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Abstract

In this paper, we focus on tradeoffs between storage
cost and rekeying cost for secure multicast. Specifi-
cally, we present a family of algorithms that provide
a tradeoff between the number of keys maintained by
users and the time required for rekeying due to re-
vocation of multiple users. We show that some well
known algorithms in the literature are members of
this family. We show that algorithms in this fam-
ily can be used to reduce the cost of rekeying by
43% − 79% when compared with previous solutions
while keeping the number of keys manageable.
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1 Introduction

Applications such as conferencing, distributed in-
teractive simulations, networked gaming and news
dissemination are group oriented. In these applica-
tions, it is necessary to secure the group communi-
cation as the data is sensitive or it requires the users

1Email: {sandeep, bezawada}@cse.msu.edu Web: http:

//www.cse.msu.edu/~{sandeep,bezawada}, Tel: +1-517-355-

2387, Fax: 1-517-432-1061 This work is partially sponsored

by NSF CAREER 0092724, ONR grant N00014-01-1-0744,

DARPA contract F33615-01-C-1901, and a grant from Michi-

gan State University.

to pay for it. In the algorithms for secure group
communication (e.g., [1–7]), a group controller dis-
tributes a cryptographic key, called the group key,
to all users. The group key is used to encrypt data
transmitted to the group. The group membership
is dynamic. When group membership changes, to
protect the confidentiality of the current users, the
group controller changes and securely distributes the
new group key.

When a user is admitted to the group, the group
controller changes the group key and securely uni-
casts it to the joining user. To send the new group
key to the current users, the group controller en-
crypts it with the old group key and multicasts it to
them. Thus, the cost of rekeying for the group con-
troller due to a joining user is small. However, when
a user is revoked, i.e., the user leaves or is forcefully
removed from the group, the group controller needs
to securely unicast the new group key to each of the
remaining users. Thus, revoking users from secure
groups is more expensive.

Many solutions have been proposed (e.g., [2–5, 7,
8]) for efficiently revoking a single user. In these so-
lutions, for a group of N users, the group controller
distributes the new group key in O(logN) encrypted
messages. To revoke multiple users, the group con-
troller repeats the process of rekeying for each re-
voked user. Hence, in these solutions, the cost of
rekeying is high. Moreover, if the group controller
were to interrupt the group communication during



the rekeying, the resulting delay is unreasonable for
many applications. Thus, efficient distribution of the
new group key to revoke multiple users is a critical
problem in secure group communication.

One approach to revoke multiple users is to asso-
ciate a key with every non-empty subset of users in
the group. Thus, if one or more users are revoked, the
group controller uses the key associated with the sub-
set of the remaining users to encrypt the new group
key and transmits it to the users. The advantage of
this approach is that the communication overhead is
only one message for revoking any number of users.
However, the number of keys stored by the group
controller and the users is exponential in the size of
the group. In this paper, we describe a family of
key management algorithms that reduce the rekey-
ing cost due to multiple user revocation while keeping
the storage cost manageable. Using our algorithms,
the group controller can efficiently distribute the new
group key. The main contributions of our paper are
as follows:

• We describe our family of key management algo-
rithms for efficiently distributing the new group
key when multiple users are revoked from the
group. In our algorithms, the storage at the
group controller is linear and the storage at the
users is logarithmic in the size of the group.
Also, we show that many existing algorithms
(e.g., [3, 4]) are members of this family.

• We argue the applicability of our algorithms to
scenarios where users have varying requirements
or capabilities. As an illustration, we provide
a scenario in which users are classified as long-
lived or transient, based on the duration of their
group membership.

Organization of the paper: The paper is orga-
nized as follows. In Section 2, we describe the prob-
lem of group key distribution and discuss some re-
lated solutions. In Section 3, we describe our family
of key management algorithms and present sample
algorithms from this family. In Section 4, we present
the simulation results of our algorithms and com-
pare their performance against previous solutions. In
Section 5, we conclude the paper and discuss future
work.

2 Key Distribution in Secure

Multicast

To ensure group security, all users in the group share
a group key, kg . The group key is used to encrypt
the data transmitted to the group. When users are
revoked from the group, to protect the confiden-
tiality of the remaining users, the group controller
needs to change and distribute the new group key
to these users. To simplify the distribution of the
new group key, each user maintains additional keys
(e.g., in [2–5, 7, 8]), which are shared with other
users. To send the new group key, k′

g , to the re-
maining users, the group controller encrypts k′

g us-
ing the shared keys not known to the revoked users.
To reflect current group membership, the group con-
troller also needs to change and distribute the shared
keys that are known to the revoked users. There are
two approaches available with the group controller
for distributing the new shared keys. In the first ap-
proach, the group controller explicitly transmits the
new shared keys (e.g., in [2,3,5]) to the current users.
In our work, we adopt the second approach where the
group controller and the users update the shared keys
using the following technique: k′

x = f(k′

g, kx), where
kx is the old shared key, k′

x is the new shared key
and, f is a one-way function. Using this technique,
only those current users who knew the old shared
key, kx, will be able to get the new shared key, k′

x.
This technique was also used in [4, 9]. However, this
technique may be prone to long term collusion at-
tacks, as described in [4], by the revoked users. To
provide resistance against such attacks, the group
controller adopts a policy in which the keys known
to the current users are refreshed at regular intervals
of time.

From the above discussion, we note that, the
rekeying cost for the group controller to revoke multi-
ple users is the cost of sending the new group key. We
measure this cost in the number of messages sent and
the encryptions performed by the group controller
for distributing the new group key. In Section 3,
we describe our key management algorithms and the
techniques for distributing the new group key. Us-
ing simulation results, we show that our algorithms
reduce the cost of rekeying by 43%-79% when com-
pared with the existing solutions.

Related Work. Other approaches to address
the problem of revoking multiple users are proposed
in [10–15]. In [10], the group controller maintains a
logical hierarchy of keys that are shared by different



subsets of the users. To revoke multiple users, the
group controller aggregates all the necessary key up-
dates to be performed and processes them in a single
step. However, the group controller interrupts the
group communication until all the necessary key up-
dates are performed and then, distributes the new
group key to restore group communication. This
interruption to group communication is undesirable
for real-time and multimedia applications and needs
to be kept small. In [11], to handle multiple group
membership changes, the group controller performs
periodic rekeying, i.e., instead of rekeying whenever
group membership changes, the group controller per-
forms rekeying only at the end of selected time in-
tervals. However, the revoked users can access group
communication until the group is rekeyed. This can
either cause monetary loss to the service provider or
compromise confidentiality of other users. In [12],
the group controller maintains a logical hierarchy of
keys similar to the solution in [10]. To revoke mul-
tiple users, the group controller distributes the new
group key using keys that are not known to the re-
voked users. However, this solution achieves a good
rekeying cost only if the size of the revoked users is
small or very large.

In [13], Luby and Staddon focus on the tradeoff be-
tween the storage cost and the rekeying cost. They
identify a lower bound on the rekeying cost based on
the number of keys that the users maintain. Their
work is based on previous work in [14] and assumes
that an upper bound on the number of users, say x,
that need to be revoked is known in advance. The
key distribution algorithm in [14] uses the value of
x to distribute the keys. Hence, if the number of
users that need to be revoked is more than x then
their algorithm fails to revoke them using the shared
keys. By contrast, our algorithm does not assume
that the number of revoked users is known in ad-
vance. In [15], the authors propose a key distribution
technique which allows the users to recover group
key updates which are lost in an unreliable network
environment. Their key distribution technique is re-
sistant to a collusion of upto t users. However, in
their approach, for higher values of t, the length of
the message sent by the group controller is large. Fi-
nally, in this paper, we have not addressed the issues
of rekeying for joining users in detail. We refer the
interested reader to [16] for a good discussion of such
techniques.

Notations. We use k{m} to denote that mes-
sage m is encrypted with key k. Only users who

know k can decrypt this message. The adversary
(anyone outside the group) can listen to all messages
sent over the network. Hence, for simplicity, we as-
sume that all communication is broadcast in nature
and, hence, we do not explicitly identify the intended
recipients of a message. This assumption is similar
to that in [2–5,7, 8].

3 Key Management Algo-

rithms

In Section 3.1, we describe the basic structure and
the associated key management algorithm. In Sec-
tion 3.2, we describe our hierarchical key manage-
ment algorithm for larger groups using the concepts
in the basic scheme.

3.1 The Basic Structure

We arrange a group of K users as children of a rooted
tree as shown in Figure 1. Let R be the root node.
We use the tuple, 〈R, u1, u2, . . . , uK〉, to denote the
basic structure.

1U 2U KU

R

Figure 1: Partial View of Basic Structure

The key management algorithm we use for the
basic structure is the complete key graph algorithm
from [3]. In this algorithm, for every non-empty sub-
set of users the group controller provides a unique
shared key which is known only to the users in the
subset. The group controller gives these keys to the
users at the time of joining the group. Of the keys
that a user, say ui, receives, (1) one key is associated
with the set {u1, u2 . . . , uK} and, hence is known to
all the users, and (2) one key is associated with the
set {ui}. The former key, say kR, is the group key
whereas the latter key is the personal key.

Thus, the number of keys stored by the group con-
troller are 2K − 1 and the number of keys held by
each user is 2K−1. Now, we consider the process of
rekeying in this scheme when one or more users are



revoked from the group. The proof of the follow-
ing theorem describes the rekeying process for user
revocation.

Theorem 1. In the basic structure, when one or
more users are revoked, the group controller can dis-
tribute the new group key securely to the remaining
users using at most one encrypted transmission.

Proof. We consider 3 possible cases of user revo-
cation from the basic structure.

Case 0. When no users are revoked, the group
controller sends the new group key using the current
group key that is known to all the users. Although,
this trivial case is not important for the basic scheme,
it is important for the hierarchical algorithm we de-
scribe in Section 3.2.

Case 1. When m < K users are revoked from the
group and the group controller needs to distribute
the new group key to the remaining K − m users.
The group controller uses the shared key, kK−m as-
sociated with the remaining subset of K−m users to
send the new group key. Thus, the group controller
transmits kK−m{k′

g}. As the revoked users do not
know kK−m, only the current users will be able to
decrypt this message.

Case 2. All users are revoked from the group. The
group controller does not need to distribute the new
group key and thus, does not send any messages.

We note that, once the new group key is dis-
tributed, the current users update the necessary
shared keys using the one-way function technique we
described in Section 2. However, the basic structure
requires the group controller and the users to store
a large number of keys which is not practical if the
group is large. In the Section 3.2, we present our
hierarchical algorithm to reduce the number of keys
stored at the group controller and the users. Our hi-
erarchical algorithm preserves some attractive com-
munication properties of the basic structure while re-
ducing the storage requirement for the shared keys.

3.2 The Hierarchical Key Manage-

ment Algorithm

In our hierarchical algorithm, we compose smaller
basic structures in a hierarchical fashion. To illus-
trate the hierarchical structure, consider the sam-
ple structure 〈R, R1, R2, . . . , Rd〉 shown in Figure 2,
where each Ri, 0 ≤ i ≤ d, further consists of the
basic structure 〈Ri, ui1, ui2, . . . , uid〉. The parameter
d is the number of elements in a basic structure and
can be considered as the degree of the hierarchy. We

note that, the degree can be different for different
nodes in the hierarchy. However, for the sake of sim-
plicity, in this paper, we assume that the nodes in
the hierarchical structures have a uniform degree d.

Now, each of the basic structures of the form
〈Ri, ui1, ui2, . . . , uid〉 is associated with the shared
keys as described in Section 3.1. The struc-
ture at next higher level, 〈R, R1, R2, . . . , Rd〉, is
also associated with shared keys. The personal
key associated with Ri, 1 ≤ i ≤ d in struc-
ture 〈R, R1, R2, . . . , Rd〉 is the same as the group
key of the structure 〈Ri, ui1, ui2, . . . , uid〉. Fur-
ther, the structure 〈R, R1, R2, . . . , Rd〉 is associated
with shared keys. Now, each user in the basic
structure 〈Ri, ui1, ui2, . . . , uid〉 is provided with any
shared key that is provided to Ri in the structure
〈R, R1, R2, . . . , Rd〉. To illustrate our hierarchical al-
gorithm, we consider four examples for d=N , 2, 3,
4. In the hierarchical structure, we denote the key
associated with a subset {a, b, . . . , z} by kab...z.

Example 0. When d = N , the key management al-
gorithm corresponds to the basic structure (cf. Sec-
tion 3.1) with K = N . Thus, the number of keys
maintained by the group controller are 2N−1 and the
number of keys maintained by each user are 2N−1.

Example 1. In Figure 3(a), we show a hierarchy
with d = 2.

Consider that the shared keys associated with
〈R, R1, R2〉 are {kR, kR1

, kR2
}, and the shared keys

associated with 〈R1, u11, u12〉 are {kR1
, ku11

, ku12
}.

Then, in this scheme, user u11, knows the shared
keys ku11

, kR1
and kR. We note that, the hierarchi-

cal algorithm for d = 2 corresponds to the logical key
hierarchy proposed in [2, 3].

Example 2. In Figure 3(b), we show a partial view
of a sample hierarchy with d = 3. Consider that
the shared keys associated with 〈R, R1, R2, R3〉 are,
{kR, kR1

, kR2
, kR3

, kR1R2
, kR1R3

, kR2R3
}, and the

shared keys associated with 〈R1, u11, u12, u13〉 are,
{ku11

, ku12
, ku13

, ku11u12
, ku11u13

, ku12u13
, kR1

}, then,
the shared keys known to user u11 are, {ku11

, ku11u12
,

ku11u13
, kR1

, kR1R2
, kR1R3

, kR}. We note that, the
hierarchy for d = 3 corresponds to the complemen-
tary key hierarchy proposed in [4].

Example 3. In Figure 3(c), we show a partial
view of a sample hierarchy with d = 4. Consider
that the shared keys associated with 〈R, R1, R2,
R3, R4〉 are, {kR, kR1

, kR2
, kR3

, kR4
, kR1R2

, kR1R3
,

kR1R4
, kR2R3

, kR2R4
, kR3R4

, kR1R2R3
, kR1R2R4

,
kR1R3R4

, kR2R3R4
} and, the shared keys associ-

ated with 〈R1, u11, u12, u13, u14〉 are, {ku11
, ku12

,
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Figure 2: Partial View of Hierarchical Key Management Structure
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Figure 3: Hierarchies for (a) degree=2 (b) degree=3 and (c) degree=4

ku13
, ku14

, ku11u12
, ku11u13

, ku11u14
, ku12u13

, ku12u14
,

ku13u14
, ku11u12u13

, ku11u12u14
, ku11u13u14

, ku12u13u14
,

kR1
}. Then, the shared keys known to user u11 are,

{ku11
, ku11u12

, ku11u13
, ku11u14

, ku11u12u13
, ku11u12u14

,
ku11u13u14

, kR1
, kR1R2

, kR1R3
, kR1R4

, kR1R2R3
,

kR1R2R4
, kR1R3R4

, kR}.

Now, we describe the process of rekeying for user
revocation for an arrangement with h levels.

Theorem 2. In our hierarchical key management
algorithm, when r users are revoked from a hierarchi-
cal structure with h levels, the group controller can
distribute the new group key securely to the remain-
ing users using at most h.r encrypted transmissions.

Proof. We mark all the nodes which are the
ancestors of the revoked users. At each level, a
marked node, Ri can be considered to be revoked
from the structure, 〈R, R1 . . . , Ri, . . . , Rd〉. As an
illustration, in the hierarchy with d = 4 in Figure
3(c), if u11, u44 are revoked users, then we mark
R1 and R4. We consider u11 to be revoked from
the basic structure, 〈R1, u11, u12, u13, u14〉 and R1 to
be revoked from the structure 〈R, R1, R2, R3, R4〉.
Similarly, u44 is revoked from the basic structure,
〈R4, u41, u42, u43, u44〉 and R4 is revoked from the
structure, 〈R, R1, R2, R3, R4〉.

To send the new group key, at the lowest level
(level h), the group controller needs to send at most

one message (cf. Theorem 1 from Section 3.1) for the
basic structures from which users are revoked. As
the number of basic structures from which users are
revoked is at most r, the rekeying cost due to the hth

level is r. We note that, the number of encryptions
and messages will be lower if more than one user is
revoked from the same basic structure.

At the next higher level (level h − 1), the number
of revoked nodes, i.e., marked nodes, is at most r.
At this level, to send the new group key, the group
controller sends at most one encrypted message for
each structure. Based on the key distribution in the
hierarchical algorithm, this message is decrypted by
the users which are children of the non-revoked nodes
in each such structure. As the number of such struc-
tures at this level is at most r, the group controller
sends at most r messages for this level. Further, in
the worst case, the group controller sends r messages
for all the levels in the hierarchy. Thus, for r revoked
users, the cost of distributing the new group key is
at most h.r encrypted transmissions.

We note that, at the highest level (level 1), there is
only one structure. As this scenario is similar to user
revocation from a basic structure, using Theorem 1
at this level, the group controller sends at most one
encrypted message for the new group key. Therefore,
we can reduce the total rekeying cost from Theorem



2 to (h − 1).r + 1. Thus, we have:

Theorem 3 In our hierarchical key management
algorithm, when r users are revoked, the group con-
troller can distribute the new group key securely to
the remaining users using at most (h − 1).r + 1 en-
crypted transmissions.

The upper bounds in Theorems 1 and 2 are tight
for a small number of revoked users. If the num-
ber of revoked users is O(N) where N is the group
size, then the group controller can distribute the new
group key by only considering the structures at the
lowest level. The group controller sends at most one
message for each basic structure. As there are N/d
basic structures at the lowest level, the group con-
troller sends at most N/d messages.

Theorem 4 In our hierarchical key management
algorithm, for revoking any number of users, the
group controller can distribute the new group key se-
curely to the remaining users using at most N/d en-
crypted transmissions.

We can combine the results in Theorems 2 and 4
as follows. To revoke r users, for k lower levels in the
hierarchy, the group controller uses the result from
Theorem 2 and sends at most (h − k).r encrypted
messages. At level k, for each of the dk−1 structures,
the group controller uses the result from Theorem 4
and sends at most dk−1 encrypted messages. There-
fore, we can also say that the rekeying cost in our
hierarchical key management algorithm is bounded
by (h − k).r + dk−1 where 1 ≤ k ≤ h.

We note that, all the results we derived give upper
bounds on the rekeying cost for revoking users. Thus,
the minimum of these bounds is still an upper bound.
The simulation results show that, on an average, the
performance of our algorithms is slightly better than
these bounds.

Some of the basic structures in the hierarchical
structure may have less than d users. To revoke
users, the group controller assumes that all the ba-
sic structures (cf. Section 3.1) are full. This as-
sumption allows the group controller to distribute
the new group key according the rekeying techniques
we described in Theorems 2, 3 and 4. We note that,
in this model, the rekeying cost for the group con-
troller does not increase and is determined by the
actual number of revoked users. For a full hierar-
chical structure with h levels of hierarchy, the group

controller stores, O(( dh
−1

d−1
)(2d − 1)) keys and, each

user stores O(h.(2d−1)) keys. Thus, in the hierarchi-
cal structure, for small values of d, the user needs to
store O(h) keys as against O(2N−1) keys in the basic

structure.

4 Simulation Results and

Analysis

We compare the performance of our algorithms with
the algorithms in [10,12]. In [10], the group controller
associates a set of keys with the nodes of a rooted tree
and the users with the leaves of the tree. Each user
knows the keys associated with the nodes on the path
from itself to the root. To revoke a user, the group
controller recursively distributes the changed keys at
the higher levels in the key tree using the changed
keys at the lower levels. To revoke multiple users,
instead of sequentially distributing the changed keys
for each revoked user, the group controller processes
all the key updates in a single step. This reduces the
cost of changing a key multiple times if it is known to
multiple revoked users. In [12], the group controller
maintains a key tree similar to [10]. Each node in
the key tree is associated with a public key and a
private key pair. To revoke multiple users, the group
controller traverses the tree and determines the com-
mon ancestors of the remaining users. The group
controller uses the public keys of these ancestors to
send the new group key to the remaining users. The
remaining users use the private keys known to them
and determine the new group key from the informa-
tion sent by the group controller.

Methodology of Experiments. We denote the algo-
rithm from [10] by Batch LKH, the algorithm from
[12] by Resilient LKH and our algorithm by Our Al-
gorithm. In the simulations, we assume that the al-
gorithms maintain full and balanced hierarchies (re-
spectively, trees) of keys. For each experiment, we
selected a random set of users to be revoked from the
group, and recorded the number of encrypted mes-
sages sent by the group controller for the new group
key.

We simulated the algorithms with degrees 3, 4 and
5. For each experiment, we computed the average
cost of user revocation over 100 trials. The results
are shown in Figures 4-5. Regarding our algorithms,
we consider degrees 3, 4 and 5. We also experimented
with these degree values for the algorithms in [10,12]
and selected the version with the minimal cost.

Based on these figures, as the degree of the hi-
erarchy increases, the rekeying cost reduces due to
the reduction of the height h of the hierarchy. From
these results, we observe that our algorithms perform
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Figure 4: Comparison of Rekeying Costs for Revoking. (a) One User (b) 5 users and (c) 10
users

0 5000 10000 15000
0

50

100

150

200

250

300

350

400

450

Group Size

E
nc

ry
pt

io
ns

 / 
M

es
sa

ge
s

Cost of Revoking 25 Users

Batch LKH
Resilient LKH
Our Algorithm

degree=4 

degree=5 

degree=3 

0 5000 10000 15000
0

100

200

300

400

500

600

700

800

Group Size

E
nc

ry
pt

io
ns

 / 
M

es
sa

ge
s

Cost of Revoking 50 Users

Batch LKH
Resilient LKH
Our Algorithm

degree=4 

degree=5 

degree=3 

0 5000 10000 15000
0

200

400

600

800

1000

1200

1400

Group Size
E

nc
ry

pt
io

ns
 / 

M
es

sa
ge

s

Cost of Revoking 100 Users

Batch LKH
Resilient LKH
Our Algorithm

degree=4 degree=5 

degree=3 

(a) (b) (c)

Figure 5: Comparison of Rekeying Costs for Revoking (a) 25 users (b) 50 users and (c) 100
users

much better than the existing solutions. Specifically,
the cost of rekeying in our algorithm is 66% − 79%
less than that of [10] and 43% − 74% less than that
of [12]. Finally, the algorithm in [10] is an optimiza-
tion to the logical key hierarchy in [3] for handling
multiple user revocations. Hence, our algorithm re-
duces the rekeying cost to a value that is less than
that in [3].

In figure 6, we compare the keys maintained by
our algorithm for various degrees with the keys main-
tained in [10]. Also, if we consider that a public and
private key pairs corresponds to one key in the key
tree then the number of keys maintained in [12] is
the same as the number of keys maintained in [10].
As we can see, the number of keys is manageable
and there is a tradeoff by which maintaining a larger
number of keys per user, it is possible to reduce the
cost of rekeying.

Another important observation in this context is
illustrated in Figure 7. Specifically, in this figure, we
compare the upper bound identified in Section 3.2
with the experimental value. As shown in Section
3.2, the upper bound for rekeying cost is the mini-
mum of (h − k).r + dk−1, where 1 ≤ k ≤ h. From
this figure, it follows that the experimental value is a
close estimate to the upper bound that is computed
analytically. For this reason, the group controller can
use this analytical estimate in deciding the choice of
degree that should be chosen so that the rekeying
cost remains within acceptable limits.

5 Conclusion

In this paper, we presented a family of algorithms
that provide a tradeoff between the number of keys
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Figure 7: Comparison of Theoretical Upper Bounds Vs Experimentally Results for Rekeying
Cost to revoke (a) 5 users (b) 25 users and (c) 100 users

maintained by the users and the time required for
rekeying due to the revocation of multiple users. We
showed that our algorithms reduce the cost of rekey-
ing by 43%− 79% when compared with the previous
solutions in [10,12] while keeping the number of keys
manageable.

Our algorithms also enable the group controller to
deal with heterogeneous set of users that have differ-
ent capabilities. We illustrate this by a simple exam-
ple. Consider the case where the basic structure at
the root level has a degree 2, the trees rooted at the
left child of the root can only maintain a small num-
ber of keys, and the users rooted at the right child of
the root can maintain a large number of keys. Now,
we can use a smaller degree for the tree rooted at
the left child and a larger degree for the tree rooted

at the right child. With such a design, the users in
the left tree will receive only a small number of keys
whereas the users in the right tree will receive a large
number of keys. It follows that for the right tree,
the group controller can take advantage of reduced
rekeying cost provided by the use of a tree with larger
degree, while still allowing users with lower capabil-
ities to participate in the group communication.

Alternatively, our algorithms could be used in
cases where the nature of the users varies. To il-
lustrate this issue, consider the case where the group
consists of two kinds of users, long-lived and short-
lived. If the group controller can obtain such infor-
mation (which may contain a small number of errors)
based on the past behavior of users then the group
controller can provide a smaller number of keys to



long-lived users and a larger number of keys for short-
lived users. In other words, the group controller can
provide a preferential treatment to long-lived users.

Our algorithms are also suited for overlay multi-
cast applications. In overlay multicast [17–19], the
end nodes perform the processing and forwarding of
multicast data without using IP multicast support.
As these tasks result in increased overhead at the
end nodes, reducing control traffic is an important
problem for overlay multicast. Our algorithms re-
duce the overhead at the end nodes by reducing the
number of group key update messages sent by the
group controller. These benefits are also desirable
in wireless systems which are constrained in bat-
tery power. In [20], the measurements on wireless
network interface cards show that transmission con-
sumes more battery power than reception if the idle
listening time of the interface is small. As stream-
ing multicast sessions result in minimal idle time, the
energy consumption is dominated by the amount of
transmitted data. Thus, in heterogeneous systems
which comprise of wired and wireless systems, our
algorithms can be used to improve battery longevity
of wireless systems by reducing the amount of traffic
they need to transmit forward.

Our hierarchical algorithm can be combined with
the logical key hierarchy in [3]. A major motivation
for such a combination is to reduce the storage and
computational overhead of the users. To achieve this,
the group controller determines the utility of differ-
ent keys at each level during user revocation over a
period of time and discards those keys which are the
least useful. For example, the group controller can
maintain only logical keys at higher levels in the hi-
erarchy if additional shared keys, as required in our
hierarchical algorithms, are not useful. Such hybrid
schemes will allow the group controller to adapt to
heterogeneous systems where users have varying re-
quirements and capabilities. We are working on suit-
able techniques to combine these algorithms based on
the application requirements.
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