 refers

to a request having a Range header as a partial GET.

To fetch a web object, HTTPOS sends a request with a

Range header, such as “Range: bytes=0-0.” If

the server supports HTTP Range, it will reply with “206

Partial Content” and a Content-range header,

such as “Content-range: bytes 0-0/L,” where

L is the actual length of the requested web object. Af-

ter that, HTTPOS sends NU requests to the web server,

each of which only asks for ui (i = 1, . . . ,NU ) bytes, where

∑
NU
i=1 ui = L.

TCP MSS negotiation A TCP packet’s payload length is

limited by the TCP MSS. TCP allows sender and receiver

to negotiate the MSS through the MSS option in the TCP

SYN and TCP SYN/ACK packets. By exploiting this fea-

ture, HTTPOS can constrain the packet size by announcing

a small MSS.

TCP advertising window Since the advertising window

controls the number of bytes a sending TCP could dispatch,

the size of the incoming packet can be manipulated by ad-

justing the advertising window if it is not larger than the

MSS.

3.3.2 Web object size and flow size

It is nontrivial for a browser-side approach to affect the

web object size. A possible method is to adjust the con-

tent codings [20]. For example, if a web object is com-

pressed before being sent to the client, HTTPOS modifies

the Accept-Encoding header to force the server to send

an uncompressed web object. A similar method is to ad-

just the quality value [20]. Although these two methods are

quite general, we find that most servers do not support them.

To disguise the size of web objects, we therefore adopt

the following methods based on the observation that an at-

tacker could only estimate the size of a web object from en-

crypted traffic using the amount of bytes received between

two requests [24, 35].

TCP retransmissions If the client is using IP tunnel or en-

crypted wireless channel that prevents an attacker from see-

ing the TCP header, HTTPOS affects the web object size

and enlarges the flow size by causing TCP retransmissions.

More precisely, since an ACK number informs a sending

TCP how many bytes have been successfully received by a

TCP receiver, by acknowledging only part of the received

bytes, HTTPOS could force the server to re-send the unac-

knowledged portion along with the new portion if the packet



size permits [28]. In this case, the attacker will overesti-

mate both web object size and flow size. If the attacker

can observe the TCP header, she may ignore the retransmit-

ted packets. In this case, HTTPOS employs the following

HTTP-based approaches, because an attacker cannot ob-

serve the content of encrypted packets.

HTTP Pipelining Using HTTP Pipelining to send several

requests together without waiting for the corresponding re-

sponses makes it difficult for an attacker to infer the size of

a web object [20], because an attacker may regard the total

bytes from the server as the size of a web object. To achieve

this, HTTPOS either merges several requests from the client

or attaches a useless request with the original request before

sending the packet to the server. In both cases, the attacker

will overestimate the HTTP request’s size, web object size,

and flow size. When using the latter approach, HTTPOS

does not forward the response to the useless request to the

client.

HTTP Range Employing HTTP Range to request data that

have been downloaded can enlarge the flow size and dis-

guise the web object size. Its basic idea is similar to the

method using retransmitted TCP packet. The difference is

that the latter method operates on TCP and therefore re-

quires TCP header being invisible to the attacker, whereas

the HTTP header in the encrypted traffic is already invisible

to the attacker. Although Sun et al. [35] also suggested us-

ing HTTP Pipelining and HTTP Range, they did not imple-

ment and evaluate them. We implement these approaches

and carefully evaluate them using live HTTP traffic. We

also measure the popularity of supporting HTTP Range and

HTTP Pipelining (Section 4.4). Moreover, we combine the

method based on HTTP Pipelining and that based on TCP

advertising window to evade an advanced CWWZ attack

(see Section 5.2.2).

Injecting useless requests Injecting a useless request be-

tween two requests sent by a client can disguise the web

object size. More precisely, after a client sends one request,

HTTPOS decreases the advertising window to a small value

(say 10 bytes), so that the server cannot return all the re-

quested content in one packet. Once a response packet is

received, HTTPOS injects a random request. In this case,

the attacker will underestimate the web object size, because

she may observe many small responses to different HTTP

requests. There is no restriction on the requests injected by

HTTPOS. Its usage is to mislead an attacker into obtaining

wrong web object size and flow size.

3.3.3 Timing of packets

Since the outgoing packets sent from the client go through

HTTPOS, it is easy to control their timing by delaying the

transmissions. To manage the timing of packets from the

server, HTTPOS operates on two levels. The first level is

to manipulate the timing of request packets, because the re-

sponse packets are triggered by request packets. The sec-

ond level is to manipulate the timing of response packets

through delaying ACK packets. The rational behind this

method is that without receiving ACK packets the sending

TCP may not send out new data packets due to TCP’s ACK-

based self-clocking feature. Note that the flow sequence can

also be changed by reordering the sequence of TCP SYN

packets or delaying the corresponding HTTP request pack-

ets. By doing so, HTTPOS can help a user evade the traffic-

analysis attack in [14].

4 HTTPOS

4.1 Design

HTTPOS acts as a proxy through which a client visits a

web site. It accepts HTTP requests from the client and mod-

ifies them as needed before sending them out. Figure 3 il-

lustrates the HTTPOS operations. When HTTPOS receives

a URL, it checks whether information related to this URL

is in the cache, which includes whether the URL can be

fetched through HTTP Range, whether the server supports

HTTP Pipelining, and the web object size. This informa-

tion determines which module will be used. Each module

realizes a method described in Section 4.2.

If it is the first time for HTTPOS to handle a URL,

HTTPOS uses the method based on TCP advertising win-

dow (Section 4.2.1). It manipulates the advertising win-

dow in outgoing packets to control the size of response

packets. To test whether the URL can be fetched through

HTTP Range, HTTPOS inserts “Range: bytes=0-0”

to the outgoing HTTP request. To verify whether the server

supports HTTP Pipelining, HTTPOS duplicates the HTTP

request and adds “Range: bytes=1-1” to it and then

sends these two HTTP requests to the server at the same

time. After receiving the responses, the feature information

and the web object size are saved in the cache.

If the information is found in the cache, HTTPOS selects

the proper method based on its effectiveness on evading

traffic-analysis attacks and mitigating performance degra-

dation. If the URL could not be fetched through HTTP

Range, HTTPOS uses the method based on TCP MSS

+ TCP advertising window (Section 4.2.2). Otherwise,

HTTPOS selects the method based on multiple TCP con-

nections + HTTP Range (Section 4.2.3) if the server does

not support HTTP Pipelining, or the method based on HTTP

Pipelining + HTTP Range (Section 4.2.4) if the server does.

Since TCP-based methods (i.e., methods based on TCP

MSS and TCP advertising window) cannot change the size

of web objects, HTTPOS injects a useless HTTP request

between two requests as described in Section 3.3.2 to mis-

lead the attacks that exploit the characteristics of web ob-
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Figure 3: The HTTPOS operations.

jects. It is worth noting that if an attacker cannot observe the

TCP header, HTTPOS can also use retransmitted packets to

mislead those attacks. Table 3 summarizes all methods in

HTTPOS and the corresponding attacks that can be evaded.

4.2 Modules

4.2.1 Method based on TCP advertising window

Since a TCP sender cannot send more data than the ad-

vertising window permits, HTTPOS controls the sizes of

incoming response packets by manipulating the advertis-

ing window in each outgoing packet. More precisely,

given a web object of S bytes, HTTPOS selects Nv integers

{v1,v2, . . . ,vNv}, where vi is the advertising window in the

ith outgoing TCP packet and ∑
Nv
i=1 vi = S. HTTPOS sends

a new TCP packet only after receiving a TCP data packet

from the server to prevent the server from combining the ad-

vertising windows in several TCP packets and then sending

a large packet that may be recognized by a traffic analysis.

4.2.2 Method based on TCP MSS + TCP advertising

window

Since the method based on TCP advertising window allows

only one TCP packet to be sent in an RTT, it may intro-

duce large delay. To address this problem, we propose a

new method that employs both TCP MSS and TCP advertis-

ing window. This method is motivated by two observations.

First, given a web object of S bytes and a default MSS of M

bytes, a successful traffic-analysis attack usually relies on

the last packet whose size is equal to S mod M. Second, a

TCP sender can send several M-byte TCP data packets in an

RTT. HTTPOS therefore can either change the default MSS

or manipulate the last packet’s size by using TCP advertis-

ing window. In the former case, after setting the MSS to M′,
the last packet’s size becomes S mod M′. In the latter case,

HTTPOS sets the advertising window to ⌊ S
M
⌋M in order to

fetch the first S−R bytes, where R = S mod M. After that,

it sets the advertising window to R− r bytes, where r is a

random positive integer less than R, to download R−r bytes

and then announces an advertising window larger than r to

get the remaining r bytes. Therefore, if the normal oper-

ation needs one RTT to download the R bytes, HTTPOS

may use an additional RTT to download it (i.e., one RTT

for R− r bytes and another RTT for r bytes). If the server’s

TCP stack increases its congestion window based on the

number of valid ACK packets, HTTPOS could send cus-

tomized ACK packets to induce the server to increase its

congestion window quickly.

4.2.3 Method based on multiple TCP connections +

HTTP Range

If a server supports HTTP Range but does not support

HTTP Pipelining, HTTPOS establishes multiple TCP con-

nections and sends partial GET requests for a web object

in parallel to the server. As explained in Section 3.3.1,

HTTP Range can limit the size of response packets. The

server will process these requests simultaneously if the

server adopts multi-threading and then return the web ob-

ject through several packets. HTTPOS will re-organize the

responses before delivering the content to the client.

4.2.4 Method based on HTTP Pipelining + HTTP

Range

If a server supports both HTTP Pipelining and HTTP

Range, HTTPOS puts several partial GET requests into one

packet and sends it out. The server will process these re-

quests one by one and send back the responses. Without

the need to wait for the arrival of a response before sending

another partial GET request, the additional delay introduced

by HTTPOS will decrease.

4.3 Implementations

We implemented HTTPOS in C with 3022 lines

of code (reported by CLOC [31]) and tested it on

Ubuntu 9.04 with 2.6.27 kernel. To manipulate TCP

packets, HTTPOS uses iptables (version 1.4.0) and

the libnetfilter queue library (version 0.0.16) to



Table 3: Methods in HTTPOS and the corresponding attacks that can be evaded.

Methods Layers SSWRPQ BLJL LL-JC LL-NBC CWWZ

Method based on Advertising Window TCP
√ √ √ √

Method based on MSS + Advertising Window TCP
√ √ √ √

Method based on Multiple TCP connections + HTTP Range HTTP
√ √ √ √ √

Method based on HTTP Pipelining + HTTP Range HTTP
√ √ √ √ √

Inject Useless Request HTTP
√ √ √

Inject Packet Delay TCP
√

hook outgoing TCP packets of interest. HTTPOS adds

rules into iptables’ INPUT and OUTPUT chains, so

that the packets matching the rules will be queued in

the kernel. HTTPOS acquires a packet through the

libnetfilter queue library and then modifies it (e.g.,

the advertising window and the MSS option) before re-

leasing it. Additional delay is introduced to the outgoing

packets if needed. HTTPOS uses raw socket to inject TCP

packets if necessary and employs the libpcap 1.0.0 li-

brary to capture TCP packets for verification. Moreover, the

POSIX Threads (pthreads) library was utilized to create

and manage multiple threads for multiple HTTP/TCP con-

nections between clients and HTTPOS, and those between

HTTPOS and web servers.

In our measurement experiments to be discussed in Sec-

tion 5.1, we established an IPSec tunnel as an example of

IP tunnel, built an SSH tunnel as an example of TCP tunnel,

and set up a wireless channel encrypted by WPA. HTTPOS

uses different modules to handle HTTP requests and re-

sponses for different scenarios. When the IPSec tunnel and

the wireless channel are used, HTTPOS acts as an HTTP

proxy. When the SSH tunnel is employed, HTTPOS be-

haves as a SOCKS proxy for users to visit the Internet. At

the same time, HTTPOS communicates with the SSH tun-

nel through SOCKS 4 [25], because the SSH port forward-

ing provides service via SOCKS. For the HTTPS channel,

HTTPOS is implemented as a Firefox add-on to manipulate

HTTP requests before they are sent to the SSL/TLS layer.

In all scenarios, HTTPOS can modify the header of HTTP

requests and insert useless requests if necessary.

We also implemented those traffic-analysis attacks intro-

duced in Section 3.1 using Python and Weka 3.6.1 [36] to

evaluate the effectiveness of HTTPOS. In Section 5, we re-

port their accuracy with and without HTTPOS.

4.4 Measuring the support rates of the TCP and
HTTP based control

HTTPOS exploits the basic protocol features in TCP

and HTTP described in RFC 793 and RFC 2616, respec-

tively. Since not all servers comply with the RFCs, we con-

ducted two sets of measurement to evaluate whether oper-

ating systems and web servers support manipulating packet

size through TCP MSS, TCP advertising window, HTTP

Pipelining, and HTTP Range. In the first set, we tested pop-

ular operating systems and web servers with their default

settings in our test-bed. In particular, we tested Apache

v2.3.6, nignx v0.8.42 and lighttpd v1.4.26 in a Ubuntu ma-

chine (kernel 2.6.28) and IIS v7.5 in a Windows 7 box.

We selected these web servers, because they represent more

than 90% market share [30]. Since the Google web server

cannot be downloaded, we cannot test it in the test-bed.

In the second set, we targeted on the top 2000 web sites

in the Alexa rankings [1]. We modified Pagestats [16]

to drive Firefox 3.6.3 to automatically visit these web sites.

Since Firefox downloads all the necessary web objects,

which may be located in different web servers, we man-

aged to collect 143,333 URLs in 8,845 web servers after

Firefox visited the front pages of the 2000 web sites. We

used NetCraft’s service [5] to identify the operating system

and the web server software used by each server. Since

NetCraft resolved the web server software used in only

5884 web servers, we employed httprecon-7.3 [32] to

further infer the web server software in the remaining 2961

servers. There are still 1181 servers whose web server soft-

ware cannot be identified by httprecon-7.3, and we

refer them to as “others.” Moreover, since NetCraft iden-

tified 4957 web servers’ operating systems, we group the

other 3888 servers as “others.” For the Google web server

which has different names [4], we crawled 4622 URLs

starting from http://www.google.com.hk/intl/

zh-TW/options/ and extracted the names of the web

server software from the Server field in the response

header. As a result, we obtained a total of 231 Google

servers.

4.4.1 TCP MSS and TCP advertising window

To test whether a server allows HTTPOS to manipulate the

packet size through TCP MSS, we modify the advertised

MSS values in the TCP option. Let MSSL be the MSS value

announced by us in the TCP SYN packet and MSSR be the

MSS value returned in the server’s TCP SYN/ACK packet.



Table 4: Major operating systems’ support rate of TCP MSS negotiation and TCP advertising window based control.

OSes ADVL = 2000 bytes MSSL = 1460 bytes (the default) ADVL = MSSL bytes

(No. of servers) MSSL=128 MSSL=256 MSSL=536 ADVL=128 ADVL=256 ADVL=536 MSSL=128 MSSL=256 MSSL=536

Windows (388) 88.40% 89.43% 100.00% 95.36% 95.36% 97.42% 99.22% 99.48% 100.00%

Linux (3875) 97.90% 98.63% 100.00% 99.17% 99.32% 99.50% 99.76% 99.94% 100.00%

AIX (19) 84.21% 100.00% 100.00% 94.73% 94.73% 94.73% 100.00% 100.00% 100.00%

Solaris (71) 98.59% 100.00% 100.00% 97.18% 97.18% 98.59% 100.00% 100.00% 100.00%

FreeBSD (224) 25.89% 99.55% 99.55% 99.10% 99.10% 99.10% 99.10% 100.00% 100.00%

BIG-IP (380) 98.68% 99.21% 100.00% 99.47% 99.47% 99.47% 99.73% 100.00% 100.00%

Others (3888) 84.90% 96.38% 99.89% 96.94% 97.38% 97.94% 99.61% 99.76% 99.94%

We let MSSL be less than the typical value for MSSR (which

is 1460 bytes in most cases). Moreover, MSSL should never

appear in the flow between the client and web server. If in-

deed MSSR >MSSL, we send an HTTP request to download

a web object larger than MSSR. If the payload sizes of all

response packets are less than or equal to MSSL, then the

server permits HTTPOS to control its packet size.

To test whether a server allows HTTPOS to control the

size of response packet through TCP advertising window,

we first disable TCP window scale option and then change

the advertising window, denoted as ADVL, of an outgoing

TCP packet to a value smaller than MSS. Similar to the pre-

vious case, if the response packet’s payload size is less than

or equal to ADVL, then the server allows HTTPOS to control

its packet size.

Since TCP MSS and TCP advertising window can be

set to arbitrary values, we could not enumerate all possible

combinations. Instead, we investigated three scenarios: (1)

ADVL = 2000 bytes and MSSL = {128,256,536} bytes; (2)

use the default MSS announced by the remote server (i.e.,

MSSL = MSSR = 1460 bytes) and ADVL = {128,256,536}
bytes; and (3) MSSL = ADVL = {128,256,536} bytes. Ta-

ble 4 summarizes the measurement results. Under most

settings, more than 85% servers allow HTTPOS to control

their packet size. In particular, the support rate increases

when either the MSS or the advertising window increases.

Moreover, when the MSS and advertising window use the

same value, most servers support HTTPOS. For example,

for MSSL = ADVL = 536 bytes, 8843 out of 8845 servers

allow HTTPOS to control their packet size.

For MSSL = 128 bytes and ADVL = 2000 bytes, only

25.89% of the FreeBSD servers allow HTTPOS to control

their packet size. The reason is that FreeBSD sets its de-

fault minimal MSS to 216 bytes to prevent TCP MSS re-

source exhaustion attacks [2]. However, this low support

rate does not mean that HTTPOS cannot evade those traffic-

analysis attacks for FreeBSD servers. First, HTTPOS can

still control the packet size by setting MSSL = ADVL = 128

bytes, which has 99.10% support rate. Second, Figure 4

shows that the HTTP headers in more than 90% of the re-

sponses from our data sets are larger than 256 bytes. There-

fore, it is sufficient for HTTPOS to use MSSL = 256 bytes

for which the support rate for FreeBSD is 99.55%. Finally,

even though HTTPOS cannot force the response packets to

be 128 bytes or less, the actual payload size already differs

from the one when default MSSL is used. As a result, the

new payload size also helps a user evade the traffic-analysis

attacks.
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Figure 4: CDF of the size of HTTP response headers based on

our data sets of 143,333 URL responses obtained from 8845

web servers.

4.4.2 HTTP Range and HTTP Pipelining

Table 5: The support rates of HTTP Range and HTTP Pipelin-

ing in terms of the number of servers.

Web servers HTTP HTTP HTTP

(No. of servers) Range Pipelining Range+Pipelining

Apache (4249) 84.00% 63.90% 58.80%

IIS (1738) 76.06% 77.00% 65.88%

nginx (1103) 80.15% 75.16% 70.35%

lighttpd (367) 84.47% 74.70% 68.94%

Others (1388) 73.34% 65.13% 55.55%

We discover that some web applications may ignore

HTTP Range requests even if the underlying web server

supports HTTP Range. Therefore, we measure the support

rate of HTTP Range on both the URL level and the web



Table 6: The support rates of HTTP Range and HTTP Pipelin-

ing in terms of the number of URLs.

Web servers HTTP HTTP HTTP

(No. of URLs) Range Pipelining Range+Pipelining

Apache (59698) 89.02% 79.71% 68.80%

IIS (22485) 85.03% 88.24% 73.38%

nginx (18714) 83.16% 87.58% 70.74%

lighttpd (5506) 82.64% 84.87% 67.51%

Others (36930) 66.74% 69.31% 53.98%

Table 7: The Google web servers’ support rates of HTTP

Range and HTTP Pipelining in terms of the number of servers.

Google web servers HTTP HTTP HTTP

(No. of servers) Range Pipelining Range+Pipelining

sffe (38) 100% 100% 100%

DFE/largefile (109) 100% 100% 100%

GSE (24) 58.33% 100% 58.33%

codesite (2) 0% 100% 0%

Others (58) 0% 100% 0%

Table 8: The Google web servers’ support rates of HTTP

Range and HTTP Pipelining in terms of the number of URLs.

The Google web servers HTTP HTTP HTTP

(No. of URLs) Range Pipelining Range+Pipelining

sffe (2580) 99.88% 100% 99.88%

DFE/largefile (906) 100% 100% 100%

GSE (461) 48.59% 100% 48.59%

codesite (335) 0% 100% 0%

Others (340) 0% 100% 0%

server level. To test whether a URL supports HTTP Range,

we send partial GET requests to the server and then inspect

the response of Accept-Ranges. If the server replies

with “Accept-Ranges: bytes,” it supports HTTP

Range; otherwise, it may send back “Accept-Ranges:

none” or nothing. On the web server level, we regard a

server as supporting HTTP Range if one URL on that server

supports HTTP Range.

We also discover that if a web server supports HTTP

Pipelining, all web applications running on that web

server also support HTTP Pipelining. To test whether

a server supports HTTP Pipelining, we send out sev-

eral HTTP requests together, each of which carries

“Connection: keep-alive,” without waiting for the

corresponding responses. If the server responds to all these

requests, it is considered supporting HTTP Pipelining. Oth-

erwise, the server may just respond to the first request and

then close the connection.

According to our first set of experiments, all those ma-

jor web servers with default settings support both HTTP

Range and HTTP Pipelining. Besides, Tables 5 and 6

show the measured support rates of the HTTP features

from 143,333 URLs located in 8845 servers. In particu-

lar, we find that 117,025 URLs (81.6%) from 7103 servers

(80.3%) support HTTP Range, 114,087 URLs (79.6%)

from 6060 servers (68.5%) support HTTP Pipelining, and

94,458 URLs (65.9%) from 5545 servers (62.7%) support

both HTTP Range and HTTP Pipelining.

Tables 7 and 8 show the Google web servers’ support

rates of HTTP Range and HTTP Pipelining in terms of the

number of servers and URLs, respectively. We find that

all the Google web servers support HTTP Pipelining, but

only “sffe,” “DFE/largefile,” and a partial of “GSE” support

HTTP Range.

5 Evaluation

In this section, we present the results of evaluating

HTTPOS in terms of its effectiveness on defeating the

traffic-analysis attacks and its impact on the goodput of

fetching web objects.

5.1 Experiment settings

We first downloaded the front pages from the top 100

web sites ranked by Alexa [1]. For web sites that belong

to the same company and have similar web page layouts,

we tested only the site having the highest rank. For ex-

ample, Google owns several sites having high ranks (such

as google.com, google.com.hk, and google.de),

and we just tested google.com. Moreover, we replaced

porn sites with other top web sites. We used Firefox 3.6.3

equipped with Flash plugin 10 to visit the web sites. To au-

tomate the experiments, we prepared a Python script to in-

voke modified Pagestats [16] to visit each web site and

used TCPDump to capture the trace. We refer to the process

of visiting all the web sites once as a round, and we per-

formed a total of 100 rounds of measurement experiment.

The traces in odd-numbered rounds were used to train clas-

sification algorithms, and the trained models were tested on

traces in even-numbered rounds. Based on Pagestats’s

results, we computed the goodput as the ratio of total bytes

fetched to the download time.

We examined two deployment scenarios for HTTPOS:

on the browser side when IP tunnel, encrypted wireless

channel, or HTTPS channel is used and at a TCP tunnel

entry. To establish an IP tunnel, we employed L2TP v1.2.0

and OpenSwan v2.6.24 to build an IPSec tunnel between

two endpoints. To set up the wireless channel, we used a

laptop with Intel PRO/Wireless 2200BG Mini-PCI Adapter

to connect to an Access Point with WPA1 encryption en-

abled in our laboratory and employed AirPcap [12] to cap-



ture wireless frames. For TCP tunnels, we used SSH port

forwarding to create a TCP-based tunnel between two end-

points following the configuration in [26].

It is important to point out that our experiment settings

are actually favorable to an attacker for the following rea-

sons.

1. Koukis et al. [24] showed that parsing mixed web ses-

sions in packet traces obtained from an encrypted tun-

nel is very difficult. However, in our case we saved all

the packets belonging to a web session into a separate

pcap file, thus removing this obstacle for the attacker.

2. Coulls et al. [14] pointed out that a web browser’s

caching may significantly affect the accuracy of an at-

tack, because the browser does not need to download

web objects in the cache, thus affecting the flow size.

This problem, however, does not occur to our case, be-

cause Pagestats [16] always clears Firefox’s cache

after visiting a web site/page.

3. Liberatore et al. [26] reported that a large delay be-

tween the training data set and the test data set may

cause lower accuracy. In particular, they observed a

decrease from 73% to 63% for a delay of four weeks.

The delay in our case, however, is small (i.e., around

30 mins), and the 100 rounds of experiments were car-

ried out continuously.

4. By using the traces from every other round of mea-

surement, we provide the attacker with a much more

accurate view of the traffic. In a realistic attack sce-

nario, an attacker normally spends some time to learn

from the captured traffic. Therefore, the traffic pattern

may not be the same as those she has observed before

when the attack is finally launched.

5.2 Evasion evaluation

5.2.1 Defeating the SSWRPQ, BLJL, LL-JC and LL-

NBC attacks

To evaluate the effectiveness of HTTPOS against the four

attacks targeting on identifying web sites (i.e., the SS-

WRPQ, BLJL, LL-JC, and LL-NBC attacks), our approach

is to compare the attack accuracy with and without applying

HTTPOS to the encrypted traffic. To compute the attack ac-

curacy for a given web site, we first compute the similarity

between the trace obtained for the web site and the available

profiles based on the attack methods introduced in Section

3.1. For each attack, we then sort the similarity and select

the top K web sites as our inference. The attack is consid-

ered successful if the actual web site is one of the K web

sites selected by the attack. Clearly, the likelihood of mak-

ing a correct decision increases with K. The attack accuracy

for the web site is then given by the percentage of successful

attacks obtained from the 50 rounds of measurement.

Figure 5 shows the CDF of the attack accuracy for the

four attacks with and without applying HTTPOS to the

traffic flowing through an IPSec tunnel. Similarly, Figure

6 reports their accuracy for SSH tunnel. The two solid

curves show the attack accuracy without HTTPOS, whereas

the two dashed curves are the results when HTTPOS is

used. The figures show that without using HTTPOS the

attacks can identify the visited web sites with high fidelity.

For K = 1, the LL-JC attack on IPSec traffic achieves at

least 70% accuracy for guessing the 100 web sites, where

around 70% of the web sites are correctly identified from

all 50 rounds (i.e., 100% accuracy). The LL-NBC attack

achieves similar performance, where at least 80% accuracy

is achieved for each site, and more than 60% of the web

sites are identified with 100% accuracy. When targeting

on SSH traffic, the LL-JC (LL-NBC) attack achieves 100%

accuracy for more than 75% (90%) of the web sites with

more than 60% (90%) accuracy for each site. We also ob-

serve that the LL-JC and LL-NBC attacks have better per-

formance than the SSWRPQ and BLJL attacks, and all the

four attacks achieve a better accuracy for K = 5.

With HTTPOS, the accuracy of the four attacks drop sig-

nificantly. Figures 5 and 6 show that, for K = 1, none of the

attacks can achieve 100% accuracy for any web site. For

IPSec traffic, the accuracy of these attacks drops to 0% for

at least 98% of the web sites, because they fail to make a

single correct decision for the majority of those web sites.

For K = 5, the SSWRPQ, BLJL, LL-JC, and LL-NBC at-

tacks still suffer from 0% accuracy for 100%, 98%, 96%,

and 94% of the web sites, respectively. The “better” per-

formance achieved by the LL-NBC attack is possibly due

to the KDE which considers some packet sizes that never

appear but are close to the sizes in the training data set. We

also observe similar (poor) performance for SSH traffic, for

which these attacks achieve 0% accuracy for at least 98%

(95%) of the web sites for K = 1 (K = 5).

5.2.2 Evading the CWWZ attack

We use only the Google search engine to evaluate HTTPOS

against the CWWZ attack for two main reasons. The first is

that the search engine example in Section IV.D of [13] pro-

vides all the key features of the CWWZ attack. The second

is that the actual URLs for the web sites (i.e., OnlineHealth,

OnlineTax and OnlineBank) reported in Chen et al.’s paper

[13] have not been revealed. Since the Google search engine

provides both HTTP and HTTPS services, we conducted

experiments for both services to evaluate HTTPOS’s effec-

tiveness. Since the Google search engine runs on the GWS

web server and does not support HTTP Range, HTTPOS

uses the TCP-based methods and injects useless requests to



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

 

 

K=1 SSWRPQ+HTTPOS

K=5 SSWRPQ+HTTPOS

K=1 SSWRPQ

K=5 SSWRPQ

SSWRPQ (K=5)

SSWRPQ+
HTTPOS (K=1)

SSWRPQ+
HTTPOS (K=5)

SSWRPQ (K=1)

(a) The SSWRPQ attack.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

 

 

K=1 BLJL+HTTPOS

K=5 BLJL+HTTPOS

K=1 BLJL

K=5 BLJL

BLJL+HTTPOS (K=5)

BLJL+HTTPOS (K=1)

BLJL (K=5)

BLJL (K=1)

(b) The BLJL attack.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

 

 

K=1 LL−JC+HTTPOS

K=5 LL−JC+HTTPOS

K=1 LL−JC

K=5 LL−JC

LL−JC+HTTPOS (K=5)

LL−JC+HTTPOS (K=1)

LL−JC (K=1)

LL−JC (K=5)

(c) The LL-JC attack.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

 

 

K=1 LL−NBC+HTTPOS

K=5 LL−NBC+HTTPOS

K=1 LL−NBC

K=5 LL−NBC

LL−NBC+HTTPOS (K=1) LL−NBC+HTTPOS (K=5)

LL−NBC (K=1)

LL−NBC (K=5)

(d) The LL-NBC attack.

Figure 5: Attack accuracy for the SSWRPQ, BLJL, LL-JC, and LL-NBC attacks with and without applying HTTPOS to the traffic

in an IPSec tunnel.
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Figure 6: Attack accuracy for the SSWRPQ, BLJL, LL-JC, and LL-NBC attacks with and without applying HTTPOS to the traffic

in a SSH tunnel.

evade the CWWZ attack.

We first consider the scenario of communicating with the

Google search engine through an encrypted wireless chan-

nel. The experiment setting is the same as the one in Sec-

tion IV.D of [13]. Before showing the experiment results

with various inputs, we use an example to illustrate how

HTTPOS can evade the CWWZ attack. In this example,

the values in a flow vector are the payload sizes of wireless

frames. We entered the word “hi” in the Google search in-

put box and the sequence of directional packet sizes [13] is



(556→, 451←,557→,463←), where the request pack-

ets carrying “h” and “hi” are of 556 bytes and 557 bytes,

respectively, and the corresponding response packets are

of 451 bytes and 463 bytes. If HTTPOS pads the HTTP

request headers with useless fields to the same size, sets

MSSL = 200 bytes, and disables the TCP window-scaling

bit, then we get a new flow vector (572→, 260←, 260←,

75←, 572→, 260←, 260←, 87←). Since the CWWZ

attack cannot not infer the user input from this sequence, its

reduction power is dampened to one.

However, a smart attacker might group several pack-

ets together and rebuild a correct flow vector. For exam-

ple, by subtracting 72 bytes—the payload size of a wire-

less frame carrying a TCP ACK packet—from the size of

the first response packet in the original flow vector, an at-

tacker may infer the size of TCP payload as 451−72= 379

bytes. Similarly, by subtracting 72 bytes from the sizes

of the first three response packets in the new flow vec-

tor and then summing the remainder, the attacker obtains

260− 72 + 260− 72 + 75− 72 = 451− 72 = 379 bytes,

therefore recovering the original flow vector. To defeat this

attack, we inject a useless request between two requests

as described in Section 3.3.2 and therefore obtain another

flow vector (572→, 260←, 572→, 260←, 75←, 260←,

260 ←, 82 ←, 572 →, 260 ←, 260 ←, 572 →, 87 ←,

260←, 260←, 103←). Since HTTPOS can inject various

requests from the ambiguity set, the attacker cannot restore

the original flow vector from this new sequence.

Yet an even more advanced attacker may still be able to

infer a set of keywords sent by the user from some special

packet sizes (e.g., 75 bytes and 87 bytes in the above exam-

ple). We propose the following method to address this chal-

lenge. Since the Google server supports HTTP Pipelining,

HTTPOS sends out the request for a user input and a use-

less request in one or more successive packets with a zero

advertising window. The server will process both requests

and store the responses in its TCP/IP stack, because the zero

advertising window forbids it to send back the responses

immediately. After a short period (e.g., 30 ms according

to our evaluation with the Google server), HTTPOS sends

an ACK packet with a large advertising window (e.g., 2000

bytes), and the server is induced to pack the responses into

blocks of MSS-byte packets. For the above example, the

flow vector becomes (1072→, 837←, 1072→, 870←),
which is completely different from the original one.

We also evaluated HTTPOS using the Google HTTPS-

based search service (i.e., https://www.google.

com). In this setting, the values in a flow vector are the sizes

of the TCP packet payload. When we entered “hi” in the

search input box, we observed a flow vector (539± 20→,

679←, 540±20→, 658←)1. With HTTPOS, the flow vec-

1The parameter “gs gbg” in the queries to the Google HTTPS-based

search engine introduces ±20 random bytes to each request.

tor becomes (1065→, 1323←, 1065→, 1304←). Conse-

quently, the attacker can neither find a similar vector from

her training data set nor recover the original vector, thus di-

minishing the CWWZ attack’s reduction power to one.

Figures 7 and 8 plot the CDFs of the CWWZ attack’s re-

duction power with and without HTTPOS. A larger reduc-

tion power indicates that the CWWZ attack has a stronger

capability to infer the visited web pages. Note that the min-

imal reduction power is one, meaning that the CWWZ at-

tack cannot infer any useful information from each observed

flow vector. In this experiment, we follow the steps in [13]

and randomly choose 1000 popular search key words from

Google Trend [3]. Since these key words contain only char-

acters {a,b, ...,z,0,1, ...,9,dot,space}, the size of the am-

biguity set is k = 38.

Figures 7(a)-7(d) plot the results when the CWWZ at-

tack is applied to the HTTP traffic between HTTPOS and

the Google search engine through an encrypted wireless

channel. We only consider the first four characters (i.e.,

n ≤ 4), because they are sufficient for showing HTTPOS’s

effectiveness. That is, only the flow vectors induced by

the first n ≤ 4 characters are examined. Obviously, with-

out HTTPOS, the CWWZ attack achieves large reduction

power as n increases. The attacker can then determine the

words sent to the search engine. However, with HTTPOS,

the reduction power is fixed to one and does not change

along with n. Therefore, the attacker cannot gain any infor-

mation from the observed flow.

Figures 8(a)-8(d) plot the results for the HTTPS traffic.

Without HTTPOS, the reduction power increases with n.

When n reaches 4, more than 50% of the key words have

the reduction power around 106, which can reduce the huge

original ambiguity set (whose size is 384) to a small set

(whose size is 384/106 ≃ 2). However, even for n = 4,

HTTPOS can force the reduction power for all the 1000 key

words to one. In other words, the attacker must guess the

key word based on the ambiguity set with 384 possibilities.

5.3 Performance evaluation

5.3.1 Evaluation of individual methods

To evaluate the effect of each HTTPOS method on the per-

formance, we randomly selected 1000 URLs that support

all methods. We set ADVL = 200 bytes for the method

based on TCP advertising window, let MSSL = 200 bytes for

the method based on TCP MSS, and used three TCP con-

nections for the multiple connections method. Moreover,

we splitted each web object into three parts for the HTTP

Range method. Note that the following results do not rep-

resent the best performance that HTTPOS can achieve.

Figure 9 plots the ratio of the resultant goodput for

each HTTPOS method to that without using HTTPOS. For

brevity, we use MSS to denote the method based on TCP
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Figure 7: Reduction power of the CWWZ attack on the HTTP traffic between HTTPOS and the Google search engine through an

encrypted wireless channel.

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

 

 

With HTTPOS

Without HTTPOS

(a) Reduction power of the flow vector induced by the first character.

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

 

 

With HTTPOS

Without HTTPOS

(b) Reduction power of the flow vector induced by the first two characters.

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

 

 

With HTTPOS

Without HTTPOS

(c) Reduction power of the flow vector induced by the first three characters.

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

 

 

With HTTPOS

Without HTTPOS

(d) Reduction power of the flow vector induced by the first four characters.

Figure 8: Reduction power of the CWWZ attack on the HTTPS traffic between HTTPOS and the Google search engine.

MSS + TCP advertising window, MultiCon the method

based on Multiple TCP Connections + HTTP Range,

Pipelining the method based on HTTP Pipelining + HTTP

Range, Range the method based on pure HTTP Range, and

AdvWin the method based on TCP advertising window. As

shown, HTTPOS can achieve at least 80% goodput for 75%

of the URLs when the MSS method or the MultiCon method

is applied, and 90% goodput for 50% of the URLs when the
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HTTPOS method to that without HTTPOS.
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Figure 10: Additional delay introduced by each HTTPOS

method.

Pipelining method is applied.

The performance degradation introduced by the MSS

method is not significant, because, as discussed in Section

4.2.2, it only needs an additional RTT to finish the trans-

mission. On the other hand, we notice that unlike an IP

tunnel, a TCP tunnel may multiplex multiple TCP connec-

tions into a single TCP tunnel which could become the per-

formance bottleneck. To tackle this problem, we establish

several TCP tunnels in advance and divert TCP connections

into different TCP tunnels to achieve parallel transmissions.

Moreover, as expected, the AdvWin method gives the worst

performance, because it allows only a single packet trans-

mission from the server in an RTT. Moreover, we use a very

small ADVL (i.e., 200 bytes) for this evaluation.

Although some methods may cause certain URLs to ex-

perience a low goodput, we find that the additional delay

introduced by these methods is not significant under our pa-

rameter settings. Figure 10 reveals the additional delay in-

troduced by each HTTPOS method. As shown, the MSS,

MultiCon, and Pipelining methods introduce less than 100

ms delay for more than 90% of the URLs. The Range

method, on the other hand, introduces less than 200 ms de-

lay for more than 80% of the URLs.

5.3.2 Impacts on the performance of Internet browsing

To evaluate the overall performance of HTTPOS, we vis-

ited each of the top 100 web sites 10 times with and with-

out applying the HTTPOS operations depicted in Figure

3. We recorded the download time based on the output

of Pagestats for each site. Figure 11(a) and Figure

11(b) show the CDFs of the ratio for the download time

without and with HTTPOS when using IPSec tunnel and

SSH tunnel, respectively. The figures show clearly that the

first-time visit to each site via HTTPOS needs more time

than the normal visits (i.e., all values less than one), be-

cause HTTPOS uses the method based on advertising win-

dow. When HTTPOS is applied, the time for visiting 60

sites through IPSec is at most 1.6 times of the time without

HTTPOS.

However, once the URL information is cached, the time

required for the following visits is close to the time for the

normal visits (i.e., value close to one). The time for visiting

60 sites through IPSec is at most 1.1 times of the time with-

out HTTPOS. Furthermore, the time for visiting more than

90 sites through IPSec is at most 1.4 times of the time with-

out HTTPOS. The reason is that for each URL, HTTPOS

will select the method with the least impact on the perfor-

mance while not compromising the protection capability ac-

cording to Figure 3. It is also interesting to note that as

a result of employing multiple TCP connections, HTTPOS

may even enjoy better performance than the normal visits

(i.e., values larger than one) in some cases. As shown in

Figure 11(a), visiting around 40 out of the 100 sites through

IPSec requires less time than the normal visits.

5.3.3 Impacts on the performance of Google search

To evaluate the impacts of HTTPOS on the performance of

using Google search, we measured the RTT from the epoch

when the user sends a query to the epoch when the user

receives the response with and without HTTPOS. Figure

12(a) illustrates the RTTs obtained from the scenario where

a user in Hong Kong visited the Google search service (i.e.,

74.125.47.147) through a 802.11g wireless link. Fig-

ure 12(b) shows the RTTs obtained from the scenario where

the user accessed the same search service through HTTPS.

In both experiments, the user entered 1000 popular search

keywords from Google Trend [3] for 30 times, and the re-

spective median RTTs for each keyword is shown in Figure

12(a) and Figure 12(b).

In this experiment, HTTPOS employs the technique de-

scribed in Section 5.2.2 to evade the CWWZ attack. More

precisely, HTTPOS puts the real request and a useless re-

quest in one packet, and sets ADVL = 0 before dispatching

the packet to the server. After a small delay, HTTPOS sends

an ACK packet to announce a large advertising window and

induce the server to send back responses. The delay is 120



10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Time spent without HTTPOS/Time spent with HTTPOS

C
D

F

 

 

First−time visit

Following visit

(a) IPSec tunnel.

10
−0.9

10
−0.7

10
−0.5

10
−0.3

10
−0.1

0

0.2

0.4

0.6

0.8

1

Time spent without HTTPOS/Time spent with HTTPOS

C
D

F

 

 

First−time visit

Following visit

(b) SSH tunnel.

Figure 11: The effect of HTTPOS on the performance of Internet browsing.
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Figure 12: The effect of HTTPOS on the performance of using Google search.

ms for wireless traffic and 100 ms for HTTPS traffic, re-

spectively. Figure 12 shows that the additional delay intro-

duced by HTTPOS is small, because the server can send

back the responses immediately upon receiving the ACK

packet. The additional delay is less than 80 ms in Figure

12(a) and less than 60 ms in Figure 12(b).

5.4 Discussion

We believe that HTTPOS significantly raises the bar and

makes future traffic-analysis attacks much harder to de-

sign. Moreover, as HTTPOS provides fundamental defense

strategies and basic methods to modify flow features, new

evasion methods may be developed based on them. More-

over, we report below our additional findings on web bugs,

another attack model for the CWWZ attacks and our solu-

tions to defending against it, and our measurement results

for the support rate of HTTP Range by HTTPS servers.

5.4.1 Web bugs

In the course of conducting the measurement experiments,

we observed some cases where the size of packets carrying

certain web objects cannot be adjusted. These web objects

are usually 1 ∗ 1 pixel web bugs belonging to online adver-

tisement companies that customize their web servers, and

none of our methods works for them. Since these web bugs

are usually used to track users, a user may just filter them

to protect privacy. Moreover, since they may exist in many

web pages, their sizes could increase an attack’s false posi-

tive rate instead of facilitating the attack.

5.4.2 The CWWZ attack

We also note that if an advanced CWWZ attacker can ob-

serve the payload of HTTPS packets, she may still be able

to infer the size of a web object even after changing the

packet size. More precisely, an attacker can first identify

packets carrying SSL/TLS application data from the type

field in the SSL/TLS header and then use the field of ap-

plication data length to assemble consecutive TCP packets.

However, such attack does not work if the SSL/TLS packets

go through an IPSec tunnel or a wireless channel.

HTTPOS tackles this attack through two approaches.

The first approach is for the servers that support HTTP

Range. We measured the support rate of HTTP Range by

HTTPS servers and found that more than 80% URLs in the

measured servers support HTTP Range. Further details are

given in Section 5.4.3. In this case, HTTPOS first divides



the web object into a random number of portions and makes

these portions to overlap a random part with one another. In

this way, the web object sizes reported by the field of ap-

plication data length in the SSL/TLS header are incorrect.

The following is an example of downloading a web object

from Twitter through HTTPS. In the normal case, the packet

size sequence is (476→, 1460←, 1460←, 1171←), and

the SSL/TLS record size sequence is (471→, 4086←).
Although we can use TCP-based methods to split packets,

the attacker may still infer the response size from the se-

quence of the SSL/TLS records’ sizes. After HTTPOS ap-

plies HTTP Range, the sequence of packet sizes is modi-

fied to (497→, 1460←, 245←, 500→, 1460←, 258←,

500→, 1460←, 254←), and the sequence of the SSL/TLS

records’ sizes becomes (492→, 1700←, 495→, 1713←,

495→, 1709←). As a result, the attacker is prevented from

recovering the response packet size.

The second approach is for the servers that do not sup-

port HTTP Range (e.g., the Google HTTPS-based search

service). In this case, HTTPOS can still inject a number of

useless requests from the ambiguity set and set each request

message to the same size. This strategy is motivated by the

observation that an attacker could not know the exact length

of the word typed by a user, and the inserted requests result

in many possible words. For example, if a user types “hi,”

an attacker can observe the following packet size sequence

(539±20→, 679←, 540±20→,658←) and the SSL/TLS

record sequence (534± 20→,291←,378←,535± 20→,

291←, 357←), where 291 is the length of the HTTP re-

sponse header. Once HTTPOS inserts useless requests se-

quence “card” through HTTP pipelining, the packet size se-

quence and SSL/TLS record sequence become (1418→,

165→, 1418←, 578←, 1418→, 165→, 1418←, 530←)
and (1578 →, 291 ←, 378 ←, 291 ←, 355 ←, 291 ←,

361←, 1578→, 291←, 352←, 291←, 357←, 291←,

336←). Based on the packet size sequence, the CWWZ

attack’s reduction power is reduced to one, because the se-

quence has been totally changed.

Although the reduction power of an advanced CWWZ

attack exploiting the SSL/TLS record sequence could not be

reduced to one, the attacker still could not know the user’s

input, because there are at least six possible words, includ-

ing “h,” “hi,” “c,” “ca,” “car,” and “card.” Note that any word

that can result in the same SSL/TLS record sequence as any

one of the six words is also a possible candidate. For exam-

ple, if word “x” and “y” induce the same SSL/TLS record

size as word “h,” both “x” and “y” will be considered as

possible inputs by the attack. Therefore, when more useless

requests are injected, it becomes harder for such attacks to

recover the original sequence.

Since injecting useless requests may introduce much

overhead, another approach for evading the CWWZ attack

targeting auto-suggestion is to send only one request with

all inputs. For example, if a user inputs “hi” in the search

box, the auto-suggestion function may send the first request

packet with “h” and then the second packet with “hi.” To

evade the CWWZ attack, HTTPOS may just transmit the re-

quest carrying “hi” but drop the request carrying “h.” How-

ever, this approach may affect web usability.

5.4.3 Support rate of HTTP Range by HTTPS servers

We measured the support rate of HTTP Range by HTTPS

servers from two data sets. The first one contains the

web sites of the 50 largest banks in America2. By using

Pagestats to visit these web sites’ front pages or login

pages (if their front pages do not support HTTPS) through

HTTPS, we collected 1585 valid URLs from 104 HTTPS

servers, and 1323 URLs support HTTP Range (i.e., the sup-

port rate is 83.47%). The second data set is based on web

sites ranked by Alexa [1]. We first connected to the 443 port

(i.e., the default HTTPS service port) of top 1M web sites

and stopped when we obtained 3000 web sites, to which

the SSL/TLS connections were successfully established.

Since not all web sites that open 443 port provide web ser-

vice through HTTPS, we found only 1245 sites that offer

HTTPS-based web service. By crawling their front pages,

we gathered 45,401 URLs from 2448 HTTPS servers, and

85.09% (i.e., 38,632) of the URLs support HTTP Range.

6 Related work

Most of the existing proposals on defeating against

traffic-analysis attacks on encrypted HTTP traffic require

modifications to web servers, browsers and/or web objects.

In contrast, our HTTPOS is a browser-side solution that

does not need such modifications. Moreover, since none

of the existing techniques changes all four basic flow fea-

tures, they could be defeated by the traffic-analysis attacks

detailed in Section 3.1. On the other hand, our techniques

can successfully evade all of these attacks.

Sun et al. [35] proposed twelve countermeasures and dis-

cussed the related costs. Most of them require the support

of the web server and/or some modifications to the web ob-

jects. One exception is to use HTTP Range to increase the

size of web objects. However, since these methods camou-

flage just the number and the size of web objects, they may

not evade the traffic-analysis attacks based on directional

packet size and packet timing information [7, 26]. More-

over, except for padding and pipelining, Sun et al. listed

the properties of each method but without implementing

and evaluating them. On the other hand, HTTPOS exploits

protocol features in both TCP and HTTP to change the

four basic HTTP flow features. Moreover, we implemented

2http://nyjobsource.com/banks.html



HTTPOS and carefully evaluated the HTTPOS methods on

live HTTP traffic.

Hintz [23] and Danezis [15] suggested a number of

approaches to evade traffic-analysis attacks, for instance,

adding useless data to the flow and removing some web

objects in a web page. However, such approaches may

not evade new attacks [13, 26], because they do not change

the distributions of packet size and timing among packets.

Modifying a browser’s setting to force all web objects to

be transferred through one connection may evade the attack

proposed by Coulls et al. [14] that is based on the number

of TCP connections belonging to the same web session and

the amount of bytes delivered by individual TCP connec-

tions. However, the volume of packets from a web server

between two requests may still be exploited to identify web

sites, because web browsers usually send HTTP requests

one after the other, and web servers usually process these

HTTP requests in sequence [24].

Wright et al. proposed traffic morphing to evade the

traffic-analysis attacks based on packet size and direction

[38]. Their system aims at incurring less additional data

to a flow while enabling a flow to evade traffic-analysis at-

tacks. Their system first profiles the packet size distribution

for each web site and prepares a transformation matrix that

maps a packet size in one flow to a packet size in another

flow. Before sending a packet, traffic morphing changes the

packet size according to the transformation matrix by either

splitting or padding the packet. By doing so, the distribu-

tion of packet size observed by an attacker will not be the

same as the distribution of original packets. Due to padding,

traffic morphing may also change the flow size and pack-

ets’ timing information. However, traffic morphing requires

modifications to both web server and web browser, because

it needs to pad or split packets on the server side and remove

padded stuff on the client side. Moreover, transforming all

packets at the server site in real time will affect the perfor-

mance of the web service. Unfortunately, the authors did

not provide the evaluation results. In contrast, HTTPOS

does not modify both web server and web browser. In

fact, a server may not even know whether a client is using

HTTPOS. Moreover, we adopt many approaches to mitigate

possible performance degradation caused by HTTPOS.

Although anonymity networks (e.g., Tor [17]) also pro-

vide anonymous surfing, there are two major differences be-

tween HTTPOS and an anonymity network. First, HTTPOS

prevents an attacker from inferring the web site a user is vis-

iting, whereas an anonymity network prevents a web server

from knowing who is visiting it. Moreover, as pointed out

by Sun et al. [35], although multiple proxies are used in

anonymity networks, the first link between a client and the

first proxy is still vulnerable to those traffic-analysis attacks.

Second, anonymity networks are usually provided by a third

party, but HTTPOS is a browser-side solution under a user’s

control.

Information leaks through HTTP covert channels and the

corresponding detection mechanisms have been examined

recently. Feamster et al. employed sequences of HTTP

requests to transmit covert information [19]. Burnett et

al. [11] embedded stealthy information into user-generated

content. We proposed WebShare [27] to leak information

through the value of prevalent web counters. On the defense

side, Borders and Prakash designed WebTap [8] to detect

HTTP covert channels that convey information through the

content and the timing of HTTP requests, and proposed a

framework to quantify such information leaks [9]. Schear

et al. devised Glavlit [33] to throttle content-based HTTP

covert channels. Zhang et al. invented Sidebuster [40] to au-

tomatically detect and quantify possible side-channel leaks

in web applications.

7 Conclusions

In this paper, we proposed a suite of new browser-side

techniques to prevent an attacker from inferring web sites

or web pages visited by a user. These techniques exploit

the basic protocol features in TCP and HTTP to manipulate

four fundamental characteristics in encrypted HTTP flows.

We implemented these techniques into a browser-side sys-

tem called HTTPOS that does not need to modify any web

entity. An extensive evaluation of HTTPOS on live HTTP

traffic shows that it can evade the state-of-the-art attacks

with low overhead. Future works include further mitigat-

ing the impact of HTTPOS on the performance and sealing

other privacy leakages in web browsers.
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