
Joe-E: A Security-Oriented Subset of Java

Adrian Mettler David Wagner
University of California, Berkeley
{amettler, daw}@cs.berkeley.edu

Tyler Close
waterken.org

tyler.close@gmail.com

Abstract

We present Joe-E, a language designed to support the
development of secure software systems. Joe-E is a subset
of Java that makes it easier to architect and implement pro-
grams with strong security properties that can be checked
during a security review. It enables programmers to ap-
ply the principle of least privilege to their programs; imple-
ment application-specific reference monitors that cannot be
bypassed; introduce and use domain-specific security ab-
stractions; safely execute and interact with untrusted code;
and build secure, extensible systems. Joe-E demonstrates
how it is possible to achieve the strong security properties
of an object-capability language while retaining the fea-
tures and feel of a mainstream object-oriented language.
Additionally, we present ways in which Java’s static type
safety complements object-capability analysis and permits
additional security properties to be verified statically, com-
pared with previous object-capability languages which rely
on runtime checks. In this paper, we describe the design
and implementation of Joe-E and its advantages for secu-
rity and auditability over standard Java. We demonstrate
how Joe-E can be used to develop systems with novel secu-
rity properties that would be difficult or impossible to en-
sure otherwise, including a web application platform that
provides transparent, transactional object persistence and
can safely host multiple mutually-distrustful applications in
a single JVM.

1 Introduction

This paper describes the design and implementation of
a programming language, called Joe-E, which supports de-
velopment of secure systems. Joe-E improves upon today’s
languages in two important dimensions. First, Joe-E makes
software more robust by reducing the number and impact
of inadvertent bugs and security vulnerabilities in benign
software. Second, Joe-E provides flexible mechanisms to
reduce a program’s vulnerability to software components
and allow the safe usage of untrusted code. Both charac-

teristics help to make code more amenable to code review
and security audits, an important property when we place
trust in computer systems’ correct operation and attack re-
silience. In particular, Joe-E supports construction of sys-
tems following a “secure by design” approach, where se-
curity is designed in from the start, as well as “design for
review”, where the code is architected and written specif-
ically to make it as easy as possible for code reviewers to
verify that the application meets its security goals.

Joe-E is based upon the Java programming language.
We show that a relatively small number of simple restric-
tions suffice to define a subset of Java that provides the se-
curity properties of an object-capability language. (In an
object-capability language, all program state is contained in
objects that cannot be read or written without a reference,
which serves as an unforgeable capability. All external re-
sources are also represented as objects. Objects encapsulate
their internal state, providing reference holders access only
through prescribed interfaces.)

A major contribution of our work is that we bring the
security benefits of object-capability systems to a popular
language. Additionally, we show how Java’s static type sys-
tem can be used to simplify the assurance of security prop-
erties statically, as opposed to via runtime checks used by
the dynamically-typed object-capability languages found in
prior work.

Memory-safe languages like Java make it much easier
to design robust systems and reason about their security
properties than non-memory-safe languages, but in Java it
is still difficult to reason about higher-level security proper-
ties, particularly when composing code with varying levels
of trust or when auditing the security of a program. With
Joe-E we are able to support richer ways of combining code
entrusted to varying degrees while reviewably maintaining
security properties.

Providing secure encapsulation. Consider Fig. 1, which
illustrates how one might build an append-only log facility.
Provided that the rest of the program is written in Joe-E,
a code reviewer can be confident that log entries can only
be added, and cannot be modified or removed. This review

public final class Log {

private final StringBuilder content;

public Log() {

content = new StringBuilder();

}

public void write(String s) {

content.append(s);

}

}

Figure 1. An append-only logging facility.

is practical because it requires only inspection of the Log
class, and does not require review of any other code. Con-
sequently, verifying this property requires only local rea-
soning about the logging code.

Perhaps surprisingly, Java does not support this kind of
local reasoning. Because Java allows the definition of na-
tive methods which can have arbitrary behavior and violate
Java’s safety properties, all bets are off unless one is sure
that the program does not use any such methods. Even if
the program uses no native methods, the append-only prop-
erty of the above code is not guaranteed. Java’s reflection
framework includes the ability to ignore the visibility spec-
ifier on a field, which would allow a reference-holder of
the Log object to retrieve the StringBuilder contained
within as if its field were declared to be public. This would
violate the append-only property, as it would then be possi-
ble to perform arbitrary operations on the StringBuilder.
While we might intuitively expect that the rest of the pro-
gram would be unlikely to exploit these weaknesses, we
would have to read all of the code of the entire application
to be sure.

Joe-E removes these and other encapsulation-breaking
features from Java in order to support building and reason-
ing about secure systems. This makes building sound, self-
contained application reference monitors possible. Because
these reference monitors are written as part of the appli-
cation software itself, this provides a powerful mechanism
for enforcing security policies: the programmer has the full
power of the Joe-E programming language for expressing
these security properties, and does not need to learn a new
security specification language to specify them. We antic-
ipate that this will aid developers in implementing custom
security abstractions.

Capabilities and least privilege. In the example above,
only the parts of the program that have access to an instance
of the log object will be able to add log entries; the rest of
the program will be unable to affect that log instance. In
particular, a reference to a Log object is a capability to ap-
pend entries to that log. We can control which parts of the

program receive the power to append to the log by control-
ling who receives a reference to the log object. The rules for
propagation of these capabilities are exactly the rules for
propagation of references in a type-safe language, which
should already be familiar to the programmer; we expect
this will make it easier for programmers to reason about ca-
pability propagation.

For instance, we might have an application where it is
critical that every incoming network request be logged. We
could provide the component that dispatches incoming re-
quests a capability to the log, so it can log every incoming
request. By examining the dispatcher component, we can
verify that every incoming request is logged using only lo-
cal reasoning. If required, we could also verify that no other
log entries are added, by checking that no other component
can receive a reference to the log.

Capabilities also support least privilege. Code can only
write to the log if it has a capability to the log object. Code
that is not explicitly passed this capability has no access to
it, which means that by default the overwhelming majority
of code is verifiably incapable of writing to the log. Our
experience is that this encourages a style of programming
where only the code that legitimately needs the power to
append to the log receives a capability to do so.

Analysis of who has access to an object and the principle
of least privilege are both subverted when capabilities are
stored in global variables and thus are potentially readable
by any part of the program. Once an object is globally avail-
able, it is no longer possible to limit the scope of analysis:
access to the object is a privilege that cannot be withheld
from any code in the program. Joe-E avoids these problems
by verifying that the global scope contains no capabilities,
only immutable data.

The Java standard library also provides a large number
of capabilities to all Java code, for example, the ability to
write to any file that the JVM has access to. In the context
of our example, this would include the file where the log is
ultimately output. For this reason, Joe-E allows access to
only a safe subset of the standard Java libraries.

Untrusted code and extensibility. Joe-E also allows ap-
plications to safely execute and interact with untrusted code.
This safety is a result of the fact that Joe-E objects spring
to life with no capabilities other than the ones passed to
them when they were constructed. They can only acquire
additional capabilities that they are explicitly passed. As a
result, Joe-E is well suited to execution of untrusted code,
since untrusted code written in Joe-E cannot harm anyone if
it is not passed any dangerous capabilities. Partially trusted
code can be granted only capabilities appropriate to its func-
tion and the level of trust placed in it.

This aspect of Joe-E provides support for secure exten-
sibility. For instance, consider a graphics viewer program

public interface Decoder extends Immutable {

/** Returns a bitmap; retval[x][y][c] is the value

at position (x,y) of color channel c. */

byte[][][] decode(byte[] imagedata);

}

Figure 2. An untrusted image decoder might
implement this interface.

that can be extended with plugins for various file formats.
We’d like to be able to download a plugin that interprets new
image files, without exposing ourselves to attack from ma-
licious code. We want to ensure that the worst a malicious
plugin could do is incorrectly decode an image, but for in-
stance it must not be able to send network packets, write to
the filesystem, or interfere with decoding of other images.

In Joe-E, we could enforce this by requiring plugins to
be written in Joe-E and to implement the interface in Fig. 2.
For instance, a JPEG decoder could implement this inter-
face, interpreting the data passed to it as a JPEG image and
converting the result to a bitmap to be displayed. If the plu-
gin is only invoked through this interface, Joe-E guarantees
the following remarkable security property: multiple invo-
cations of this method will be independent, and no state can
be retained or leaked from invocation to invocation. This
ensures both confidentiality (because information about a
confidential image cannot leak into other images, even if
the plugin is buggy) as well as integrity (even if the plugin
contains bugs that can be exploited, say, by a maliciously
constructed image, these exploits cannot interfere with the
decoding of other images or otherwise harm the rest of the
system, except by decoding the malicious image to an un-
expected bitmap).

The Immutable interface, defined by the Joe-E library,
is treated specially by the language: the Joe-E verifier
checks that every object implementing this interface will
be (deeply) immutable, and raises a compile-time error if
this cannot be automatically verified. Since the Decoder
interface extends Immutable, decoding plugins will neces-
sarily be stateless. Also, because only byte arrays can flow
across this interface, it is easy to verify (thanks to the static
type system) that plugins will never receive a capability that
allows them to interact with any other system component.

Reviewable, rich behavioral properties. Joe-E can be
used to enforce rich, application-specific behavioral secu-
rity properties. Fig. 3 defines a currency system. If used,
for instance, in an online game, it would be easy to ver-
ify that trades between players cannot generate money from
nothing. A Currency object provides the power to mint
new money in the corresponding currency; it is impossible
to do so without a reference to this object. A Purse can be

public final class Currency { }

public final class Purse {

private final Currency currency;

private long balance;

/** Create a new purse with newly minted money,

given the Currency capability. */

public Purse(Currency currency, long balance) {

this.currency = currency;

this.balance = balance;

}

/** Create an empty purse with the same currency

as an existing purse. */

public Purse(Purse p) {

currency = p.currency; balance = 0;

}

/** Transfer money into this purse from another. */

public void takeFrom(Purse src, long amount) {

if (currency != src.currency

|| amount < 0 || amount > src.balance

|| amount + balance < 0) {

throw new IllegalArgumentException();

}

src.balance -= amount;

balance += amount;

}

public long getBalance() {

return balance;

}

}

Figure 3. A secure abstraction that supports
flexible use of currencies.

used to hold and transfer money in a particular currency, but
does not grant the power to mint new money.

Note that this API is general enough to support multi-
ple currencies, and can easily be audited for correctness,
even in the presence of multiple mutually-distrusting and
potentially malicious clients. In particular, to verify that
the currency API cannot be abused, one only need exam-
ine the code of the Currency and Purse classes—nothing
more. From this code we can deduce, for instance, that it
is only possible to create money in a currency if one has a
reference to the corresponding Currency object. This kind
of local reasoning is made possible because Joe-E enforces
encapsulation boundaries that follow the program’s lexical
scoping structure.

Joe-E enables us to concentrate trust in a small, com-
prehensively reviewable portion of the code, which serves
as the trusted computing base (TCB) for a specific secu-
rity property. Here the Purse only needs to be trusted to
correctly enforce the security properties associated with the
currency, and not for other purposes. This pattern encour-

ages architecting a program so that for each desired secu-
rity property, we can identify a small TCB for that property.
Such a software architecture can, in turn, significantly re-
duce the cost of verifying security properties of the applica-
tion.

This paper. In the rest of this paper, we describe the goals
we had for the Joe-E language (§ 2), the design of the lan-
guage to meet these goals (§ 3–4), patterns that can be used
in reasoning about security of Joe-E applications (§ 5), and
our implementation of the Joe-E language and runtime (§ 6).
Finally, we evaluate the degree to which Joe-E has met our
goals by discussing our experience with the Waterken server
and how it makes use of Joe-E to host mutually-distrustful
web applications (§ 7).

2 Goals and Overview

We have three primary design goals for the Joe-E lan-
guage. First, we want Joe-E to be usable by programmers.
Second, we want Joe-E to support construction of secure
systems. Third, we want to make it easier to verify that the
resulting systems meet their security requirements, and ease
the task of security code reviews. We elaborate on these
goals below, and sketch Joe-E’s approach to each of those
goals.

2.1 Ease of use

To minimize barriers to adoption of Joe-E and reduce the
learning curve for new Joe-E programmers, the language
should be as familiar as possible for programmers. Joe-
E should minimize as much as possible the requirement to
learn new concepts or idiosyncratic syntax. To address this
goal, the Joe-E programming language is based upon Java
(§ 3.1).

Also, as much as possible, Joe-E programmers should be
able to use existing development tools, build on existing li-
braries, and integrate with legacy systems. We partially sup-
port this goal by designing Joe-E as a subset of Java (§ 3.1)
and exposing a capability-secure subset of the Java class li-
braries (§ 4.2).

Joe-E should support construction of new modules, writ-
ten from scratch with security and Joe-E in mind. To receive
the full benefits of Joe-E, software must be structured in a
way that is compatible with good capability design princi-
ples. We do not aim to add security to existing Java code.
Legacy Java code will most likely not be valid Joe-E, and
even if it were, legacy code often fails to be structured in a
way that respects capability principles. It is explicitly not
a goal of this work to make it easy to transform arbitrary
existing Java code into Joe-E; Joe-E is intended for newly
written code.

While existing Java code may not transform easily to
Joe-E, Java code can easily make use of modules written in
Joe-E. For example, an existing Java application may add
support for plugins implemented in Joe-E, thereby limiting
the damage that plugin authors can cause to the main appli-
cation. Similarly, a large Java application may be incremen-
tally migrated to Joe-E by rewriting its component modules.
Because any Java component of a combined application is
unrestricted in privilege, it must be considered part of the
trusted computing base. This Java component has the po-
tential to, via the abstraction-breaking features of Java, vi-
olate the security properties of Joe-E code, and so requires
the same level of careful review required for an all-Java ap-
plication. Use of Joe-E components neither facilitates nor
complicates review of Java code; the benefit is a reduction
of the amount of Java code to be reviewed.

Additionally, we desire Joe-E to have the expressivity
and scalability to support large, real-world systems. We do
not want our abstractions or implementation to place restric-
tions on the scale or complexity of applications that can be
written in the language.

2.2 Supporting secure software

To facilitate construction of secure systems, Joe-E
should:

1. Encourage least privilege. Joe-E is intended to help
programmers achieve the principle of least privilege,
at a fine level of granularity in their program, so that
each subsystem, module, and object receives only the
minimum privilege it needs to accomplish its task. Joe-
E should minimize barriers to least-privilege design of
software.

Joe-E supports this goal through safe defaults: by de-
fault, each block of code has no privileges to access
system resources, and can acquire such privilege only
if some other entity passes it an appropriate capability
(§ 3). In comparison, the default in most other software
platforms is that code runs with all of the privileges
of the user who invoked it, and must explicitly drop
privileges if that is desired; Joe-E reverses this pre-
sumption (§ 4.2). Joe-E’s libraries provide a capability
interface to system resources (e.g., the filesystem and
network). Also, applications written in Joe-E can de-
vise their own security abstractions that divide up priv-
ileges into smaller pieces appropriate to the application
domain (§ 5.5), further supporting least-privilege pro-
gramming. We expect that systems built in this way
will be more robustly secure, because the effect of bugs
and vulnerabilities is limited: the fewer privileges a
component has, the less harm it can do if it misbehaves
or runs amok.

2. Isolate untrusted code. We want programs to be able
to run untrusted or mobile code safely. Moreover, we
want programs to be able to interact usefully and effi-
ciently with the untrusted code—and in particular, we
want to be able to run untrusted code in the same JVM
as trusted code. This implies that simple isolation is
not enough; programs must be able to “poke holes in
the sandbox” to enable controlled sharing. We would
like the trusted program and untrusted program to be
able to share access to common data structures, and we
want cross-domain calls to be as efficient as a method
call.

Because Joe-E code receives, by default, no capabili-
ties, it is safe to execute untrusted code that is written
in Joe-E (§ 3). We can limit what the untrusted code
can do, by limiting what capabilities we provide to it;
and conversely, we can grant the untrusted code lim-
ited powers by passing it appropriate capabilities. For
instance, we can enable the untrusted code to write to
a single file on the filesystem, by passing it a capabil-
ity for that file. In Joe-E, data structures can be shared
between components simply by passing a reference to
the data structure, and cross-domain calls are a method
call.

3. Enable safe cooperation. As a generalization of the
previous point, we also want to enable mutually dis-
trusting subsystems to interact safely. Each party
should be able to limit its exposure, should the counter-
party be malicious. Joe-E helps with this goal by sup-
porting strong encapsulation, down to the object gran-
ularity. Each object can be written to enforce its in-
variants while protecting itself from code that makes
use of it (§ 5.3).

2.3 Supporting security code review

Joe-E should help programmers follow a “design for re-
view” philosophy, where the software architecture and im-
plementation are carefully chosen to facilitate security code
review. Joe-E should:

1. Enable reasoning about privileges. It is not enough for
Joe-E to enable least privilege and isolation; it should
also be feasible for reviewers to verify that these se-
curity goals are achieved. Accordingly, Joe-E should
help reviewers upper-bound the set of capabilities a
particular block of code might ever gain access to, or
upper-bound the portions of the program that might
ever gain access to a particular capability. Joe-E should
also make it possible to write code so that these upper
bounds are precise and easily verifiable. To help with
this, Joe-E is designed to enable several powerful pat-

terns of reasoning about the flow of capabilities in the
program (§ 5).

2. Support modular reasoning. Joe-E should make it eas-
ier to reason about security properties. If the program
is written appropriately, it should be feasible to ver-
ify a security property by examining a small fraction
of the code. If the object O implements some secu-
rity abstraction, it should be possible to reason about
the security properties of this abstraction (e.g., the in-
variants maintained by O) just by looking at the source
code for O and the objects O relies upon. In particular,
if client objects C1, . . . , Cn make use of O, we should
be able to verify the correctness of O without exam-
ining the code of any client Ci. We call this modular
analysis. Modular analysis is critical if security code
review is to scale to large programs.

Joe-E’s strategy for supporting modular reasoning
about security relies heavily on flexible support for iso-
lation of untrusted code (§ 5.3). Also, many of our
restrictions on Joe-E code support modular reasoning:
the more we restrict what Joe-E code can do, the more
we can restrict the possible behaviors of each client Ci,
which makes it easier to ensure that they do not violate
O’s invariants.

3. Support reasoning about mutability. Shared mutable
state is a headache for reasoning about security, be-
cause it introduces the potential for race conditions,
time-of-check-to-time-of-use vulnerabilities, and sur-
prising consequences of aliasing. Joe-E should help
programmers avoid these risks by providing first-class
support for reasoning about mutability and immutabil-
ity. In particular, Joe-E should make it easy for pro-
grammers to build data structures that are transitively
immutable, should provide support for static verifica-
tion of this fact, and should reflect these immutability
properties in the static type system. Joe-E addresses
this by extending the Java type system with immutabil-
ity annotations (§ 5.4), by providing library support for
programming with immutable data, and by forbidding
mutable global variables (§ 4.2, § 5.2).

3 Approach

Our approach to improving language security is through
the use of an object-capability language. Such languages
permit a default-deny, least-privilege approach to the au-
thority granted to parts of a program as it executes.

The central feature of object-capability languages is that
they use object references (pointers to objects) to represent
all of the privileges that can be used by a program. In the
simplest case, these simply point to encapsulated memory-
resident objects. Having a pointer to such an object grants

the ability to interact with it via its public interface. Since
access to the object is limited to the interface, the object
can be designed to maintain the privacy and integrity of its
internal state even when passed to untrusted code.

For many purposes, a system that can only operate on
in-memory objects is not enough. Most programs need to
interface with other resources on the system or network. In
object-capability languages, these resources are represented
as objects defined by special library classes. Reference to
such an object allows interaction with the external resource
via a library-defined public interface. In this way, files on
disk and network connections are naturally represented as
objects.

Access to all references in an object-capability language
is governed by program scope. At any point in time, the pro-
gram can only make use of the capabilities that are reach-
able from its in-scope references. For such an approach to
be sound, the language must be memory-safe: it must be
impossible to “forge” a pointer to an object, such as by per-
forming a type cast operation on a memory address.

To get the most benefit from this approach, we want the
minimal set of privileges we can bestow on part of a pro-
gram to be as small as possible. We’d like the “default state”
for running code to be one in which no harm can be done
unless we explicitly trust it with a reference. For this to be
the case, the global scope (which is available everywhere in
the program) should not allow access to any authority we
would want to deny to completely-untrusted code.

Ideally, we want code to be unable to do anything unless
we have granted it a capability to do so. In real systems, we
may need to relax this slightly for practical reasons; it may
be easy to limit access to in-memory objects and external
resources, but too difficult to prevent code from consuming
CPU cycles or memory, or failing to return in a timely man-
ner. Our approach is to place no limits on the purely com-
putational power of untrusted code, limiting only its access
to data and external resources. If the global scope grants no
access to privileges of concern, one can enforce least priv-
ilege on a fine-grained basis by ensuring that each scope in
the program’s execution only has access to the capabilities
it needs. More importantly, it is possible to reason about
the authority with which different parts of the program are
trusted. Every component of the program has only the ca-
pabilities that have been passed to it.

In contrast with most other object-capability languages,
which use dynamic typing, in Joe-E we can leverage the
Java type system to place static restrictions on how capa-
bilities can propagate as a program executes. With this ap-
proach we are able to restrict the flow of capabilities while
reducing the need for reference monitors and explicit dy-
namic checks in order to guarantee security properties.

3.1 Subsetting

Many new languages have been proposed over the years,
but relatively few have seen widespread adoption. Program-
mers have large amounts of experience with and code in ex-
isting languages, and thus are reluctant to invest in switch-
ing to a new language.

A number of new languages have been defined as exten-
sions to existing languages. This has the advantage of lever-
aging developer experience and preserving a greater degree
of familiarity than defining a new language from scratch.
Unfortunately, programs written in the extended language
become incompatible with tools (debuggers, interpreters,
profilers, IDEs) designed for the original language. De-
velopers are wary of becoming locked into such extended
languages, as they are not guaranteed to maintain the same
level of support as the base language going forward.

We take a different approach: we define the Joe-E lan-
guage as a subset of Java. Every Joe-E program is simply a
Java program that satisfies additional language restrictions
that are verified by the Joe-E verifier. We avoid adding new
features to Java or making changes to Java’s semantics; in-
stead, we impose restrictions on the source code that ev-
ery valid Joe-E program must satisfy (see Fig. 4 and § 4).
The Joe-E verifier checks that these restrictions are met, but
not does not transform the program in any way. This ap-
proach allows use of the standard Java tools, compiler, and
runtime, as well as allowing Joe-E programs to coexist with
Java code and libraries.1 More importantly, this allows us to
leverage programmers’ experience with the Java language,
while introducing security-oriented programming patterns.
Joe-E can be thought of as simply an idiomatic way to write
Java code, using conventions that facilitate a style of rea-
soning. The Joe-E verifier ensures that all checked code
conforms to these conventions.

4 Design of Joe-E

The Joe-E language restrictions are chosen so it will
be intuitive and predictable to the programmer which pro-
grams will pass the Joe-E verifier. We avoid sophisticated
program analysis, instead favoring programming rules that
are simple to state. For similar reasons, we avoid whole-
program analysis. Instead, the Joe-E verifier analyzes each
source file individually. This file-at-a-time approach also
helps scalability and lets us support open-world extensibil-
ity: new code can be added to the system, without invalidat-
ing the analysis previously performed on files that have not
changed.

1There is also no need to present formal semantics for the Joe-E lan-
guage, as they are identical to those of Java.

Enforce reference unforgeability
• prohibit defining native methods

Prevent unexpected reference propagation
• require all throwables to be immutable

Remove ambient authority
• tame Java APIs that provide access to the

outside world without an explicit capability
• require all static fields to be final and of

an immutable type

Enforce secure encapsulation
• prohibit overriding finalize()
• tame Java reflection API
• prevent catching Errors
• prohibit finally keyword

Figure 4. Overview of restrictions that Joe-E
imposes to enforce capability security.

4.1 Memory Safety and Encapsulation

Memory-safe languages like Java provide the foundation
for sound object-capability languages, as they ensure object
references cannot be forged. In Java, references cannot be
created by pointer arithmetic or casting integers to point-
ers, but rather can only be obtained by copying existing ref-
erences. The site at which an object is created using the
new operator is initially the sole holder of a reference to the
new object and has control over how the object is shared.
This memory safety property can be broken through the use
of native methods, so Joe-E prevents the definition of such
methods.

The access modifier private allows an object to encap-
sulate a reference to another object in such a way that it can
only be accessed via the enclosing object’s methods. The
public interface of the enclosing class then dictates the pol-
icy for use of the wrapped object. Capability-secure pro-
gramming relies crucially on the security of this encapsu-
lation property. Java’s reflection API provides a facility
for disabling access checks on methods and fields, allowing
malicious clients to bypass object encapsulation. To ensure
that encapsulation cannot be broken, we do not expose this
facility to Joe-E code.

Another Java feature with surprising consequences is the
ability to define custom finalization behavior, by overrid-
ing the finalize() method. The garbage collector in-
vokes user-defined finalize() code when an otherwise
dead object is collected. This can violate object invari-
ants that could be crucial to security, breaking encapsu-
lation. See Fig. 5, which illustrates how malicious code
(EvilOuterClass) could construct an OddInt instance
that holds an even integer, subverting the checks in the

public class OddInt {

final int content;

public OddInt(int content) {

if ((content % 2) == 0)

throw new IllegalArgumentException();

this.content = content;

}

}

class EvilOuterClass {

OddInt stash;

class NotReallyOddInt extends OddInt {

NotReallyOddInt() {

super(0);

}

void finalize() {

stash = this;

}

}

}

Figure 5. finalize() can violate object invari-
ants, subverting encapsulation. In this ex-
ample, stash can contain an object whose
content field is uninitialized and thus has the
value of zero.

OddInt constructor. Joe-E prevents these encapsulation-
breaking attacks by prohibiting Joe-E code from defining
custom finalizers.

4.2 Removing Ambient Authority

The privileges provided by Joe-E’s global scope are
strictly limited. We prevent Joe-E code from reading or
modifying any mutable state or external resource without
an explicit capability to do so.

This is perhaps our most significant and visible departure
from Java’s architecture. In Java, even code that starts out
without any references has essentially all the privileges of
the program; its lack of references does little to contain it.
The authority that it needs to perform these tasks is avail-
able as an “ambient” property of the process: it is available
to all code, in every scope. In Joe-E, no authority is ambi-
ently available, so the resources needed by Joe-E code must
be explicitly provided, typically as constructor arguments.
This design refactoring is the same as that done for “depen-
dency injection”, where code that depends on a resource is
provided with a reference to the resource, instead of con-
structing or accessing the resource directly. In dependency
injection, this refactoring is done to better support the con-
figuration and testing of software. In Joe-E, this refactoring
additionally supports security review of software.

4.2.1 Taming the Java class library

The Java library defines many static methods that have side
effects on the outside world, as well as many constructors
that create objects permitting similar effects. This is a ma-
jor source of ambient authority in Java. For example, File
has a constructor that will take a string and return an object
representing the file with that name. The resulting object
can be used to read, write, or delete the named file. Ab-
sent explicit access control by the Java security manager or
the operating system, this allows any Java code full con-
trol over the filesystem. In Joe-E, we wish to ensure that
code can only have access to a file if a capability for the file
(or a superdirectory) is within that code’s dynamic scope.
Consequently, we must not allow the aforementioned File
constructor in Joe-E’s global scope.

We define a subset of the Java libraries that includes only
those constructors, methods, and fields that are compatible
with the principle that all privileges must be granted via a
capability. We call this activity taming, because it turns an
unruly class library into a capability-secure subset. The Joe-
E verifier allows Joe-E programs to mention only classes,
constructors, methods, and fields in this tamed subset. If
the source code mentions anything outside of this subset,
the Joe-E verifier flags this as an error.

Taming helps eliminate ambient authority, because it en-
sures library methods that provide ambient authority are not
accessible to Joe-E programs. We also use taming to expose
only that subset of the Java library that provides capabil-
ity discipline. Intuitively, we’d expect that a reference to a
File object would provide access to the file that the object
represents (or, in case it represents a directory, access to the
directory and all files/subdirectories within that subtree of
the filesystem hierarchy), and nothing more. Unfortunately,
the getParentFile() method on File violates this ex-
pectation: it can be used to walk up the directory hierarchy
to obtain a capability for the root directory, so access to any
one File would grant access to the entire filesystem. This
prevents fine-grained control over delegation of file capabil-
ities, so we exclude methods, such as getParentFile(),
that violate capability discipline.

In some cases, due to the design of the Java libraries,
there are methods with important functionality that are not
safe to expose. For instance, consider the File(File dir,
String child) constructor. This constructor gives a way
to access a file with a specified name within a specified di-
rectory. This pattern of obtaining a specified subfile is a
capability-compatible method for attenuating existing au-
thority, but Java happens to specify this constructor to have
additional behavior that is not compatible with our security
model: if the dir argument is null, the constructor treats
the child argument as an absolute rather than relative path.
This means that new File(null, path) can be used to
access any file on the filesystem, so this constructor must

not be exposed to Joe-E code. Joe-E programmers still need
some way to traverse the directory hierarchy, and unfortu-
nately there is no other constructor in the Java library that
provides this important functionality. While we can’t al-
low Joe-E code to call the unsafe constructor directly, we
provide a wrapper method in the Joe-E library with the de-
sired functionality. The wrapper checks at runtime that the
dir argument is non-null before invoking the original con-
structor2. In general, our strategy is to tame away all unsafe
methods from the Java libraries, then add wrappers to the
Joe-E library if important functionality has been lost.

Taming a library is unfortunately a time-consuming and
difficult task, and a place where a mistake could violate
soundness of our security goals. The security review of
the DarpaBrowser, which included a review of the taming
database provided by the E language, found that a num-
ber of methods violating capability discipline had been in-
advertently allowed [22]. While we have attempted to be
more conservative when taming Joe-E code, checking each
method for safety before enabling it and erring on the side
of caution when unsure, it is possible that we also enabled
some method that we should not have. We consider the dif-
ficult and critical nature of this process to be a substantial
weakness in our approach, and an area in which there is
substantial room for improvement in future work. In partic-
ular, tools to validate or safely automate taming decisions
would be very helpful. (We anticipate that a relatively small
fraction of classes in a typical Java classpath implementa-
tion are valid Joe-E in their current form, but those that are
would be safe to permit.)

4.2.2 Mutable state

In addition to being able to observe or affect external state
outside the JVM, ambient authority to modify program state
can also be problematic. Untrusted extensions could corrupt
critical internal data structures if the global scope provides
the ability to do so. For the purposes of security audits, such
exposure means that every line of code in the program must
be examined to ensure that security properties on globally
accessible state are maintained.

In Java, this risk arises with fields declared static,
since these fields are not associated with an object instance
and thus access is not governed by a capability. For this
reason, Joe-E requires all static state to be transitively im-
mutable. In particular, all static fields declared in Joe-E
code must be of a type that is statically known not to pro-
vide access to any mutable objects: the object itself and all
objects it transitively points to must be immutable.

To facilitate this goal, we provide a marker interface,

2Portions of the Joe-E library are written in unrestricted Java rather than
Joe-E and thus can call arbitrary Java methods. This gives us the ability to
write such wrappers.

org.joe e.Immutable, to identify classes claimed to be
transitively immutable. The Joe-E verifier checks that any
class that is a subtype of Immutable satisfies the following
rule: all instance fields must be final and their declared
type must be either a primitive type or a reference type that
also implements Immutable. All other classes are assumed
to be potentially mutable.

We make no attempt to infer immutability types. Joe-E’s
philosophy is to require programmers to explicitly declare
the properties of their code. The Joe-E verifier is respon-
sible solely for verifying these properties, and performs no
inference. This design decision is intended to make the be-
havior of the Joe-E verifier more intuitive and predictable
for programmers.

Some classes from the Java library, like String, are
immutable but we cannot rewrite them to implement the
Immutable interface, because we do not modify the Java
libraries. The verifier treats these classes as if they imple-
ment the interface.

4.3 Exceptions and Errors

Exceptions introduce a number of complications for an
object-capability language. They provide a potentially un-
expected means of transferring control and references be-
tween objects. In particular, objects reachable from the ex-
ception itself are implicitly passed up the stack from where
the exception is thrown to where the exception is caught. If
the exception contains a capability, this can lead to propaga-
tion of privileges that a developer might not expect, which
might introduce unexpected security vulnerabilities.

To see how this can cause unpleasant surprises, suppose
Alice calls Bob. Bob has some special capability that she
lacks, and Bob wants to avoid leaking this to her. At some
point, Bob might need to invoke Chuck to perform some op-
eration, passing this capability to Chuck. If (unbeknownst
to Bob) Chuck can throw an exception that Bob doesn’t
catch, this exception might propagate to Alice. If this ex-
ception contains Bob’s precious capability, this might cause
the capability to leak to Alice, against Bob’s wishes and de-
spite Chuck’s good intentions. See Fig. 6 for an example.

The problem is that it is hard to tell, just by looking at
the code of Bob, that Bob’s private capability can leak to
the caller of m(). This is a barrier to local reasoning about
the flow of capabilities. To avoid these kinds of problems,
Joe-E requires all exception types to be immutable.3 This
prevents storing capabilities in exceptions, precluding at-
tacks like the one described above.

An important guarantee provided by Joe-E is that no
code is able to execute once an error is thrown. This is

3The Throwable class provides a little-used facility to rewrite the stack
trace in an exception, preventing exceptions from being truly immutable.
This facility is disabled in Joe-E via the taming mechanism.

class E extends RuntimeException {

public Object o;

public E(Object o) { this.o = o; }

}

class Bob {

// cap was intended to be closely held

private Capability cap;

void m() {

new Chuck().f(cap);

}

}

class Chuck {

void f(Capability cap) {

... do some work ...

throw new E(cap);

}

}

class Alice {

void attack() {

Bob bob = ...;

try {

bob.m();

} catch (E e) {

Capability stolen = (Capability) e.o;

doSomethingEvil(stolen);

}

}

}

Figure 6. There is a security risk, if exceptions
can contain capabilities.

necessary for two reasons. First, the behavior of the JVM
after a VirtualMachineError is technically undefined [9,
§6.3]. Second, continuing to execute after an error has been
thrown can have hard-to-predict consequences. For exam-
ple, an object’s invariants can be violated if an error (such
as running out of memory) is encountered during execution
right when the object is in a temporarily inconsistent state.
In many cases, these errors can be intentionally triggered
by the invoking software component, for example by allo-
cating a lot of memory or recursing deeply to use up stack
space before invoking the object under attack. If a mali-
cious caller could catch such an error, the caller would be
well-positioned to exploit the violated invariant. Preventing
Joe-E code from executing after any error is thrown prevents
such attacks. Without such a guarantee, it would be unrea-
sonably difficult to build secure abstractions and maintain
object invariants in the face of attack.

We prohibit Joe-E code from including any catch
block that could catch an error: for the syntactic construct
catch (T e) { ... }, we check that the type T is not
Throwable, Error, or any subtype of Error.

In addition, we prohibit finally clauses, as code in a
finally clause can execute after an error is thrown. The
finally clause could exploit the inconsistent state directly,
or it could throw its own exception that masks the pending

InputStream in = ...

try {

// use the stream

} finally {

in.close();

}

InputStream in = ...

Exception e = null;

try {

// use the stream

} catch (Exception e2) {

e = e2;

}

in.close();

if (e != null) { throw e; }

InputStream in = ...

try {

// use the stream

} catch (Exception e) {

try { in.close(); }

catch (Exception e2) {}

throw e;

}

in.close();

Figure 7. Transformation to avoid the use of the finally keyword. On the left is Java code that
uses finally. The middle shows a transformed version with the same semantics that can be used
in Joe-E. The right shows an alternative, with different semantics, that we have found useful in our
experience.

error, effectively catching and suppressing the error. Tech-
nically, the lack of finally clauses does not limit expres-
sivity, as one can explicitly catch Exception to ensure that
an action takes place whenever any non-error throwable dis-
rupts normal control flow. See the middle of Fig. 7 for an
example4. In our experience writing Joe-E code for the Wa-
terken server, the prohibition on finally clauses was not
a serious problem, and in retrospect the replacement code
used in Waterken (shown on the right side of Fig. 7) is
arguably better anyway, as it avoids masking the original
exception in case the finally clause throws its own ex-
ception. The Joe-E specification [10, §4.8] contains further
discussion and analysis of these workarounds.

5 Programming Patterns

To facilitate our goal of “design for review”, Joe-E was
designed specifically to enable several powerful patterns of
reasoning about security.

5.1 Reachability and Object Graph analysis

The basic rule for reasoning in capability systems is that
a capability can only be accessed from dynamic scopes to
which it was passed. In order to bound the possible risk
posed by bugs or malicious behavior in any given part of
the program, we can consider the graph of objects reachable
from the scope at that program point. This can be deter-
mined by constructing a graph with a node for each object
in the program, and an edge for each field pointer. The au-
thority of a point of execution is bounded by the subset of
the graph reachable from the variables in scope at the time.

The graph generated by this technique is very conser-
vative, as it ignores the behavior of classes on the path
from the variables in scope to the capabilities reachable

4Elaborations on this idiom can handle more complex use cases, e.g.,
where the original code also contains one or more catch blocks, and when
the original exception signature must be maintained. This idiom does not
require duplicating code.

from them. A substantial advantage of object-capability
languages over basic capability systems is the ability to
attenuate authorities via encapsulated reference monitors,
which allow only partial access to the ultimate capability.
In practice, programmers can incrementally refine the crude
bounds obtained through naive reachability analysis by tak-
ing into account the behavior of classes along this path. We
have found that, in well-designed systems, this style of rea-
soning is effective at enabling code reviewers to focus their
attention on a small fraction of the code at a time. We made
use of it during a security review of Waterken when check-
ing the capabilities the infrastructure makes available to ap-
plication code.

5.2 Leveraging Static Typing

Type safety, as provided by Java and other statically
type-safe languages, can also be of use in reasoning about
programs and the distribution of authorities to parts of a pro-
gram.

Because the capabilities granted to a method are speci-
fied by its arguments (including any associated instance or
enclosing object), the signature of a method serves as a se-
curity policy. Since the method can be invoked only with
capabilities that satisfy its method signature, it can subse-
quently obtain access only to capabilities reachable from
these arguments, or new objects it can create through public
constructors and static methods. Hence, the set of methods
exposed by an interface or class can serve as a complete se-
curity policy for the objects that implement it, provided that
other components of the system are verified to interact with
the object solely through this interface. The image decoding
example in Fig. 2 is an example of this type of reasoning.

When analyzing code of a class to verify it meets its se-
curity goals, it is necessary not only to examine the textual
code of the class itself, but also to understand the behavior
of any external methods that it invokes. This often requires
identifying what classes those method invocations might re-
solve to. Static method calls are easy: static methods can-

not be overridden, so it each static method maps directly to
a specific implementation. The static method’s documenta-
tion can be consulted and its source code can be examined.
In comparison, instance methods are more difficult, as they
can be overridden. There are two basic approaches to jus-
tify trust placed in instance methods: based on the object’s
provenance, or based on its type.

1. Provenance. In the first approach, we justify relying
upon the behavior of methods of an external object
based on the external object’s provenance or origin.
For example, an object that the code constructs itself
is known to have behavior consistent with its known
concrete type. Provenance-based reasoning can also
arise from transitive trust relationships. For example,
consider an object O that calls a method on object P
that it trusts to return an object Q with specified behav-
ior. The provenance of Q then makes it safe for O to
invoke its methods regardless of its type.

2. Type. If we know the declared type of the external ob-
ject, then in some cases this typing information makes
it possible to rely upon the behavior of that object.

The simplest example of using trusted types to ensure
desired behavior is calling an instance method on an
object belonging to a final class. Like static methods,
it is in this case possible to map the method called to
a single implementation that can be reviewed. Regard-
less of the origin of the object, the code being executed
is known to come from the declared class. For exam-
ple, because the String class is final, code that uses
strings can rely on String objects to fulfill their spec-
ified contracts; it does not need to defend against some
maliciously-defined object that impersonates a String
but misbehaves in a devious way to violate security or
privacy.

Instance methods from non-final classes are trickier.
In general, it is not possible to guarantee behavioral
properties of methods belonging to such a class C, as
one could be dealing with an arbitrary subclass which
may fail to meet the documented semantics of the orig-
inal declarer of the method. In order to avoid this risk,
it is necessary to prevent arbitrary subclassing of C.
One way to achieve this in Java is to define C and its
subtypes to have only package-scope constructors, but
no public constructors. To allow instantiation by code
outside the package, these classes can provide public
factory methods. This ensures that C can only be sub-
classed by the bounded set of classes in its own pack-
age, permitting reasoning about the behavior of objects
with declared type C, even if their origin is not trusted.

If the programmer adopts a particular style of program-
ming, called capability discipline, Joe-E supports reason-

ing about the privileges granted by an object based upon
that object’s declared type. Capability discipline proposes
that the documentation for each type should specify the au-
thority that may be granted by instances of that type. For
instance, Joe-E’s File object conveys authority to a single
file on the filesystem (or, in the case of directories, a sub-
tree of the directory hierarchy); passing a File to another
party will enable them to access the specified file, but not
(say) send network packets or erase the entire hard drive.
When a type T is non-final, the documentation for the type
T should specify an upper bound on the authority granted
by instances of T or any of its subtypes. If code reviewers
check that subclasses of T never yield more authority than
this, then we can use the type system to upper-bound the au-
thority passed across an interface: if a method m() accepts
a parameter of declared type T , we can conclude that this
parameter will not yield more authority than that specified
in T ’s documentation. Similarly, if a method has return type
T , we can conclude that this method’s return value will not
yield more authority than that specified in T ’s documenta-
tion. We follow this pattern in the Waterken server and have
found that it is helpful for reasoning about the authority that
a type can convey.

5.3 Defensive Consistency

Reasoning about the security of a program is difficult if
understanding its security properties requires comprehend-
ing the entire program all at once. The task is greatly sim-
plified if it is possible to analyze the program in a modular
fashion, one piece at a time. The easiest way to do this is to
decompose the program into a number of trust domains, and
for each domain determine what invariants it aims to main-
tain, and which invariants it relies on from other classes.
In Joe-E, a trust domain would normally correspond to a
single object, or perhaps a small collection of objects. Nor-
mally, domains interact following a client-server metaphor:
domain D might provide service to clients C1, . . . , Cn. The
standard approach to modular analysis in the program ver-
ification literature suggests we verify that (1) D provides
correct service to its clients, assuming that all its clients
meet D’s documented preconditions; (2) each client Ci es-
tablishes D’s documented preconditions. This allows us
to analyze the code of D on its own, then separately an-
alyze the code of each client Ci on its own, without hav-
ing to mentally consider all possible interactions between
them. However, this approach requires us to verify that ev-
ery client Ci meets D’s preconditions, which may not be
possible in an open world or where some clients may be
malicious.

Defensive consistency is a relaxation of this concept [11,
§5.6]. To show that D is defensively consistent, we must
show that D provides correct service to every client that

meets D’s documented preconditions. Note that if one of
D’s clients, say C1, fails to meet D’s preconditions, then
D is under no obligation to provide correct or useful ser-
vice to C1, but D must still provide correct and consistent
service to its other clients C2, . . . , Cn (assuming they do
meet D’s preconditions). Thus, D must maintain its own
invariants, even if one of its clients behaves maliciously. A
defensively consistent domain can be safely used in con-
texts where some of its clients may be malicious: its non-
malicious clients will be protected from the misbehavior of
malicious clients.

Defensive consistency confines the malign influence that
a single malicious or compromised component can have.
Without defensive consistency, verifying security becomes
harder: if domain C acts as a client of a non-defensively
consistent abstraction A, then verifying the correctness of
C requires us to verify that no other client of A is mali-
cious, which may be difficult and may require reviewing a
great deal of additional code. Thus, defensively consistent
components support least privilege and reasoning about se-
curity.

5.4 Immutability

Joe-E’s support for immutable types (§ 4.2) facilitates
defensively consistent programming. When immutable ob-
jects are passed between trust domains, immutability pro-
vides guarantees both to the sender and recipient domains.
The sender is assured that the recipient cannot modify the
passed object, and thus the sender can continue to use the
same object internally without having to make a defensive
copy to guard against corruption of its internal state. Also,
passing an immutable object conveys no capabilities aside
from the data contained in the passed object, which helps
the sender avoid inadvertent capability leakage. The recipi-
ent is also protected from unexpected mutation: it can store
the immutable object as part of its internal state without
fear of interference from modifications performed by any
other code that has access to the same object. Thus, Joe-E’s
immutable types eliminate the need for defensive copying
at the sender or the receiver. For instance, Fig. 8 shows a
classic Java vulnerability and how Joe-E’s immutable types
eliminate the vulnerability pattern.

5.5 Attenuation of Authority

In order to achieve least privilege, it is helpful to be able
to easily attenuate the authority provided by a capability.
This refers to being able to take a capability to a resource
and derive from it a less-powerful capability to the resource
that has only a subset of the privileges of the initial capabil-
ity. One example of this would be a new object that wraps
the old object and acts as a reference monitor on operations

class C {

private Object signers[];

public Object[] getSigners() {

return signers;

}

}

class C {

private ImmutableArray<Object> signers;

public ImmutableArray<Object> getSigners() {

return signers;

}

}

Figure 8. Above, an example of a clas-
sic Java vulnerability: a malicious caller to
getSigners() could mutate the internal state
of the class, due to the failure to make a de-
fensive copy of its signers array. Below, a
natural way to write this code in Joe-E is se-
cure without defensive copies, thanks to the
use of immutable types.

performed on the encapsulated object. While this is sup-
ported in a general-purpose and flexible way by defining
classes that act as reference monitors, we suggest that class
libraries and type hierarchies be designed to facilitate easier
use of common attenuation patterns.

For example, in Joe-E a file object represents the ability
to access a particular file, or if it is a directory, any of its sub-
directories and their files. Joe-E directory objects provide a
method to obtain a capability to any of the files or directo-
ries contained within them. This allows one to create an at-
tenuated capability that allows access to a smaller part of the
filesystem; a program can be given a capability to a large di-
rectory, but have the ability to delegate only a portion of this
authority to other, less trusted parts of the program. This
makes it easy to follow the principle of least privilege. An
important requirement to correctly implementing attenuable
authority in tree structures like the file system is to avoid
methods that retrieve the parent of a node, as such methods
would make any node actually give the authority to access
the entire tree.

5.6 Facets

A client can always create an attenuated version of a ca-
pability by defining a wrapper object; however, this places
an implementation burden on the author of the client code
that discourages the practice of the principle of least privi-
lege. Where the author of an interface can anticipate a use-
ful attenuation of authority, providing it as part of the inter-
face encourages better capability hygiene by all clients.

For instance, Fig. 9 shows a typical Java queue interface,
followed by a Joe-E queue interface that predefines the at-

class Queue {

public Object dequeue() {

...

}

public void enqueue(Object o) {

...

}

}

class Queue {

public Object dequeue() {

...

}

public void enqueue(Object o) {

...

}

public Receiver enqueuer() {

return new Receiver() {

public void receive(Object x) {

enqueue(x);

}

};

}

}

Figure 9. Above, an example of a typical Java
queue interface. Below, a Joe-E queue inter-
face that defines an attenuated facet that only
supports adding elements to the queue. Easy
access to this facet encourages clients to
practice the principle of least privilege by del-
egating only the permission to enqueue, not
the permission to dequeue, to those objects
that do not need full access to the queue.

tenuated authority to add elements to the queue. The imple-
mentation technique for this attenuated authority is called a
“facet”. A facet defines an additional interface for manipu-
lating state that can also be manipulated via another inter-
face. Whereas a typical object has a single public interface
that governs access to its state, an object with facets has
many such interfaces. Each of these facets is designed to
provide a least privilege interface for a particular kind of
client. In this case, the enqueue facet provides permission
to add elements to the queue, without the permission to re-
move elements or to access elements added by other clients
of the queue.

Using the facet technique, the author of an object can im-
plement an attenuated capability more economically than
a client could, since the state protected by the facet is al-
ready within the lexical scope where the facet is defined.
This economy of expression makes the facet technique use-
ful even in cases where the attenuation is only of use to one
client.

Figure 10. The Joe-E Verifier for Eclipse

6 Implementation

We implemented a source-code verifier for Joe-E as a
plugin for Eclipse 3.x. The plug-in supports the develop-
ment of Joe-E code alongside the use of unrestricted Java.
A Java package annotation @IsJoeE is used to indicate that
a package is written in Joe-E. The plug-in checks every
class belonging to such packages and flags any violations
of Joe-E restrictions in a manner similar to compilation er-
rors. This package annotation, which is retained at runtime,
allows our system to recognize Joe-E code during verifica-
tion and at runtime via the reflection API.

We perform checks on the Java source code rather than
on Java class files since the Java runtime subjects bytecode
to only a limited set of validation checks, allowing bytecode
to do a number of things that Java programs cannot. The
expanded semantics afforded to bytecode but not specified
by the Java language are unfamiliar and not clearly defined,
and thus much harder for a programmer or auditor to reason
about.

Working with source code has disadvantages. Since Java
source code is higher level than Java bytecode, the veri-
fier must correctly handle a larger number of features, rais-
ing the likelihood that an implementation bug in the Joe-
E verifier could allow an attacker to sneak something by
the verifier. For example, the Joe-E verifier must reason
about code implicitly generated by the Java compiler, such
as default constructors, string conversions, and enhanced
for loops. Our verifier infers the presence of these implicit
calls, and checks that only permitted methods and construc-
tors are called. Another complication is that generic type
parameters are not type-safe. This complicates inference
of which toString() method will be invoked by implicit
string conversions. While the Joe-E language permits full

use of Java generics, our verifier implements a more con-
servative type check than the Java compiler to ensure that
tamed-away toString() methods will not be invoked [10,
§ 4.10].

We have tamed a subset of the Java libraries that is small,
but sufficient for writing useful programs. It would be use-
ful to increase the set of tamed classes, as much of Java’s
utility derives from its rich class library. While it is possible
for Joe-E application developers to add additional classes
and enabled methods to the taming database, determining
whether classes are capability-safe is unfortunately a high-
risk process that requires careful attention and awareness of
possible pitfalls. There is an opportunity for future work in
tools that simplify and improve the safety of this process.

As mentioned above (§ 4.2), some important functional-
ity cannot be made safe by taming alone. Joe-E provides
safe wrappers for the filesystem, for Java reflection and
proxying APIs, and for locale-independent character encod-
ing and decoding routines.

The Java language only includes mutable arrays. Joe-E
also provides read-only array types for use as collections
of data: ConstArray<T> is a read-only array of possibly-
mutable objects, and ImmutableArray<T> is a read-only
array of immutable objects. We need multiple classes be-
cause generic type parameters are not type-safe in Java:
for instance, an object of type ConstArray<String> isn’t
guaranteed to actually contain strings, and thus might not
really be immutable. A runtime check at creation ensures
that all elements in an ImmutableArray are in fact im-
mutable. One alternative we considered was to use a type
annotation to distinguish between mutable and immutable
arrays in Joe-E source code, and enforce the annotation in
the Joe-E verifier. While this approach might work for sim-
ple cases, the lack of runtime information would greatly
complicate serialization and probably make reflection in-
feasible for immutable arrays.

The Joe-E verifier and libraries are released as an open-
source project, available at http://www.joe-e.org. To
increase our assurance in the implementation’s correctness,
we have implemented a suite of over 300 unit tests, includ-
ing several for each of the Joe-E language restrictions, cov-
ering as many corner cases as we could devise.

7 Evaluation

The greatest challenge in using Joe-E is that attaining
many of the security benefits requires architecting systems
following capability design principles, which are unlikely
to be familiar to most programmers. Consequently, using
Joe-E effectively will likely require training in capability
concepts. Where it is not practical for every programmer to
have these skills, it may be possible for someone with such
expertise to carefully architect a system being designed as a

collection of modules whose interfaces enforce least privi-
lege and thus minimize trust in the modules. Modules that
are no longer critical to the application’s security properties
can then be implemented by programmers with less special-
ized training, who must just ensure that their code passes the
verifier. For those familiar with capability design principles,
Joe-E appears to be usable; we did not find the restrictions
that Joe-E imposes a serious problem in the programs we
have implemented.

We have used Joe-E to build two interesting applications.
In previous work, we ported an open-source HTML pars-
ing library, originally comprising over 10K lines of Java
code, to Joe-E, providing deterministic and side-effect free
HTML parsing [4]. Here, we describe the Waterken server,
which provides secure isolation and cooperation between
mutually distrustful web applications written in Joe-E.

7.1 Waterken

In its standard distribution, Joe-E supports design and re-
view of code that is single-threaded, transient and local. The
Waterken software extends this scope to code that is multi-
threaded, persistent and networked. Waterken follows the
asynchronously communicating event loop model [11]. An
event loop is a loop that repeatedly extracts the next event
off a queue and processes it. Each application object is cre-
ated within a single event loop, which services all invoca-
tions on the object. An event loop and the collection of
objects it services is called a vat. The vat is the unit of
concurrency in Waterken: separate vats may process their
events concurrently, but each vat is single-threaded, so two
events handled by the same vat cannot be processed con-
currently. The vat is also the unit of persistence: after pro-
cessing of an event has completed, all changes to the vat’s
objects are written to persistent storage. Vats may commu-
nicate through exported references. When a new vat is cre-
ated, a reference to one of its objects is exported. The object
that created the new vat receives the exported reference, en-
abling it to send asynchronous invocations to the referenced
object. An asynchronous invocation is processed by the ref-
erenced object’s vat as an event, and the return value sent to
the caller’s vat as an event. The invocation event and return
event may also transport exported references, introducing
the callee or caller to objects in either’s vat, or in another
vat.

An instance of the Waterken server can host many vats
within a single JVM. An application running on the Wa-
terken software consists of application-specific Joe-E code,
running in one or more vats, which may be hosted on
a single Waterken server instance or spread across multi-
ple Waterken instances. The implementation of the Wa-
terken server is crafted to ensure that security review tech-
niques for single-threaded, transient, local Joe-E code re-

main sound when applied to Joe-E application code running
on the Waterken platform. To assist verification of its imple-
mentation, the Waterken software itself uses Joe-E to prove
certain properties of its own implementation and to ensure
that assumptions about hosted application code are valid.
The following sections examine some of these properties to
highlight different “design for review” techniques enabled
by Joe-E. The Waterken server comprises about 13K SLOC
of Joe-E code and 4K SLOC of Java (excluding blank lines
and comments).

7.1.1 Consistent Persistence

Processing of an event by a vat should be like processing of
a transaction by a database: either the vat is transitioned to a
new consistent state, or reverted to its state prior to process-
ing. Put another way, either all mutations that occur during
handling of an event must be persisted, or none of them
must be. This consistency is crucial for preserving the se-
curity of Joe-E applications hosted on Waterken. For exam-
ple, in the currency example from Fig. 3, if some mutations
were not persisted, a malicious client could generate money
from nothing by invoking the takeFrom() method during
processing of an event that did not persist changes to the
source Purse. Waterken’s persistence engine is designed
to prevent such violations of consistency. After an event is
processed, the persistence engine traverses the graph of all
objects that were accessible during processing. Any mod-
ified objects are written to persistent storage. If the mod-
ifications can not all be committed, an exception is raised
and processing of a subsequent event begins by reloading
the vat’s state from its prior persistent state.

The correctness of the persistence engine depends upon
its ability to find all modifications made during processing
of an event. This goal is met by requiring Waterken applica-
tions to be written in Joe-E. As a result, application code is
restricted as follows: static variables cannot be mutated
or refer to mutable objects; Java APIs that provide access
to external resources, such as java.io.File constructors,
are not accessible, and thus cannot be used to cause unmon-
itored side effects; and application code is not able to break
the encapsulation of objects that implement the persistence
engine. These restrictions make it easier to review the per-
sistence engine.

The correctness of the persistence engine also depends
upon certain restrictions upon the code that invokes it. The
persistent state of each vat is encapsulated in an object of
type Database. An event, or transaction, is an invocation
of the Database’s enter() method, which takes an argu-
ment of type Transaction. The enter() method provides
the Transaction object access to the vat’s objects and re-
turns an object of the Transaction’s choosing. A faulty
Transaction object could violate consistency by storing a

reference to a vat object and modifying it after completion
of the enter() invocation, or during a subsequent invoca-
tion. The persistence engine would then fail to detect the
modification since it didn’t expect the late modification, or
didn’t know that a subsequent event had access to the ob-
ject. A reference to a vat object could similarly escape if
used as the return value from a transaction. We use Joe-E to
prevent the escape of mutable vat objects by declaring both
the Transaction type and the return type of enter() to
implement Joe-E’s Immutable marker interface. The Joe-
E verifier can thus be used to ensure that clients of the per-
sistence engine do not have these faults. All clients of the
persistence engine in the Waterken software pass the Joe-E
verifier.

In defensive programming, an object implementation
normally has sole responsibility for maintaining its invari-
ants. The object’s clients are assumed to be buggy or even
malicious. In the above example, Joe-E’s Immutable inter-
face is used to relax this constraint, enabling the Database
object to depend upon particular client behavior that the
Joe-E verifier automatically enforces. Through clever use
of a Joe-E-verified property, a design which previously re-
quired review of all client code can instead be made defen-
sively consistent, so that we don’t need to review the client
code.

7.1.2 Cache Coherence

Exported references are accessed remotely using HTTP.
An HTTP GET request results in an invocation of a get-
ter method on an object in some vat. The request response
contains a representation of the return value from the getter
method. To support caching, the Waterken server includes
an ETag header in the response. The value of the ETag
header is a secure hash of the current application code and
all vat state accessed during invocation of the getter method.
All GET requests are processed in a Waterken transactional
event that aborts if any modifications are made, ensuring
that there are no side effects and that the request can be
served from cache.

Cache coherence is crucial to application correctness for
the same reasons as persistence consistency: either may
break code or invalidate security reasoning due to the use
of partially stale state. For caching of Waterken server re-
sponses to be coherent, the ETag value must fully identify
the response text: two responses with the same ETag must
yield the same text. For performance reasons, it is best to
avoid generating the response text at all when there is a
valid cached version. Consequently, the ETag is not simply
a hash of the response text. Instead, the Waterken server
leverages Joe-E’s support for determinism [4] and so uses
the hash of the inputs to the response text generator. Since
Joe-E prevents application code from accessing sources of

non-determinism, the Waterken server can track all state ac-
cessed by the application and thus ensure that any return
value is identical to that produced if the same state is used
again.

The ability to track all mutable state, together with the
prohibition against reading sources of non-determinism,
makes any Joe-E computation cacheable and ensures that
caches can be made coherent. In the absence of such a sys-
tematic approach, caching is often implemented in an ad-
hoc fashion specific to a given request. For example, any
use of HTTP caching in a standard Java servlet environment
requires careful code review for potential cache coherence
issues. The difficulty of performing this analysis sometimes
results in disabling of caching. Joe-E enables the Waterken
server to reliably ensure cache coherency, allowing caching
to be enabled for every application.

8 Related Work

Capabilities have a long history as an approach for secur-
ing systems [8]. Early multi-user capability systems were
based upon hardware support for capabilities, where each
capability indicated a resource and a set of access rights.
These systems were sometimes criticized for the perfor-
mance overhead imposed by the special hardware, and for
the extra complexity of managing capabilities separately.
Joe-E minimizes performance overhead by performing se-
curity checks at compile time as part of static verification,
rather than at runtime. In Joe-E, references used to desig-
nate resources also carry the authorization to access those
resources, eliminating the need to separately manage privi-
leges.

While hardware support for capabilities is no longer
commercially available, capability-based operating systems
are still found in research and some commercially-available
high-assurance systems, including the GNOSIS kernel from
TymShare, KeyKOS [6], EROS [18], and derivatives. We
share the view of capabilities as programmatically invok-
able references, but integrate them into the language.

There has been a great deal of work on object-capability
languages. As far back as 1973, Morris described how a
programming language can provide protection features that
enable composition of code from multiple sources and sup-
port local reasoning about security [13]. W7 implemented
these features in a Scheme environment and provided an
early example of language support for capabilities [17].
Joe-E was heavily influenced and inspired by E, a semi-
nal object-capability language [11]; Joe-E brings many of
the novel security features of E to a modern language (Java)
that might be more familiar to programmers, and shows how
a static type system can support these security goals. We
have also drawn on work in the E language community on
recognizing and defining the object-capability approach and

identifying patterns for secure programming. Our work is
closely related to Oz-E [19], an object-capability variant of
Oz, and Emily [20], an object-capability subset of OCaml
concurrently developed with Joe-E that follows similar de-
sign principles.

Object-capability principles have also been applied to
the web. The Caja project [12] provides a way to incor-
porate untrusted content into a web page, introducing an
object-capability subset of Javascript called Cajita as well
as support for legacy Javascript code by translating it to Ca-
jita. ADsafe [2] is a more restrictive object-capability sub-
set of JavaScript, designed to support advertisements whose
security can be checked without requiring code rewriting.
Emily, Cajita, ADsafe, and Joe-E can all be considered
examples of semantically-enhanced library languages [21]:
they subset a base language, then augment its functionality
by adding libraries.

The Java language incorporates mechanisms for access
control and protection, based on the security manager,
which is invoked when sensitive operations are performed.
It can make use of stack inspection and code source infor-
mation to determine whether to allow such operations [5].
This mechanism provides central enforcement of a security
policy, which is usually specified centrally and separately
from the code to which it applies. In contrast, Joe-E en-
forces security polices implemented by the program itself in
the form of capability delegation and reference monitors de-
fined by encapsulating objects. This provides an expressive
mechanism for supporting a wide variety of policies, includ-
ing fine-grained and dynamic policies that may be difficult
to enforce in Java. It also allows modularity and separa-
tion of concerns for policy enforcement, because each part
of the security policy can be enforced at the point in the
code where it is relevant. We expect Java’s mechanisms to
be better-suited to enforcing security on legacy code, but
for new code, Joe-E may help enforce and verify richer,
domain-specific security properties.

Scala [15] is an object-oriented language that compiles
to Java bytecode and provides interoperability with Java. It
offers better support for functional programming, support-
ing immutable data structures and event-based Actor con-
currency. While we find some of the spirit of Scala in line
with the patterns for effective Joe-E programming, it does
not provide security properties comparable to Joe-E. Scala
syntactically prohibits static fields and methods, replacing
them with instance fields on singleton classes. While syn-
tactically cleaner, this approach can still provide capabilities
in the global scope.

Another way to enforce application-specific security
properties is by restricting information flow between des-
ignated security principals or labels. The Asbestos [3]
and HiStar [23] operating systems enforce information-flow
policies at a per-process granularity. Jif [14] implements

information flow restrictions at a finer granularity, enabling
each variable to receive its own label and providing a way to
check many of these restrictions statically at compile time.
Like Joe-E, Jif is based upon Java, leveraging programmer
familiarity with Java. Information flow techniques seem
most suitable when the security policy is concerned with
the flow of data throughout the system; in contrast, capa-
bility languages seem most relevant when we are primarily
concerned with controlling the side effects that a system can
have.

Privilege separation is the process of breaking a legacy
application into two or more components that can execute
at different levels of operating system privilege. A proto-
typical architecture involves a trusted, high-privilege mas-
ter process that does most of its work via less-privileged
slaves [16]. The privman library [7] factors out much of
the logic of implementing a privilege-separated program.
The Wedge toolkit [1] aims to facilitate the process of
privilege separating legacy software by creating appropri-
ate primitives and providing a runtime profiling tool that
identifies the resources used by the components to be sep-
arated. We share the goal of architecting systems for se-
curity. However, operating system approaches seem best-
suited to coarse-grained protection domains; Joe-E provides
language support for separating an architecture into many
fine-grained protection domains.

In previous work we examined how to verify that meth-
ods are functionally pure (deterministic and side-effect-
free), and argued that purity has useful applications in com-
puter security [4]. That work described how, given an
object-capability language, one can extend it to obtain a
deterministic object-capability language; it described how
deterministic object-capability languages support verifica-
tion of functional purity; and it discussed the application
of those techniques to Joe-E. In contrast, this paper is
concerned with how to design a practically useful object-
capability language in the first place, rather than how to
support determinism and verifiable purity.

9 Conclusions

Object capabilities are a promising approach to build-
ing software systems that provide reliable security proper-
ties and are easier to audit and safely extend. In this work,
we have shown that the advantages of object-capability sys-
tems can be achieved with moderate changes to a popular
type-safe object-oriented language. Defining a subset al-
lows one to reason about sophisticated security properties
of a program in a familiar language, obtaining the benefit
of stronger guarantees about what a program is able to do
while leveraging existing tools and programmer expertise.
We anticipate that these techniques will be useful for devel-
oping security-critical and other software, as the industry

moves beyond ad-hoc responses to specific attacks toward
the construction of verifiably robust, trustworthy software.

Acknowledgements

Mark Miller and Marc Stiegler made major contributions
to the early design of Joe-E, and we gratefully acknowl-
edge their sage guidance and advice. We thank Devdatta
Akhawe, Arel Cordero, Matthew Finifter, and the anony-
mous reviewers for their helpful comments on earlier ver-
sions of this paper.

This material is based upon work supported by the
National Science Foundation under grants CNS-0716715,
CCF-0424422, and CCF-0430585. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References

[1] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge:
splitting applications into reduced-privilege compartments.
In 5th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’08), pages 309–322, 2008.

[2] D. Crockford. ADsafe. http://www.adsafe.org.
[3] P. Efstathopoulos, M. Krohn, S. Vandebogart, C. Frey,

D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and
R. Morris. Labels and event processes in the Asbestos oper-
ating system. In 20th ACM Symposium on Operating System
Principles (SOSP’05), pages 17–30, 2005.

[4] M. Finifter, A. Mettler, N. Sastry, and D. Wagner. Verifi-
able functional purity in Java. In 15th ACM Conference on
Computer and Communications Security (CCS’08), pages
161–174, 2008.

[5] L. Gong, M. Mueller, and H. Prafullch. Going beyond the
sandbox: An overview of the new security architecture in
the Java development kit 1.2. In USENIX Symposium on
Internet Technologies and Systems, pages 103–112, 1997.

[6] N. Hardy. KeyKOS architecture. SIGOPS Operating Sys-
tems Review, 19(4):8–25, 1985.

[7] D. Kilpatrick. Privman: A library for partitioning applica-
tions. In USENIX Annual Technical Conference, FREENIX
Track, pages 273–284, 2003.

[8] H. M. Levy. Capability-based computer systems. Digital
Press, Maynard, MA, USA, 1984.

[9] T. Lindholm and F. Yellin. Java(TM) Virtual Machine Spec-
ification, The (2nd Edition). Prentice Hall PTR, April 1999.

[10] A. Mettler and D. Wagner. The Joe-E language specifica-
tion, version 1.1, September 18, 2009. http://www.cs.

berkeley.edu/~daw/joe-e/spec-20090918.pdf.
[11] M. S. Miller. Robust Composition: Towards a Unified Ap-

proach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, Baltimore, Maryland,
USA, May 2006.

[12] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja: Safe active content in sanitized JavaScript (draft),
2008. http://google-caja.googlecode.com/files/

caja-spec-2008-06-07.pdf.
[13] J. H. Morris, Jr. Protection in programming languages. Com-

mun. ACM, 16(1):15–21, 1973.
[14] A. C. Myers and B. Liskov. A decentralized model for in-

formation flow control. In Symposium on Operating Systems
Principles, pages 129–142, 1997.

[15] M. Odersky. The Scala programming language. http://

www.scala-lang.org.
[16] N. Provos. Preventing privilege escalation. In Proceedings

of the 12th USENIX Security Symposium, pages 231–242,
2003.

[17] J. A. Rees. A security kernel based on the lambda-calculus.
MIT A.I. Memo 1564, 1996.

[18] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast
capability system. In 17th ACM Symposium on Operating
Systems Principles (SOSP’99), pages 170–185, 1999.

[19] F. Spiessens and P. V. Roy. The Oz-E project: Design guide-
lines for a secure multiparadigm programming language.
In Multiparadigm Programming in Mozart/Oz: Extended
Proceedings of the Second International Conference (MOZ
2004), pages 21–40. Springer-Verlag, 2005.

[20] M. Steigler and M. Miller. How Emily Tamed the Caml.
Technical Report HPL-2006-116, HP Laboratories, August
11, 2006.

[21] B. Stroustrup. A rationale for semantically enhanced library
languages. In Proceedings of the First International Work-
shop on Library-Centric Software Design (LCSD 05), pages
44–52, 2005.

[22] D. Wagner and D. Tribble. A security analysis of the
Combex DarpaBrowser architecture, March 4, 2002.
http://www.combex.com/papers/darpa-review/

security-review.pdf.
[23] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and

D. Mazières. Making information flow explicit in
HiStar. In 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’06), 2006.

